SÉMINAIRE HENRI CARTAN

BERNARD MORIN

La classe fondamentale d'un espace fibré

Séminaire Henri Cartan, tome 12, nº 1 (1959-1960), exp. nº 8, p. 1-12

http://www.numdam.org/item?id=SHC_1959-1960__12_1_A8_0

© Séminaire Henri Cartan

(Secrétariat mathématique, Paris), 1959-1960, tous droits réservés.

L'accès aux archives de la collection « Séminaire Henri Cartan » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

4 janvier 1960

LA CLASSE FONDAMENTALE D'UN ESPACE FIBRÉ

par Bernard MORIN

I. Sous-fibrés et fibrés partiels.

Dans tout cet excosé, A désigne un anneau commutatif avec élément unité, B un espace topologique, les lettres en italique, des systèmes locaux sur B de A-modules unitaires.

Rappelons qu'un système local <u>G</u> de A-modules unitaires sur un espace topologique B peut être considéré comme la donnée, sur chaque composante connexe par arcs B_i de B, d'un A-module unitaire C_i et d'une représentation linéaire du groupe de Poincaré

$$\Pi_1(B,b_i)$$
 , $(b_i \in B_i)$ dans G_i

Chacun des G se trouve ainsi muni d'une structure de $A(\pi_1(B,b_i))$ -module à gauche.

Soient G, G' deux systèmes locaux : les A-modules $\operatorname{Hom}_A(G_i, G_i')$ et $G_i \otimes_A G_i'$ sont munis de structures de $\mathcal{V}_1(B, b_i)$ -modules par les formules :

$$\pi_{\mathbf{x}} = \pi_{\mathbf{0}} \times \mathbf{0} \pi^{-1}$$

$$\text{fr} \in \pi_{1}(\mathbb{R}_{+}, \mathbb{N}_{1})$$

$$\times \in \text{Hom}_{\mathbb{A}}(\mathbb{G}_{1}_{+}, \mathbb{G}_{1}^{*})$$

$$\mathcal{E} \in \mathbb{G}_{1}^{*}$$

$$\mathcal{E}' \in \mathbb{G}_{1}^{*}$$

On définit ainsi des systèmes locaux notés

$$\operatorname{Hom}_{\mathbf{A}}(G, G^{!})$$
 et $G \otimes_{\mathbf{A}} G^{!}$

respectivement.

Si, en particulier, $\underline{\underline{G}}$ est un système local libre à un générateur (c'est-à-dire si chacun des \underline{G}_1 est un A-module libre à un générateur), le système local $\operatorname{Hom}_A(\underline{G},\underline{G})$ est isomorphe au système local trivial A . Sur chaque composante connexe, cet isomorphisme s'obtient en faisant correspondre l'unité de A à l'application identique de \underline{G}_1 . Plus généralement, si \underline{G}_1 est libre à un générateur et \underline{G}_1 quelconque, on a :

$$\operatorname{Hom}_{\mathbf{A}}(\mathbf{G}, \mathbf{G}) \otimes_{\mathbf{A}} \mathbf{G}' \approx \mathbf{G}'$$

Homologie et cohomologie de B à valeurs dans G . - Lorsque B est connexe, soit $\Sigma(\mathbb{B}) = \bigcup_n \Sigma_n(\mathbb{B})$ l'ensemble des simplexes singuliers de B dont tous les sommets sont en b $\in \mathbb{B}$, munis des opérateurs de face δ_i et des opérateurs de dégénérescence s_i .

 $oldsymbol{\Sigma}_1({ t B})$ est l'espace des lacets $\Omega({ t B}$, ${ t b})$.

Soit $h: \Sigma_1(B) \to \pi_1(B)$, b) l'application qui associe à chaque simplexe de dimension 1 l'élément du groupe de Poincaré qu'il définit.

$$\overline{\Sigma}$$
 (B) = π_1 (B, b) $\times \Sigma$ (B)

est un ensemble simplicial muni des opérateurs de face

$$\begin{split} \partial_{\mathbf{i}}(\pi,\sigma) &= (\pi,\partial_{\mathbf{i}}\sigma) & 0 < \mathbf{i} \leq \mathbf{n} \\ \partial_{0}(\pi,\sigma) &= (\pi.\mathbf{h}(\partial_{2}\partial_{3}\dots\partial_{\mathbf{n}}\sigma),\partial_{0}\sigma) \\ s_{\mathbf{i}}(\pi,\sigma) &= (\pi,s_{\mathbf{i}}\sigma) & 0 < \mathbf{i} \leq \mathbf{n} \\ & \begin{cases} \pi \in \Psi_{1}(\mathbb{B},b) \\ \sigma \in \Sigma_{\mathbf{n}} \\ \end{cases} \end{split}$$

L'application $(\pi$, $\sigma)$ \longrightarrow σ identifie la réalisation topologique du complexe $\overline{\Sigma}$ au revêtement universel de la réalisation topologique de Σ .

