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ERROR ESTIMATES IN THE DERIVATION OF THE NON-LINEAR EQUATIONS
FOR ELASTIC PLATES

by

Fritz JOHN

Ve consider the simplest mathematical model for an isotropic, homogenous,
elastic body permitting finite deformations. Let x; be the coordinates of a
particlé in the unstrained state, ii those in the strained state. Let
d45° = g;) 4x; dx_ be the line element in the strained state. The internal

energy per unit volume is taken to be

W= 8(14Ercr5 [(oyy =853 (85, =850 + 1Zo— (g5; = 535 (g -akk)

(E = Young's modulus, O = Poissorls ratio, O0< e < % ).
We make W dimensionless by choosing units of force for which

E/2(14+0-) = 1. The stress matrix (tik) is defined by

P = - &
bk = 2 agik“gik‘bik**i-zc' (&35 = 854) Opc -

These are the stress-strain relations. The equations of equilibrium in the
absence of body forces are then

P

(b5 + ik),k =0

where

P, =(g._ - )trk-wé

ik ir ir ik *

(Here f , Stends for bf/axk). In addition we have 6 compatibility equations
H

for the ik corresponding to the fact that the Riemann curvature tensor of the

81 vanishes. Expressing everywhere the 85 1iv terms of the trs we have
a systen of 6 second order and 3 first order equations for the tik’ which
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are, of course, not independent from each other. Additional conditions consist
in either prescribing the displacements or the stresses on the boundary.

Existence and uniqueness of solutions has been established for
rgufficiently small" boundary data. (For references, in particular to the
work of F., Stopelli, see G. Grioli : hathematical Theory of Elastic Equilibrium,
Ergebnisse der Angewandten llathematik, 1962).

Of particular interest is the problem of obtaining from the full
3-dimensional theory contained in the equations above two-dimensional equations
for thin plétes and shells. A rigorous derivation encounters the difficulty
that the inequalities used in establishing existence and unigueness of solutions
are likely to become invalid in the case of thin objects., This is indicated by
the possible occurence of buckling and of boundary layers. Usually equations
for plates and shells are derived from asymptotic expansions or from ad hoc
assumptions on the relative orders of magnitude of the various stress components.

A different approach will be indicated here for the case of a thin plate,
leading to the classical equations of v, Karman and Foppl. No forces shall act
on the plane parallel faces x.5 =+h of the plate, corresponding to the
boundary conditions t13 = t23 = t33 = 0, Instead of describing the solution
completely in terms of data on the lateral faces of the plate we start with an
a priori inequality ltik\ < € for the maximum of all stress components in
the plate. (The difficult problem how such an estimate can be deduced from
prescribed boundary data on the lateral faces of the plate is not considered),
The aim is to get "concrete" estimates for the error terms in the v. Karman-Foppl
equations in terns of € , h and of the distance a of the points considered

from the lateral boundary of the plate, without having to pass to the limit
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h 5 0 . This is achieved by estimating all derivatives of the t ik in terms
of & ,h,a on the basis of the 3-dimensional differential equations which form
an elliptic system. The main tool here are inequalities of the type of Ga&rding
and Sobolev. (For details see the speaker's report : estimates for the error iﬂ
the equations of non-linear plate theory, New York University, Courant Institute

of Mathematical Sciences, IMM-NYU 308, 1963)., The non-linearity of the differen

equations forces us to restrict ourselves to cases where 6a2h -2 lics below a

certain universal constant %o, . The main result of the estimates is that any
n-th derivative of the tik does not exceed the value Ks.‘:/an—jh , Where K

only depends on n and o= , An n-th derivative with respect to X%y
alone can even be estimated by K& /an « As a consequence one can justify some
of the statements usually assumed without proof. It turns out, for example, that

some of the stress components are automatically of higher order :

33 = 0(&n /a2), =0(¢& hfa) for & =1,2 .,
The Karman-Foppl equations introduce the quantities
1 h

and w = 323(:;:1 Xy ,0) . The Tokﬁ can be expressed as second derivatives of
an "Airy-function" ;Zf(x1 ,X2) « From the differential equations and estimates

for the t j ome finds after a suitable rigid motion of the deformed body the

relations
¢°L& . 2(1+07) (w,12w,12—w,“w’22) + R,
3 -1 .
W spe 50" (v 1 F 2w Bt o gy + Ry

(&,P =1,2) ,
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where lej < Kh2/a4 , and K depends only on o~ . These are the
v. Karman-Foppl equations with universal estimates for the error terms.

One convinces oneself that the quantities R, are generally smaller

than the other terms occuring in the equations. The validity of the equations

is restricted to a portion of the plate of size O(h€2_1/2) ;s for larger

portions one may not be able to get along with a fixed rigid motion.



