SÉMINAIRE HENRI CARTAN

H. CARTAN

Opérations cohomologiques, I

Séminaire Henri Cartan, tome 7, n° 2 (1954-1955), exp. n° 14, p. 1-12 http://www.numdam.org/item?id=SHC_1954-1955_7_2_A3_0

© Séminaire Henri Cartan

(Secrétariat mathématique, Paris), 1954-1955, tous droits réservés.

L'accès aux archives de la collection « Séminaire Henri Cartan » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

OPÉRATIONS COHOMOLOGIQUES, I.

(Exposé de H. CARTAN, 7.3.1955)

N.B.: La matière de cet exposé et des deux suivants a été remaniée après exposition, en vue de la présente rédaction.

Dans cet Exposé, nous nous proposons de développer l'idém indiquée dans le paragraphe 3 de l'Exposé 1. Comme le cadre des espaces topologiques les plus généraux ne permet pas une théorie satisfaisante, nous adopterons ici, avec Eilenberg-MacLane [1], le cadre des complexes CSS (complexes "semi-simpliciaux complets" au sens d'Eilenberg-Zilber [2]), qui comprennent comme cas particulier les complexes singuliers des espaces topologiques.

1.- Complexes CSS.

On a défini une notion de <u>complexe</u> dans l'Exposé 12. Nous nous bornerons ich au cas des complexes sur l'anneau Z des entiers ; ainsi un complexe X est une somme directe $\sum_{q \geqslant 0} X_q$ de groupes abéliens libres, munie d'applications linéaires

$$d_i : K_q \rightarrow K_{q-1}$$
 et $s_i = K_q \rightarrow K_{q+1}$ $(0 \le i \le q)$

satisfaisant aux relations

(1.1)
$$d_{i}d_{j+1} = d_{j}d_{i}$$
 $(i \le j)$

(1.2)
$$s_{j+1}s_i = s_is_j$$
 (i \le j)

(1.3)
$$d_{j+1}s_{i} = s_{i}d_{j} \qquad (i < j)$$

(1.4)
$$d_{i}s_{j+1} = s_{j}d_{i}$$
 (i \le j)

(1.5)
$$d_{i}s_{i} = d_{i+1}s_{i} = identit\acute{e}.$$

Les d_i s'appellent les opérateurs de face, les s_i opérateurs de dégénérese cence.

Un tel complexe est un <u>complexe CSS</u> si, pour chaque q , la <u>base</u> du groupe X est donnée (les éléments de cette base prennent le nom de simplexes), et si les d et les s transforment les éléments de base dans des éléments de base.

Si X et X' sont deux complexes CSS, une application CSS

$$f: X \rightarrow X'$$

est une application linéaire qui envoie les simplexes de X_q dans les simplexes de X_q' et satisfait à $\mathrm{fd}_i = \mathrm{d}_i \mathrm{f}$, $\mathrm{fs}_i = \mathrm{s}_i \mathrm{f}$. Deux telles applications f of g seront dites <u>CSS-homotopes</u> si, pour chaque $\mathrm{q} \gg 0$, on a $\mathrm{q}+1$ applications linéaires $\mathrm{k}_i: X_q \to X_{q+1}'$ (transformant les simplexes de X_q en simplexes de X_{q+1}') qui satisfassent aux conditions suivantes :

(2.1)
$$s_{i+1}k_i = k_i s_i$$
 (i \le j)

(2.2)
$$k_{j+1}s_{i} = s_{i}k_{j}$$
 (i $\leq j$)

(2.3)
$$d_{i+1}k_i = k_id_i$$
 (i < j)

(2.4)
$$d_{i}k_{i+1} = k_{i}d_{i}$$
 (i \le j)

(2.5)
$$d_{i+1}k_{i+1} = d_{i+1}k_{i} \qquad (i < q)$$

(2.6)
$$d_0 k_0 = f$$
, $d_{q+1} k_q = g$.

Alors $k = \sum_{0 \le i \le q} (-1)^{i} k_{i}$ est une homotopie (au sens classique) de f à 3,

si on munit X et X' des opérateurs différentiels $d = \sum_i (-1)^i d_i$. L'opérateur k (de même que d) passe aux <u>complexes normalisés</u> X_N et X_N^i (quotients de X et X' par le sous-groupe des éléments de la forme $s_i x$, resp. $s_i x^i$), ainsi d'ailleurs que f et g ; dans les complexes normalisés. k est alors une homotopie de f à g.