Le module libre $\overline{C}_*(B$, A), de base $\overline{\Sigma}(B)$, se trouve ainsi muni d'une structure de $\pi_1(B$, b)-module à gauche pour laquelle les opérateurs ∂_i et s_i sont linéaires. On pose

$$C_*(B, G) = G' \otimes_{\pi_1(B, b)} \overline{C}_*(B, A)$$

et

$$C^*(B, G) = Hom_{\pi_1(B, b)}(\overline{C}_*(B, A), G)$$

où G' désigne le π_1 (B, b)-module à droite déduit de G en posant :

$$g^{\pi} = \pi^{-1}g \qquad \begin{cases} \pi \in \Psi_1(\mathbb{R} , b) \\ g \in G \end{cases}.$$

L'homologie du complexe $C_*(B,G)$, (resp. $C^*(B,G)$), s'appelle l'homologie (resp. la cohomologie) de B à coefficients dans le système local G.

Si B n'est pas connexe, son homologie (resp. sa cohomologie) à coefficients dans G est, en chaque dimension, la somme directe (resp. le produit direct)

des homologies (resp. des cohomologies) à coefficients dans <u>G</u> de chacune des composantes connexes de B.

DÉFINITION 1. - Soit F \xrightarrow{i} X $\xrightarrow{\pi}$ B un fibré au sens de SERRE, de base B, et de fibre F au-dessus d'un point b \in ? :

a. On dira qu'un sous-espace $X' \subset X$ définit un sous-fibré de X si l'application $\pi | X' |$ est une application fibrée au sens de SERRE sur B. Alors, $F' = F \cap X'$ sera appelé la sous-fibre au-dessus de b. La paire (F', F') sera appelée la fibre relative du fibré relatif (X', X').

b. On dira qu'un sous-espace $X^n \subseteq X$ définit un fibré partiel de X s'il existe un sous-espace $\mathbb{R}^n \subseteq \mathbb{R}$ tel que $\pi^{-1}(\mathbb{R}^n) = X^n$.

Dans ces conditions, l'amplication $\pi|X^n|$ est évidemment une application fibrée au sens de SERRE. B'' para appelée la base du fibré partiel X^n , la paire (B, B'') sera appelée la base relative du fibré relatif (X, X^n).

Mous donnerons sans démonstration le résultat suivant qui complète les remarques de DOUADY ([1], paragraphe 6, B et C).

PROPOSITION 1. - Soit $F \to X \to B$ un fibré au sens de SERRI, $F' \to X' \to B$ un sous-fibré de X, $F \to X'' \to B''$ un fibré partiel de X. Soit G un système local de A-modules unitaires sur B. On notera encore G les systèmes locaux induits par G sur X, X', X'', F' et B''.

a. Dans ces conditions, il existe une suite spectrale notée

$$(\mathbb{E}_r^{p,q}(X,(X^i,X^{ii}),\mathbb{Q}))$$

telle que

$$\mathbb{E}_{2}^{p,q}(X,(X',X'');\underline{C})=\mathbb{H}^{p}(\mathbb{B},\mathbb{B}'';\underline{H}^{q}(Y,\mathbb{F}';\underline{C}))$$

et dont le terme $\stackrel{\Sigma}{=}$ est isomorphe à un gradué associé à $\stackrel{\Pi}{=}$ (X , X' \cup X" ; $\stackrel{\Pi}{=}$).

b. Si de plus, $\stackrel{G'}{=}$ et $\stackrel{G''}{=}$ sont deux autres systèmes locaux de A-modules unitaires sur B , et h un homomorphisme de systèmes locaux $\stackrel{G'}{=}$ $\stackrel{\Lambda}{=}$ $\stackrel{G}{=}$ $\stackrel{\Pi}{=}$ $\stackrel{\Pi}$

qui satisfait aux trois conditions suivantes :

1° Sur $\mathbb{E}_2(X, \underline{\mathbb{G}'}) \otimes_{A} \mathbb{E}_2(X, (X', X''); \underline{\mathbb{G}})$ cet accouplement est donné par le cup-produit gauche :

(Lorsqu'on a des systèmes locaux H, H', H' de A-modules unitaires gradués sur B, et un homomorphisme H' \otimes H \longrightarrow H', on définit le cup-produit gauche en appliquant la règle de loszul au cup-produit usuel au sens des systèmes locaux H, H', H'' de A-modules).

