SÉMINAIRE JEAN LERAY. SUR LES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

WALTER STRAUSS

Les opérateurs d'onde pour des équations d'onde non linéaires indépendantes du temps

Séminaire Jean Leray (1962-1963), p. 173-176

http://www.numdam.org/item?id=SJL_1962-1963____173_0

© Séminaire Jean Leray (Collège de France, Paris), 1962-1963, tous droits réservés.

L'accès aux archives de la collection « Séminaire Jean Leray » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

LES OPERATEURS D'ONDE POUR DES ÉQUATIONS D'ONDE NON LINÉAIRES INDÉPENDANTES DU TEMPS

par

11. Walter STRAUSS

L'existence des opérateurs d'onde et de leurs inverses est démontrée pour les équations de la forme $[] \phi = q \phi^3$, où q est une fonction indépendante du temps, non négative, bornée et petite à l'infini. Ce sont des opérateurs non linéaires définis dans un ensemble dense ; ils conservent les intégrales d'énergie associées à ces équations.

On sait que le problème de Cauchy pour l'équation

où q est une fonction non négative et bornée sur \mathbb{R}^3 , est bien posé : [1], [4]. On se donne des données de Cauchy réelles, v , d'énergie finie, à l'instant t=0; elles définissent une solution ϕ_0 de l'équation d'onde $[]\phi=0$; on construit la solution de (1) qui a $\phi_0|_{t=s}$ pour données de Cauchy à l'instant t=s; on nomme w(s) la valeur de cette solution à l'instant t=0. On va démontrer que, si le coefficient q vérifie certaines conditions, w(s) converge au sens de la norme d'énergie lorsque $s \to \pm \infty$. Plus précisément, on considère le laplacien comme étant un opérateur auto-adjoint Δ dans l'espace $L_2(\mathbb{R}^3)$ et l'on note \mathcal{H} l'espace de Hilbert qui est la somme directe du domaine de définition de $(-\Delta)^{1/2}$ et $L_2(\mathbb{R}^3)$. Alors les solutions de l'équation d'onde []=0 et de l'équation (1), à données de Cauchy à l'instant s dans \mathcal{H} , sont données à l'instant t par des propagateurs respectifs $\{U_0(t,s)\}$ et $\{U_1(t,s)\}$, ces $U_k(t,s)$ étant des transformations de \mathcal{H} dans \mathcal{H} .

DÉFINITION. Les opérateurs d'onde sont définis par

pour v $\in\mathcal{H}$, pourvu que ces limites existent fortement dans \mathcal{H}

Soit $\mathcal D$ l'ensemble, dense dans $\mathcal H$, des paires de fonctions indéfiniment différentiables à support compact. Soit $\mathcal H_k$ l'ensemble des vecteurs $\mathbf v$ dans $\mathcal H$ tels que les $\mathbf U_k(t,0)\mathbf v$ s'annulent dans un cône avancé $\{|\mathbf x|< t+t_o\}$, t_o quelconque (k=0,1). Alors $\mathcal D\subset\mathcal H_o$.

THEORÈME 1. $V \pm v$ existe pour tout $v \in \mathfrak{D}$ sous les conditions

(2)
$$q(x) \leqslant q_1(|x|), x \in \mathbb{R}^3, q_1 \text{ bornée et non croissante};$$

et pour tout $\alpha > 0$,

$$\int_{1}^{\infty} \exp\left[\alpha \int_{0}^{\mathbf{r}} q_{1}(\mathbf{s}) d\mathbf{s}\right] q_{1}(\mathbf{r}) \mathbf{r}^{-2} d\mathbf{r} < \infty .$$

THÉORÈME 2. W_+ est défini dans \mathcal{H}_0 ; W_+^1 dans \mathcal{H}_1 ; W_+ transforme \mathcal{H}_0 injectivement sur \mathcal{H}_1 ; et $W_+^1 = W_+^{-1}$ dans \mathcal{H}_1 ; si l'on suppose (2) et q_1 intégrable. De même pour W_- et W_-^1 .

En définissant l'opérateur V dans \mathcal{H} par $V[b, \psi] = [0, -qb^3]$, les théorèmes 1 et 2 sont démontrés à partir des identités

(3)
$$w(r) - w(s) = -\int_{s}^{r} \left[U_{1}(0,t) \right]_{U_{0}(t,0)v} V(U_{0}(t,0)v) dt,$$
et
$$w(r) - w(s) = \int_{s}^{r} \left[U_{0}(0,t) V(U_{1}(t,0)v) dt \right],$$

où $[A]_y$ signifie la dérivée de l'opérateur A au point y. D'après le théorème ci-dessous, les $\mathbb{W}^!_{\underline{+}}$ aussi sont définis dans un ensemble dense de \mathcal{H} . On prouve d'abord le

$$\int_{|x| < |t|/2} \left[|\operatorname{grad} b|^2 + (\partial b/\partial t)^2 \right] dx$$

sont $O(t^{-2})$ lorsque $[tl \rightarrow \infty. [5]]$

THEORÈTE 3. Wiv existe pour tout $v \in \mathcal{D}$ si l'on suppose (2), q_1 grable, $\Im q / \Im |x| \leq 0$, et $q^{-11/3} \backslash \operatorname{grad} q | q^4 \rangle$ intégrable dans \mathbb{R}^3 .

THEORÈTE 4. Soit, pour $v = [b, \psi] \in \mathcal{H}$,

$$E_0(v) = |v|^2$$
 et $E_1(v) = |v|^2 + \frac{1}{2} \int q e^4 dx$.

Supposons (2) valable et q_1 intégrable ; alors $E_1(V_+ v) = E_0(v)$ pour $v \in \mathcal{H}_0$, et $E_0(V_+^! w) = E_1(w)$ pour $w \in \mathcal{H}_1$. Si l'on suppose les hypothèses du théorème 3, alors $E_0(V_+^! w) = E_1(w)$ pour $w \in \mathcal{J}$. De même pour W_- et $V_-^!$.

Les hypothèses ci-dessus sur le coefficient q peuvent être légèrement affaiblies et le domaine peut être agrandi. De plus, les théorèmes 1-3 sont également valables pour un coefficient q qui dépend du temps ainsi que de l'espace, si l'on remplace la condition (2) par la définition

$$q_1(t) = \sup_{|x| > |t|} q(x,t)$$
,

et si l'on suppose en outre que $(\text{sign t})(\Im q/\Im t) < 0$ nour it i grand. Des cas plus simples où q est petit à l'infini comme fonction de t, ont été déjà traités [2-4]. On remarque que l'équation (3) est valable très généralement pour des propagateurs non linéaires dans un espace de Banach. Les détails paraîtront séparément.

BIBLIOGRAPHIE

- [1] K. JÖRGENS, Nath. Zeit. 77, 1961, pp. 295-308.
- [2] W.A. STRAUSS, Trans. Amer. Math. Soc. (à paraître).
- [3] F. E. BROWDER et W. A. STRAUSS, Pacific J. Math. (à paraître).
- [4] I. E. SEGAL, Bull. Soc. Nath. France 91, 1963, pp. 129-156.
- [5] W. A. STRAUSS, Comptes Rendus 256, 1963, pp. 2749-50.