Soit X un complexe CSS; on a la notion évidente de sous-complexe Y (pour chaque q, le sous-groupe $Y_q \subset X_q$ est stable pour les s_i et les d_i et a pour base une partie de la base de X_q); d'où la notion de complexequotient $X/Y = \sum_{q>0} X_q/Y_q$, muni des s_i et des d_i obtenus par passage au

quotient. Le normalisé $(X/Y)_N$ s'identifie au quotient X_N/Y_N (quotient de groupes abéliens munis d'opérateur différentiel d).

Soit X un complexe CSS, et soit G un groupe abélien de coefficients. On notera $C^n(X;G)$ le groupe des n-cochaînes <u>normalisées</u> de X, c'est-à-dire des applications des simplexes de X_n dans G qui s'annulent sur les simplexes dégénérés. L'opérateur différentiel $d:X_{n+1} \to X_n$ définit, par transposition, l'opérateur <u>cobord</u>

$$S: C^{n}(X;G) \longrightarrow C^{n+1}(X;G)$$

tol que $\delta \delta = 0$. Le noyau $Z^n(X;G)$ de δ se compose des <u>n-cocycles</u> (normalisés); le quotient de $Z^n(X;G)$ par l'image de $\delta : C^{n-1}(X;G) \to C^n(X;G)$ est le groupe de cohomologie $H^n(X;G)$.

Une application CSS de X dans X' définit des homomorp ismes $\operatorname{H}^n(X^{\bullet};G) \to \operatorname{H}^n(X;G)$, et deux applications CSS-homotopes (ou même simplement homotopes, au sens classique) définissent le même homomorphisme des groupes de cohomologie.

Enfin, rappelons que si on a une suite exacte de complexes CSS:

$$0 \rightarrow Y \rightarrow X \rightarrow X/Y \rightarrow 0$$

on a une suite exacte de cohomologie

$$\dots \to H^{n}(X/Y;G) \to H^{n}(X;G) \to H^{n}(Y;G) \to H^{n+1}(X/Y;G) \to \dots$$

Cas des espaces topologiques : si $\mathcal X$ est un espace topologique, le complexe singulier (simplicial) $S(\mathcal X)$ est un complexe CSS; toute application continue $\mathcal X\to\mathcal X$ ' définit une application CSS des complexes singuliers $S(\mathcal X)\to S(\mathcal X')$; toute déformation (topologique) d'une application continue dans une autre définit (par subdivision simpliciale du prisme de déformation) sousque CSS-homotopie des applications correspondantes $S(\mathcal X)\to S(\mathcal X')$. Tout/espace $\mathcal Y$ d'un espace $\mathcal X$ définit un sous-complexe $S(\mathcal Y)$ de $S(\mathcal X)$; la cohomologie de $S(\mathcal X)/S(\mathcal Y)$ est la cohomologie relative $H^n(\mathcal X)$ mod $\mathcal Y$; G0.

2.- Soit π un groupe abélien. Les complexes $K(\pi,n)$ et $L(\pi,n+1)$, définis dans l'Exposé 13, paragraphe 5, sont des complexes CSS, munis en outre d'une multiplication (chaque $K_q(\pi,n)$, resp. $L_q(\pi,n+1)$, est un anneau commutatif); $K(\pi,n)$ est un sous-complexe de $L(\pi,n+1)$, et ce dernier est acyclique. Four q < n, $K_q(\pi,n)$ et $L_q(\pi,n+1)$ ont un seul simplexe (élément de base), l'élément unité 1_q de l'anneau. Pour q = n, $K_q(\pi,n)$ et $L_q(\pi,n+1)$ coïncident; un n-simplexe est défini par un élément de π .

L'application b qui associe à chaque n-simplexe cet élément de Π est une cochaîne, élément de $C^n(L(\pi,n+1);\pi)$, appelée <u>cochaîne fondamentale</u> de $L(\Pi,n+1)$. On définit et note de même le <u>cocycle fondamental</u> de $K(\Pi,n)$.