2°
$$d_{r}(a.b) = (d_{r} a).b + (-1)^{p'+q'} a.(d_{r} b)$$

$$\begin{cases} a \in \mathbb{F}_{r}^{p',q'}(X,G') \\ b \in \mathbb{F}_{r}^{p,q}(X,(X',X'');G) \end{cases}$$

et l'accouplement entre les \mathbb{E}_{r+1} s'identifie à l'accouplement entre les \mathbf{d}_r -homologies des \mathbf{E}_r .

3° Sur les gradués associés
$$\begin{cases} GH^*(X, G') \\ GH^*(X, X' \cup X''; G) \end{cases}$$

cet accouplement coïncide avec l'accouplement induit par le cup-produit :

$$H^*(X, \underline{G}') \circ_A H^*(X, X' \cup X''; \underline{G}) \longrightarrow H^*(X, X' \cup X''; \underline{G}'')$$

Remarquons que, si $X_1 \supset X'$ définit un sous-fibré, et $X_2 \supset X^n$ définit un fibré partiel de X, il existe de même un accouplement :

. II. L'obstruction dans un espace fibré.

A. NOTATIONS. - Dans la suite, $\widetilde{\mathbb{R}}^*(\mathbb{F})$ (resp. $\widetilde{\mathbb{H}}_*(\mathbb{F})$) designe la cohomologie réduite (resp. l'homologie réduite) de l'espace \mathbb{F} .

Soit $F \xrightarrow{i} X \xrightarrow{\pi} B$ un fibré au sens de SERRE. On note M(X) le mapping-cylindre de l'application $\widehat{\pi}$. C'est encore un fibré au sens de SERRE, de base B et de fibre le cône C(F) sur F. On note $\widehat{\pi}$ la projection $M(X) \longrightarrow B$, et \widehat{i} l'injection de la fibre $C(F) \longrightarrow M(X)$,

j et s désignent les injections canoniques de X et de B dans M(X) . Puisque $\widetilde{H}(C(F)$, G) est nul,

 $\overline{\mathfrak{h}}^*: \operatorname{H}^*(\mathsf{B}, \underline{\mathsf{G}}) \longrightarrow \operatorname{H}^*(\mathsf{M}(\mathsf{X}), \underline{\mathsf{G}})$ est un isomorphisme;

s: B \longrightarrow M(X) est une section du fibré M(X), et s* = $\bar{\pi}^{*-1}$. Toute autre

section s' étant homotope à s, on a s'* = s*.

B. L'homomorphisme de Thom -Gysin. - Désignons par n le plus grand entier tel que $\frac{\tilde{H}_{i}}{H_{i}}(F,A)=0$ pour tout i < n . On a alors :

$$H^1(F, G) = 0$$
 pour i < n,

$$H^{n}(\mathbb{F}, \mathbb{G}) \approx \text{Hom}_{A}(H_{n}(\mathbb{F}, A), \mathbb{G})$$
.

Comme on a un isomorphisme $\widetilde{\mathbb{H}}^1(\mathbb{F},\mathbb{G}) \xrightarrow{\mathcal{E}_0} \mathbb{H}^{i+1}(\mathbb{G}(\mathbb{F}),\mathbb{F},\mathbb{G})$, on a $\mathbb{E}_2^{p,o}(\mathbb{M}(\mathbb{X}),\mathbb{X};\mathbb{G})=0$ pour q< n.

On a donc un edge-homomorphisme, permettant de définir l'application :

$$\psi\colon \ \mathbb{H}^p(\mathbb{B}\ , \widetilde{\mathbb{H}}^n(\mathbb{F}\ , \underline{\mathbb{G}}))\!\approx \mathbb{H}^{p,\,n+1}_2(\mathbb{M}(\mathbb{X})\ , \, \mathbb{X}\ ; \, \underline{\mathbb{G}}) \ \to \ \mathbb{H}^{p+n+1}(\mathbb{M}(\mathbb{X})\ , \, \mathbb{X}\ ; \, \underline{\mathbb{G}})$$

y s'appelle l'homomorphisme de Thom -Gvsin.

Si toutes les différentielles de la suite spectrale aboutissant à $\mathbb{E}^{p,n+1}_{\mathbf{r}}(\mathbb{M}(\mathbb{X})$, \mathbb{X} ; \mathbb{G}) sont nulles, alors l'application ψ est un monomorphisme. Si en outre, $\mathbb{G}^{i}(\mathbb{F},\mathbb{G})=0$ pour tout $i\neq n$, ψ est un isomorphisme.

C. La suite exacte de Gysin. - Spit
$$\longrightarrow H^{i}(M(X), X; G) \xrightarrow{\Psi} H^{i}(M(X), G) \xrightarrow{j} H^{i}(X, G)$$

$$\xrightarrow{S} H^{i+1}(M(X), X; G) \longrightarrow \dots$$

la suite exacte de cohomologie de la raire ($^{\mathbb{N}}(X)$, X) .

