SÉMINAIRE HENRI CARTAN

André Unterberger

L'indice est une fonction additive sur K(B(X), S(X))

Séminaire Henri Cartan, tome 16, nº 1 (1963-1964), exp. nº 14, p. 1-3

http://www.numdam.org/item?id=SHC_1963-1964__16_1_A14_0

© Séminaire Henri Cartan

(Secrétariat mathématique, Paris), 1963-1964, tous droits réservés.

L'accès aux archives de la collection « Séminaire Henri Cartan » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

10 février 1964

L'INDICE EST UNE FONCTION ADDITIVE SUR K(B(X), S(X)) par André UNTERBERGER

Notations. - B(X) et S(X) sont construits à l'aide d'une métrique riemannienne C^{∞} sur X , variété C^{∞} compacte.

Si E est un fibré sur X , E_S (resp. E_B) désignera son image réciproque sur S(X) (resp. B(X)).

Ell(X ; E , F , ρ) est l'ensemble des opérateurs de Calderon-Zygmund ρ -elliptiques de E dans F .

 $\mathcal{E}(X;T^*(X),\operatorname{Iso}(E,F);\rho)$ est l'ensemble de leurs ρ -symboles.

 $\mathcal{E}(X ; S(X) , Iso(E , F))$ est l'ensemble des restrictions à S(X) de ces symboles.

Enfin $\mathcal{E}(X;S(X))$ est l'ensemble des "classes d'isomorphisme" de triples (E_S,F_S,σ) , où E et F sont deux fibrés C^∞ sur X, et σ un isomorphisme C^∞ au-dessus de S(X) de E_S et F_S , deux triples (E_S,F_S,σ) et (E_S',F_S',σ') étant isomorphes s'il existe deux C^∞ -isomorphismes

$$\alpha: E_B \to E_B^{\bullet}$$

$$\beta: F_B \to F_B^{\bullet}$$
tels que le diagramme
$$F_S \xrightarrow{\alpha|S(X)} E_S^{\bullet}$$

$$F_S \xrightarrow{\beta|S(X)} F_S^{\bullet}$$

soit commutatif.

Sur $\mathcal{E}(X; T^*(X), Iso(E, F); \rho)$ est défini un indice χ , puisque l'indice d'un opérateur ρ -elliptique ne dépend que de son ρ -symbole.

Un symbole étant entièrement déterminé par sa restriction à S(X), on peut donc définir sur S(X;S(X)), Iso(E , F)) une famille d'indices χ_{ρ} , un pour chaque ρ réel.

En fait, χ_{ρ} ne dépend pas de ρ .

En effet, si deux symboles de degrés d'homogénéité différents σ_{ρ_1} et σ_{ρ_2} coincident sur S(X), alors σ_{ρ_1} $\sigma_{\rho_2}^{-1}$ comcide avec l'identité sur S(X), son prolongement homogène de degré $\rho_1-\rho_2$ à $T^*(X)$ définit en tout point un opérateur scalaire réel, donc est le symbole d'un opérateur $(\rho_1-\rho_2)$ -elliptique d'indice 0.

Donc σ_{ρ_1} et σ_{ρ_2} sont les symboles de deux opérateurs respectivement ρ_1 et ρ_2

elliptiques ayant même indice.

 χ est donc une fonction sur $\mathcal{E}(X ; S(X) , Iso(E , F))$. Tout élément de $\mathcal{E}(X ; S(X))$ est la classe d'un triple $(\mathbf{E}_S , \mathbf{F}_S , \sigma)$, où $\sigma \in \mathcal{E}(X ; S(X) , Iso(E , F))$.

Pour montrer que χ est une fonction sur $\mathcal{E}(X;S(X))$, il suffit de montrer que si $(E_S$, F_S , $\sigma) \stackrel{N}{=} (E_S^i$, F_S^i , $\sigma^i)$, alors $\chi(\sigma) = \chi(\sigma^i)$.

Remarquons tout d'abord que si $\sigma \in \mathcal{E}(X;S(X),Iso(E,F))$ se prolonge en un isomorphisme $\widetilde{\sigma}$ au-dessus de B(X) tout entier, alors $\chi(\sigma)=0$.

Introduisons en effet $\sigma_{t} \in \mathcal{E}(X; S(X), Iso(E, F))$ défini par

$$\sigma_{t}(x, \xi) = \widetilde{\sigma}(x, t\xi)$$
.