Enfin, pour q > n, il existe un simplexe y de $L_q^{(\Pi},n+1)$ et un seul tel que, pour toute suite d'entiers i_1 , ..., i_{q-n} distincts et $\leqslant q$, $d_{i_1} \dots d_{i_{q-n}} y$ soit un simplexe donné de $L_n^{(\Pi},n+1)$.

Soit maintenant X un complexe CSS, et u une n-cochaîne, élément de $\tt C^n(X;G)$. A chaque q-simplexe x de $\tt X_q$, associons l'unique q-simplexe $\tt 1_q$

de L $_q(\pi\,,n+1)$ si q < n ; et si $q \geqslant n$, associons à x l'unique q-simplexe y de L $_q(\pi\,,n+1)$ tel que

(3)
$$u(d_{i_1}...d_{i_{q-n}} x) = b(d_{i_1}...d_{i_{q-n}} y)$$
,

pour toute suite d'entiers i_1,\ldots,i_{q-n} distincts et $\leqslant q$. Il est évident que la relation (3) définit une <u>correspondance biunivoque entre l'ensemble</u> $C^n(\mathbb{X};\mathbb{T})$ <u>et l'ensemble des applications CSS de</u> \mathbb{X} <u>dans</u> $\mathbb{L}(\mathbb{W},n+1)$. On notara g_u l'application associée à une cochaîne u. Il est clair que g_{u+v} est le <u>produit</u> dos applications g_u et g_v , c'est-à-dire l'application qui, à chaque simplexe \mathbb{X} , associe le produit $(g_u x) \cdot (g_v x)$ dans l'annoau $\mathbb{L}_q^{(\mathbb{W},n+1)}$.

L'application $g_u: X \to L(W,n+1)$ est l'unique application CSS qui transforme la cochaîne fondamentale b de L(W,n+1) dans la cochaîne u .

Pour que l'application g_u prenne ses valours dans le sous-complexe $K(\overline{\Pi},n)$ de $L(\overline{\Pi},n+1)$, il faut et il suffit que la n-cochaîne u soit un cocycle. On obtient ainsi une correspondance biunivoque entre $Z^n(X;\overline{\Pi})$ et l'ensemble des applications CSS de X dans $K(\overline{\Pi},n)$; on notera f_u l'application $X \to K(\overline{\Pi},n)$ associée à un cocycle $u \in Z^n(X;\overline{\Pi})$; f_{u+v} est le produit des applications f_u et f_v . L'application $f_u: X \to K(\overline{\Pi},n)$ est l'unique application CSS qui transforme le cocycle fondamental $b \in Z^n(K(\overline{\Pi},n);\overline{\Pi})$ dans le cocycle u.

Théorème 1.- Pour que les applications f_u et f_v : $X \to K(\pi,n)$ définies par deux cocycles de $Z^n(X;\pi)$ soient homotopes, il faut et il suffit que u et v soient homologues (i.e. définissent le même élément de la cohomologie $H^n(X;\pi)$).

<u>Démonstration</u>: la condition est nécessaire ; d'une façon précise, si f_u et f_v sont homotopes (au sens classique, qui a priori est plus faible que le CSS-homotopie), alors les deux homomorphismes $H^q(\Pi,n;\Pi) \to H^q(X;\Pi)$ définis par f_u et f_v sont égaux pour tout q, et en particulier la classe fondamentale de $H^n(\Pi,n;\Pi)$ a môme image dans $H^n(X;\Pi)$; autrement dit, u et v ont même image dans $H^n(X;\Pi)$.

Montrons maintenant que la condition est suffisante ; plus précisément, si les cocycles u et v sont homologues, alors les applications f_u et f_v sont CSS-homotopes (il en résultera que, pour f_u et f_v , l'homotopie au sens classique équivaut à la CSS-homotopie). Soit donc u-v = δ w , avec w \in $\mathbb{C}^{n-1}(X;\mathbb{G})$. On va d'abord construire une CSS-homotopie de $f_{\delta w}$ à f_o (f_o désignant l'application triviale définie par le cocycle 0), comme suit : soit