On pose heta = s * o Ψ o Ψ . Avec ces notations, on a la proposition suivante:

PROPOSITION 2. - Si y est un isomorphisme, la suite suivante est une suite exacte

$$(1) \dots \longrightarrow H^{i}(B, \widetilde{\mathbb{H}}^{n}(F, \underline{G})) \xrightarrow{\underline{G}} H^{i+n+1}(B, \underline{G}) \xrightarrow{\pi^{*}} H^{i+n+1}(X, \underline{G})$$

$$\xrightarrow{\underline{G}^{1} \circ S} H^{i+1}(B, \widetilde{H}^{n}(F, \underline{G})) \longrightarrow \dots$$

lorsque i >, - n - 1 , à condition de poser

$$H^{i}(\mathbb{B}, \widetilde{H}^{n}(\mathbb{F}, \mathbb{G})) = 0$$
 pour $i < 0$

DÉMONSTRATION. - (1) s'obtient en remplaçant dans le diagramme suivant les termes de la première ligne par les termes de la deuxième ligne qui leur sont isomorphes.

$$\cdots \rightarrow H^{i+n+1}(M(X),X;\underline{G}) \xrightarrow{\psi} H^{i+n+1}(M(X),\underline{G}) \xrightarrow{j^{*}} H^{i+n+1}(X,\underline{G}) \xrightarrow{\delta} H^{i+n+2}(M(X),X;\underline{G}) \rightarrow \cdots$$

$$\approx \begin{array}{c} \varphi \\ \\ H^{i}(B,\widetilde{H}^{n}(F,G)) \end{array} \qquad H^{i+n+1}(B,G) \qquad \qquad H^{i+1}(B,\widetilde{H}^{n}(F,G))$$

(1) s'appelle la suite exacte de Cysin.

REMARQUE. - Lorsque n > 1, on peut écrire une suite (1') analogue à (1) en étudiant les propriétés de la suite spectrale : $(\mathbb{E}_r(M(X), \mathbb{G}))$ (cf. [3], paragraphe 5C). Mais alors, le premier et le troisième homomorphisme de (1') diffèrent par leurs signes des homomorphismes correspondants de (1). Ce fait résulte de la proposition 5 ci-dessous (cf. paragraphe 3).

D. <u>Cas ou</u> $G = \widetilde{H}_n(\mathbb{F}, \mathbb{A})$. - L'élément de $\widetilde{H}^n(\mathbb{F}, \widetilde{H}_n(\mathbb{F}, \mathbb{A})) \approx \operatorname{Hom}_{\mathbb{A}}(\widetilde{H}_n(\mathbb{F}, \mathbb{A}), \widetilde{H}_n(\mathbb{F}, \mathbb{A}))$ correspondant à l'application identique de $\widetilde{H}_n(\mathbb{F}, \mathbb{A})$ s'appelle <u>la classe fondamentale de la fibre</u> et se note \mathcal{E} .

Sur chaque composante connexe B, de B, cet élément définit dans :

$$\operatorname{Hom}_{A}(\widetilde{H}_{n}(\mathbb{F}, A), \widetilde{H}_{n}(\mathbb{F}, A))$$

un élément $\mathbf{\epsilon}_{\mathbf{i}}$ invariant par les opérations de $\pi_{\mathbf{i}}$ (°, $\mathbf{b}_{\mathbf{i}}$). A l'élément $\mathbf{\epsilon}_{\mathbf{i}}$ correspond, par augmentation, un élément $\eta_{\mathbf{i}}$:

$$\gamma_{i} \in \mathcal{H}^{0}(\mathbb{F}_{i}, \operatorname{Hom}_{A}(\widetilde{\mathbb{H}}_{n}(\mathbb{F}, A), \widetilde{\mathbb{H}}_{n}(\mathbb{F}, A))) \approx A \otimes_{\pi_{1}(\mathbb{B}, \mathbb{b}_{i})} \operatorname{Hom}_{A}(\widetilde{\mathbb{H}}_{n}(\mathbb{F}, A), \widetilde{\mathbb{H}}_{n}(\mathbb{F}, A)))$$

La famille $(\gamma_i) \in \prod_i H^0(\beta_i, \widetilde{H}^n(\mathbb{F}, \widetilde{H}_n(\mathbb{F}, A)))$ s'identifie à un élément de $H^0(\mathbb{F}, \widetilde{H}^n(\mathbb{F}, \widetilde{H}_n(\mathbb{F}, A)))$, noté γ .

On pose

$$u = \Psi(\eta) \in H^{n+1}(\mathbb{M}(X), \mathbb{R} \ni \widetilde{\mathbb{H}}_{n}(\mathbb{F}, \mathbb{A}))$$

DÉFINITION 2. - La classe $y = s^*$ o $\psi(u) = \theta(\gamma) \in \mathbb{H}^{n+1}(\mathbb{B}, \frac{\hat{H}}{mn}(\mathbb{F}, \mathbb{A}))$ s'appelle la classe fondamentale du fibré X.