Alors $\sigma_o(x,\xi)=\widetilde{\sigma}(x,0)$ et σ_o se prolonge (par homogénéité de degré 0) en le symbole d'un opérateur de multiplication inversible, donc $\chi(\sigma_o)=0$.

 $\sigma_1 = \sigma$ étant isotope à σ_0 , $\chi(\sigma) = 0$.

Soient alors

$$\alpha : E_{B} \xrightarrow{\underline{\mathcal{N}}} E_{B}^{!}$$

$$\beta : F_{B} \xrightarrow{\underline{\mathcal{N}}} F_{B}^{!}$$

tels que, au-dessus de S(X), on ait $\sigma'\alpha = \beta\sigma$.

De
$$\chi(\alpha) = \chi(\beta) = 0$$
, il résulte que $\chi(\sigma) = \chi(\sigma')$.

Pour le moment, χ est donc défini sur $\xi(X; S(X))$, et est évidemment additif (pour la structure de monoïde abélien).

Soit & l'application &(X; S(X)) \rightarrow K(B(X), S(X)), qui est un hemomorphisme de monoîdes abéliens, (E_S, F_S, σ) \rightarrow d(E_B, F_B, σ sur S(X)) (exposé n° 3).

Pour montrer que χ est une fonction (qui sera alors additive) sur K(B(X), S(X)), il suffit de montrer que δ est surjective et que, si $\delta(E_S, F_S, \sigma) = \delta(E_S', F_S', \sigma')$ alors $\chi(\sigma) = \chi(\sigma')$.

a.
$$\delta$$
 est surjective. - Soit $k = d(E, F, \sigma) \in K(B(X), S(X))$ (1).

On peut supposer E, F et σ C^{∞} puisque tout fibré C° sur X variété C^{∞} compacte est C° -isomorphe à un fibré C^{∞} , et qu'un C° -isomorphisme est C° -isotope à un C^{∞} -isomorphisme.

Soit E la restriction de E à X.

E et E_{R} sont C^{∞} -isomorphes, puisque ce sont les images réciproques de E

⁽¹⁾ Conformément à la définition antérieure, \mathbb{E} et \mathbb{F} sont des fibrés vectoriels au-dessus de B(X), σ est un isomorphisme de leurs restrictions à S(X).

l'application identique $B(X) \to B(X)$ et la rétraction $B(X) \to X \xrightarrow{C} B(X)$, applications qui sont C^{∞} -homotopes.

De même pour F .

Donc $d(E_B, E_B, \sigma) = d(E_B, E_B, \sigma_1)$, ce qui prouve que δ est surjective.

b. Soient $\delta(E_S, F_S, \sigma) = \delta(E_S^!, F_S^!, \sigma^!)$. Alors il existe deux C^O -fibrés G et $G^!$ sur B(X) tels qu'on ait un C^O -isomorphisme au-dessus de B(X).

$$(E_B \oplus G, F_B \oplus G, \sigma \oplus I) \stackrel{\mathcal{N}}{\longrightarrow} (E_S^! \oplus G^!, F_S^! \oplus G^!, \sigma^! \oplus I^!)$$
.

 \underline{G} et $\underline{G}^{!}$ étant respectivement C^{O} -isomorphes à G_{B} et $G_{B}^{!}$, on a aussi le C^{O} -isomorphisme

 $(E_B \oplus G_B, F_B \oplus G_B, \sigma \oplus I) \stackrel{\circ}{=} (E^! \oplus G^!, F^! \oplus G^!, \sigma^! \oplus I^!)$.

On peut se ramener au cas où tout est C^{∞} . Les deux triples définissent alors la même classe dans $\mathcal{E}(X;S(X))$, on a donc

 $\chi(\mathbb{E}_S \oplus \mathbb{G}_S, \mathbb{F}_S \oplus \mathbb{G}_S, \sigma \oplus \mathbb{I}) = \chi(\mathbb{E}_S^{!} \oplus \mathbb{G}_S^{!}, \mathbb{F}_S^{!} \oplus \mathbb{G}_S^{!}, \sigma^{!} \oplus \mathbb{I}^{!})$

et le fait que $\chi(G_S$, G_S , $I)=\chi(G_S^i$, G_S^i , $I^i)=0$, joint au fait que χ est additif sur $\xi(X$; S(X)) , entraîne que

$$\chi(E_S, F_S, \sigma) = \chi(E_S^i, F_S^i, \sigma^i)$$
.