 $\begin{array}{l} \mathfrak{G}: L_q(\pi,n) \to \mathtt{K}_{q+1}(\pi,n) \quad \text{l'application de "suspension", composée de} \\ \mathcal{E}: L_q(\pi,n) \to L_{q+1}(\pi,n) \quad \text{et de } p: L_{q+1}(\pi,n) \to \mathtt{K}_{q+1}(\pi,n) \quad \text{L'application} \\ \mathcal{E} \text{ est définie par l'application } C^{n-1}(\triangle_q;\pi) \to C^{n-1}(\triangle_{q+1};\pi) \quad \text{qui, à chaque cochaîne} \quad u \in C^{n-1}(\triangle_q;\pi) \quad \text{, associe la cochaîne} \quad v \in C^{n-1}(\triangle_{q+1};\pi) \quad \text{telle quo} \end{array}$

$$v(m_0,...,m_{n-1}) = 0$$
 si $m_0 = 0$,
= $u(m_0-1,...,m_{n-1}-1)$ si $m_0 > 0$

(avec les notations de l'Exposé 13, paragraphe 5). L'application post définion par l'application "cobord" $C^{n-1}(\triangle_{q+1}; \Pi) \to Z^n(\triangle_{q+1}; \Pi)$.

Soit alors $k: X_q \xrightarrow{} K_{q+1}(TT,n)$ l'application composée $\sigma \circ g_W^-$. Il est immédiat que

(4)'
$$s_{i+1}k = ks_i$$
, $d_{i+1}k = kd_i$, $d_0k = f_{\delta w}$

(observer que p o g = f_{δ_w}). Définissons des applications $k_i: X_q \to K_{q+1}(\pi,n)$, pour $0 \le i \le q$, en posant

(5)
$$k_{i} = (s_{o})^{i}(d_{1})^{i}k$$

ou encore:
$$k_0 = k$$
, $k_{i+1} = s_0 d_{i+1} k_i$;

un calcul fastidieux montre que ces k_i satisfont aux relations (2.1) à (2.5), et que

$$d_{0}k_{0} = f_{0}w$$
 , $d_{q+1}k_{q} = f_{0}$.

Pour obtenir une CSS-homotopie de f_u à f_v , posons, pour tout simplexe $x \in \mathbb{X}_q$,

(6)
$$k_{i}^{!}x = (s_{i}f_{v}x).(k_{i}x) \text{ (produit dans } K_{q+1}(T,n)).$$

On a
$$d_0 k_0' x = (d_0 s_0 f_v x) \cdot (d_0 k_0 x) = (f_v x) \cdot (f_v x) = f_u x$$
,

$$d_{q+1}k_q^*x = (d_{q+1}s_qf_vx).(d_{q+1}k_qx) = (f_vx).(1_q) = f_vx$$
,

et on vérifie facilement que les $k_i^!$ satisfont aux relations (2.1) à (2.5), où $k_i^!$ serait remplacé par $k_i^!$. Ceci achève la démonstration.

Corollaire du théorème 1 : si, à chaque CSS-application f de $\mathbb N$ dans $K(\Pi,n)$, on associe la classe caractéristique de f, c'est-à-dire l'élément $\xi \in H^n(\mathbb X;\Pi)$, image de la classe fondamentale $\beta \in H^n(\Pi,n;\Pi)$ par f^{\times} , on

obtient une correspondance biunivoque entre les classes d'applications GSS (le mot "classe" étant pris au sens de l'homotopie) et les éléments du groupe de co-homologie $\operatorname{H}^n(X;\pi)$.

Par abus de langage, on notera f_{ξ} l'une quelconque des applications $X \to K(\pi,n)$ ayant pour classe caractéristique un élément donné ξ de $H^n(X;\pi)$; on a donc

$$f_{\xi}^{*}(\beta) = \xi.$$

La correspondance biunivoque $\xi \to f_{\xi}$ est <u>naturelle</u>, dans le sens suivant soit $h: X \to X'$ une application CSS; soit $h^*: H^n(X'; \pi) \to N^n(X; \pi)$ l'homomorphisme défini par h; alors, pour $\xi' \in H^n(X'; \pi)$, on a

$$h \circ f_{\xi'} = f_{h*(\xi')}$$

3.- Opérations cohomologiques.