REMARQUE. - Les classes u et γ sont définies de façon naturelle. En particulier, u induit $\delta_{\Omega}(\epsilon) \in \operatorname{H}^*(G(F)$, F; A) sur la fibre relative (C(F), F).

E. Cas où $\widetilde{H}_n(F, A)$ est un système local libre à un générateur. - Lorsque $\widetilde{H}_n(F, A)$ est un système local A, libre à un générateur, l'isomorphisme

$$\widetilde{H}^{n}(F, A) = \operatorname{Hom}_{A}(A, A) \approx A$$

permet d'identifier

$$\gamma \in H^{0}(\mathbb{B}, \operatorname{Hom}_{\mathbb{A}}(\mathbb{A}, \mathbb{A}))$$

à l'élément unité de H*(B, A).

L'application V, relative au système local A, s'écrit alors

$$\varphi : H^{p}(B, A) \longrightarrow H^{p+n+1}(M(X), X; A)$$

et

$$\theta: H^{p}(B, A) \longrightarrow H^{p+n+1}(B, A)$$

On a $u = \psi(1)$ et $\chi = \theta(1)$.

Enfin l'isomorphisme :

(2)
$$\widetilde{H}^{n}(\mathbb{F}, \underline{G}) \otimes_{A} \underline{A} \approx \operatorname{Hom}_{A}(\underline{A}, \underline{G}) \otimes_{A} \underline{A} \approx \underline{G}$$

permet de définir le cup-produit :

$$H^*(M(X), Hom_A(A, G)) \otimes_A H^*(M(X), X; A) \longrightarrow H^*(M(X), X; G)$$

PROPOSITION 3. - Si $H_n(F)$, A) est un système local A libre à un générateur les homomorphismes φ et θ vérifient les propriétés multiplicatives suivantes :

(3)
$$\Psi(\mathbf{x} \cup \mathbf{y}) = \bar{\pi}^*(\mathbf{x}) \cup \Psi(\mathbf{y})$$

(4)
$$\theta(\mathbf{x} \mathbf{u} \mathbf{y}) = \mathbf{x} \mathbf{u} \theta(\mathbf{v})$$
 $\begin{cases} \mathbf{x} \in \mathbf{H}^{D}(\mathbf{B}, \mathbf{hom}_{\mathbf{A}}(\mathbf{A}, \mathbf{G})) \\ \mathbf{y} \in \mathbf{H}^{\mathbf{Q}}(\mathbf{B}, \mathbf{A}) \end{cases}$

DÉMONSTRATION. - On peut factoriser \overline{n}^* et ψ de la façon suivante :

$$\bar{\pi}^*: H^{p}(B, \operatorname{Hom}_{A}(\underline{A}, \underline{G})) \xrightarrow{\pi_{1}} E_{2}^{p,0}(M(X), \operatorname{Hom}_{A}(\underline{A}, \underline{G}))$$

$$\xrightarrow{\pi^{*}} E_{2}^{p,0}(M(X), \operatorname{Hom}_{A}(\underline{A}, \underline{G})) \xrightarrow{\pi^{*}_{3}} H^{p}(M(X), \operatorname{Hom}_{A}(\underline{A}, \underline{G}))$$

$$\Psi: H^{q}(\mathbb{B}, \operatorname{Hom}_{A}(\underline{A}, \underline{C})) \xrightarrow{\varphi_{1}} \mathbb{E}_{2}^{p, n+1}(\mathbb{M}(\mathbb{X}), \mathbb{X}; \underline{G}) \xrightarrow{\varphi_{2}} \mathbb{E}_{\infty}^{p, n+1}(\mathbb{M}(\mathbb{X}), \mathbb{X}; \underline{G})$$

$$\xrightarrow{\psi_{3}} H^{p+n+1}(\mathbb{M}(\mathbb{X}), \mathbb{X}; \underline{G}) .$$

On écrit l'accouplement des suites spectrales associées à M(X) et (M(X), X), relatif à l'accouplement de coefficients (2) :

$$\mathbb{E}_{\mathbf{r}}(\mathbb{M}(\mathbb{X}) \text{ ; } \operatorname{Hom}_{\mathbf{A}}(\mathbf{A}, \mathbf{G})) \otimes_{\mathbf{A}} \mathbb{E}_{\mathbf{r}}(\mathbb{M}(\mathbb{X}) \text{ , } \mathbb{X} \text{ ; } \mathbf{A}) \longrightarrow \mathbb{E}_{\mathbf{r}}(\mathbb{M}(\mathbb{X}) \text{ , } \mathbb{X} \text{ ; } \mathbf{G})$$

D'après la proposition 1b, 1°, on a :

$$\psi_{1}(x \cup y) = \pi^{*}(x) \cdot \psi_{1}(y) \qquad \begin{cases}
x \in H^{p}(B, \text{Hom}_{A}(A, G)) \\
y \in H^{q}(B, A) \\
x \cup y \in H^{p+q}(B, \text{Hom}_{A}(A, G))
\end{cases}$$

Par application répétée de la proposition 1b, 2°, il vient, puisque $\mathbb{E}_{r}^{*,0}(\mathbb{M}(\mathbb{X})$, $\mathrm{Hom}_{\mathbb{A}}(\mathbb{A},\mathbb{G})) \approx \mathbb{E}_{r+1}^{*,0}(\mathbb{M}(\mathbb{X})$; $\mathrm{Hom}_{\mathbb{A}}(\mathbb{A},\mathbb{G}))$

et que

$$\begin{split} \mathbb{E}_{\mathbf{r}}^{*,n+1}(\mathbb{M}(\mathbb{X}) \text{ , } \mathbb{X} \text{ ; } \mathbb{G}) &\longrightarrow \mathbb{E}_{\mathbf{r}+1}^{*,n+1}(\mathbb{M}(\mathbb{X}) \text{ , } \mathbb{X} \text{ ; } \mathbb{G})) \text{ (edge-homomorphismes)} \\ \Psi_{2}(\mathbf{x}' \cdot \mathbf{y}') &= \tilde{\pi}_{2}^{*}(\mathbf{x}'), \Psi_{2}(\mathbf{y}') \\ \begin{cases} \mathbf{x}' \in \mathbb{E}_{2}^{p,C}(\mathbb{M}(\mathbb{X}) \text{ , } \mathbb{N} \cap_{\mathbb{A}}(\mathbb{A} \text{ , } \mathbb{G})) \\ \mathbf{y}' \in \mathbb{E}^{q,n+1}(\mathbb{M}(\mathbb{X}) \text{ , } \mathbb{X} \text{ , } \mathbb{A}) \\ \mathbf{x}' \cdot \mathbf{y}' \in \mathbb{E}^{p+q,n+1}(\mathbb{M}(\mathbb{X}) \text{ , } \mathbb{X} \text{ ; } \mathbb{G}) \end{cases} \end{split}$$

La proposition 1b, 3° donne enfin

$$\Psi_{3}(\mathbf{x}^{n},\mathbf{y}^{n}) = \tilde{\pi}_{3}^{*}(\mathbf{x}^{n}) \quad \Psi_{3}(\mathbf{y}^{n})$$

$$\begin{cases}
\mathbf{x}^{n} \in \mathbb{F}_{\infty}^{p,0}(\mathbb{X}), & \text{Hom}_{\mathbb{A}}(\mathbb{A}, \mathbb{G}), \\
\mathbf{y}^{n} \in \mathbb{F}_{\infty}^{q,n+1}(\mathbb{X}), & \mathbb{X} \neq \mathbb{A}, \\
\mathbf{x}^{n} \cdot \mathbf{y}^{n} \in \mathbb{F}_{\infty}^{p+q,n+1}(\mathbb{M}(\mathbb{X}), & \mathbb{X} \neq \mathbb{G},
\end{cases}$$

En combinant ces trois résultats, on voit que

$$\psi(\mathbf{x} \cup \mathbf{y}) = (\psi_3 \circ \psi_2) \circ (\tilde{\pi}_1^*(\mathbf{x}) \cdot \psi_1(\mathbf{y}))$$

$$= \psi_3((\tilde{\pi}_2^* \circ \tilde{\pi}_1^*)(\mathbf{x}) \cdot (\psi_2 \circ \psi_1)(\mathbf{y}))$$

$$= \tilde{\pi}^*(\mathbf{x}) \cup \psi(\mathbf{y})$$

ce qui démontre (3).

Pour obtenir (4), il suffit d'appliquer aux deux membres de (3) l'homomorphisme s^* o ψ en utilisant les propriétés multiplicatives usuelles de ψ :

$$\psi(\mathbf{x}, \mathbf{v}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{v} \cdot \psi(\mathbf{y})$$

$$\begin{cases} \mathbf{x} \in H^{p}(\mathbb{N}(\mathbf{X}), Hom_{\mathbf{A}}(\mathbf{A}, \mathbf{G})) \\ \mathbf{y} \in H^{q}(\mathbb{M}(\mathbf{X}), \mathbf{X}; \mathbf{A}) \\ \mathbf{x} \cdot \mathbf{y} \in \mathbb{R}^{p+q}(\mathbb{M}(\mathbf{X}), \mathbf{X}; \mathbf{G}) \end{cases}$$

En posant y = 1 il vient le corollaire suivant:

COROLLAIRE. - Si H (F, A) est un système local A libre à un générateur, on a

(5)
$$\Psi(\mathbf{x}) = \tilde{\pi}^*(\mathbf{x}) \cup \Psi(1) = \tilde{\pi}^*(\mathbf{x}) \cup \mathbf{u}$$

(6)
$$\Theta(x) = x \cup \Theta(1) = x \cup \chi$$

 $x \in H^*(B, Hom_{A}(A, G))$.

Cas où B est triangulable.

PROPOSITION 4. - Soit X un espace fibré localement trivial, dont la base B est triangulable. On suppose de plus que

 $A \approx \frac{\pi}{n}(F)$ (comme groupe abélien) et que

 $A = Z_2 \approx \pi_0(F)$ (comme ensemble) <u>lorsque</u> n = 0, <u>de façon que</u> $\tilde{H}^n(F, A) = \tilde{\pi}_n(F)$.

Dans ces conditions, la classe fondamentale y du fibré X (cf. définition 2), coïncide avec la classe fondamentale de X au sens de la théorie des obstructions. (C'est la première obstruction à l'existence d'une section B -> X : pour la définition de cette classe, cf. [1] et [4].

Pour s'en convaincre, on déformera la section $B \xrightarrow{S} M(X)$ en une application, $E \xrightarrow{\sigma} M(X)$ appliquant le n-squelette de B dans le sous-espace $X \xrightarrow{C} M(X)$. X étant localement trivial, la restriction de G à un G un G un G une de G définit un élément de G G G G . On construit par ce moven une G G G G valeurs dans

$$\widehat{\mathcal{I}}_{n+1}(C(\mathbb{T}), \mathbb{F}) \approx \widetilde{\widetilde{H}}_{n}(\mathbb{F}, \mathbb{A}) = \underline{A}_{n}$$

On montrera sans peine que cette cochaine est un cocycle dont la classe de cohomologie est γ . Par l'isomorphisme

$$\pi_{n+1}(G(\mathbb{F}), \mathbb{F}) \longrightarrow \pi_n(\mathbb{F})$$

ce cocvcle s'identifie d'autre part au cocycle de la première obstruction à l'existence d'une section de $\, B \,$ dans $\, X \,$.

REMARQUE. - Si l'on donne un fibré partiel X" \longrightarrow B"(X), on peut généraliser les constructions qui précèdent au fibré relatif

$$(X, X^n) \rightarrow (B, B^n)$$

et étendre par ce moyen aux fibrés de SERRE la théorie des classes d'obstruction relatives.

III. La transgression dans un espace fibré.

Dans ce paragraphe, on suppose que P est connexe et que

$$G = \widetilde{H}_{n}(F, A)$$
.

Toutes les cohomologies et les suites spectrales sont prises à coefficients dans

$$\widetilde{H}_{n}(\mathbb{F}, A)$$

Considérons le diagramme

$$\stackrel{\mathcal{S}_1}{\text{H}^n(F)} \xrightarrow{\mathcal{S}_1} \text{H}^{n+1}(X, \mathbb{F}) \xrightarrow{\chi} \text{H}^{n+1}(X)$$

$$\stackrel{\mathcal{S}_1}{\text{H}^n}(\mathbb{F}) \xrightarrow{\pi^*} \text{H}^{n+1}(\mathbb{F})$$

En écrivant la suite spectrale associée à la paire (X , F) on constate que π^* est injective dans la dimension n + 1 . Comme

$$Im(\mathcal{S}_1) = Im(\tilde{\pi}^*) ,$$

 $\tilde{\pi}^{*-1}$ est définie sur l'image de \mathcal{S}_1 .

DÉFINITION 3. - On appelle transgression et on note τ l'application composée h o $\tilde{\pi}^{*-1}$ o $\boldsymbol{\delta}_1$.

Lorsque n>0, τ se calcule à l'aide de la différentielle d_{n+1} de la suite spectrale $(E^{p,q}_r(X))$ de la manière suivante :

$$\tau: H^n(\mathbb{F}) \approx \mathbb{F}_{n+1}^{0,n}(\mathbb{X}) \xrightarrow{d_{n+1}} \mathbb{F}_{n+1}^{n+1,0}(\mathbb{X}) \approx \mathbb{H}^{n+1}(\mathbb{E})$$

Il suffit pour le voir, de remonter à la définition des différentielles d_r d'une suite spectrale.

PROPOSITION 5. - Soit F X B un fibré au sens de SERTE dont la base

B est connexe. L'image par transgression de la classe fondamentale de la fibre

F est l'opposé de la classe fondamentale du fibré X.

Avec les notations de la définition 3 et du paragraphe 2D, on a donc :

$$\tau(\varepsilon) = -\chi .$$

DÉMONSTRATION. - Considérons le système d'espaces

A l'aide de la suite spectrale attachée à la paire

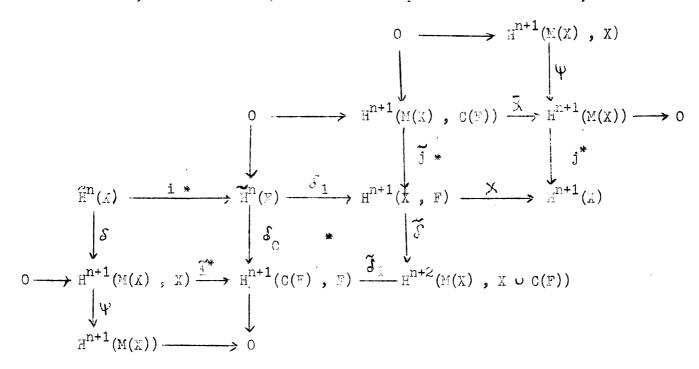
on voit que

$$H^{i}(\mathbb{M}(X), X \cup G(F)) = 0$$
 pour tout $i \leq n + 1$

En tenant compte du fait que

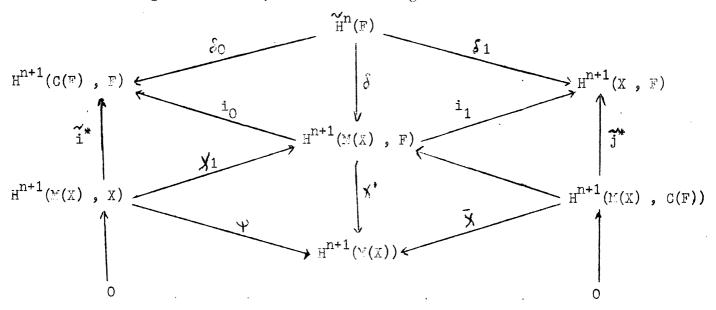
$$H^*(C(F)) = 0$$

le diagramme de cohomologie du système d'espaces précédent où tous les carrés sont commutatifs, sauf celui marqué d'une étoile qui est anticommutatif, s'écrit:



En combinant ce diagramme avec la suite exacte de cohomologie de la paire $(\mathbb{M}(X), \mathbb{F})$,

on obtient le diagramme suivant, où toutes les lignes sont exactes :



Si on identifie $H^*(P)$, $H^*(P)$ b) et k, à $H^*(M(X))$, $H^*(M(X))$ et μ respectivement, on a :

$$\tau = \tilde{\chi} \circ \tilde{j}^{*-1} \circ \mathcal{E}_1$$

et $\psi(u) = \gamma$.

En vertu de la remarque du paragraphe 2D

$$\tilde{i}^*(u) - \hat{\xi}(\epsilon) = i_0(\chi_1(u) - \xi'(\epsilon)) = 0$$

et par suite :

$$\mathcal{J}_1(\mathbf{u}) - \mathcal{S}'(\varepsilon) \in \text{Im}(\mathcal{J}_0)$$

Soit donc $x \in H^{n+1}(\mathcal{C}(X))$, C(F)) vérifiant

$$\chi_0(x) = \chi_1(u) - 5'(\xi)$$

Comme
$$i_1(f_1(u) - S'(\varepsilon)) = -i_1 S'(\varepsilon) = - \delta_1(\varepsilon)$$

 $j^*(x) = - \delta_1(\varepsilon)$

et en vertu de la définition 3

$$\chi(x) = -\tau(\varepsilon) \qquad .$$

On voit ainsi que :

$$\psi(\mathbf{u}) = \chi'(\chi_1(\mathbf{u}) - \hat{\delta}'(\xi)) = -\tau(\xi) \qquad ,$$

C. Q. F. D.

BIBLIOGRAPHIE

- [1] CARTAN (Henri). Problèmes d'homotopie et de prolongement : théorie des obstructions, Séminaire Cartan, t. 2, 1949/50 : Espaces fibrés et homotopie, n° 3.
- [2] DOUADY (Adrien). La suite spectrale des espaces fibrés, Séminaire Cartan, t. 11, 1958/59: Invariant de Hopf et opérations cohomologiques secondaires, nº 2.
- [3] DOUADY (Adrien). Applications de la suite spectrale des espaces fibrés, Séminaire Cartan, t. 11, 1958/59 : Invariant de Hopf et opérations cohomologiques secondaires, nº 3.
- [4] WU WEN TSÜN. Les classes caractéristiques d'un espace fibré, Séminaire Cartan, t. 2, 1949/50 : Espaces fibrés et homotopie, n° 18.