Soit X un complexe CSS; soient donnés deux entiers n et q, et deux groupes abéliens π et G. Etant donné deux éléments

$$\xi \in H^{n}(X;\pi)$$
 et $u \in H^{q}(\pi,n;G)$,

considérons les classes d'applications

$$f_{\xi}: X \to K(\pi,n) \quad \text{et} \quad f_{u}: K(\pi,n) \to K(G,q) \ .$$

La classe $f_u \circ f_\xi : X \to K(G,q)$ définit un élément de $H^q(X;G)$, que nous notations $T(u,\xi)$. Nous définissons ainsi une loi de composition entre groupes de cohomologie. Cette loi est <u>associative</u>, dans le sens suivant : si $v \in H^r(G,q;G')$, la considération de l'application $f_v \circ f_u \circ f_\xi$ montre que

(8)
$$T(v,T(u,\xi)) = T(T(v,u),\xi) .$$

On notera que

(9)
$$T(u, \xi) = f_{\xi}^*(u)$$
.

Pour $u \in H^q(\Pi,n;G)$ donné, considérons l'application partielle $\xi \to T(u,\xi)$ de $H^n(X;\Pi)$ dans $H^q(X;G)$ (qui n'est pas additive en général; voir paragraphe 5 ci-dessous); c'est une fonction <u>linéaire</u> de u, notée T(u). D'après (8), on a

$$T(v) \circ T(u) = T(T(v).u)$$

pour $u \in H^q(\pi,n;G)$ et $v \in H^r(G,q;G')$. L'application

 $T(u): H^n(X;\pi) \to H^q(X;G)$, pour un u donné, est définie pour tous les CSS-complexes X, et est <u>naturelle</u>: si h: X \to X' est une application CSC, le diagramme suivant est commutatif

$$H^{n}(X'; \Pi) \xrightarrow{T(u)} H^{q}(X'; G)$$

$$\downarrow^{h^{*}} \qquad \downarrow^{h^{*}}$$

$$H^{n}(X; \Pi) \xrightarrow{T(u)} H^{q}(X; G)$$

Réciproquement, pour des entiers n et q donnés, et des groupes abéliens π et G donnés, considérons une <u>opération cohomologique</u> $f: H^n(X;\pi) \to H^q(X;G)$, définie pour tous les CSS-complexes X, et naturelle. Alors il existe un $u \in H^q(\pi,n;G)$ et un seul tel que F = T(u), à savoir $u = F(\beta)$, où $\beta \in H^n(\pi,n;\pi)$ désigne la classe fondamentale. C'est évident, après tout ce qui précède.

On a donc défini une correspondance biunivoque entre les opérations cohorclogiques (naturelles) pour n,q, \overline{w} et G donnés, et les éléments du groupe $H^{Q}(\overline{w},n;G)$. Cette correspondance respecte l'addition.

4.- Cas de la cohomologie relative.

Soit Y un sous-complexe d'un CSS-complexe X , et considérons le CSS-complexe X/Y . Le théorème 1 et son corollaire s'appliquent au complexe X/Y . Pour l'interpréter, il est bon de songer que les applications f : $(\mathbb{X}/Y)_q \to \mathbb{K}_q (\pi,n) \text{ , resp. } \mathbb{k}_i : (\mathbb{X}/Y)_q \to \mathbb{K}_{q+1} (\pi,n) \text{ , sont en correspondance biunivoque (évidente) avec les applications } \mathbb{X}_q \to \mathbb{K}_q (\pi,n) \text{ , resp. } \mathbb{X}_q \to \mathbb{K}_{q+1} (\pi,n) \text{ , qui induisent sur le sous-complexe Y l'application triviale (i.e.: dont la valeur, sur chaque simplexe de Yq , est l'élément unité <math>\mathbb{I}_q$, resp. \mathbb{I}_{q+1}).

Proposons-nous d'interpréter l'homomorphisme $\delta: \operatorname{H}^n(Y;\pi) \to \operatorname{H}^{n+1}(X/T;\pi)$ de la suite exacte de cohomologie. Soit $\eta \in \operatorname{H}^n(Y;\pi)$, et soit $f_{\eta}: Y \to K(\pi,n)$ une application de la classe correspondante; on cherche une application $f_{\delta(\eta)}: X/Y \to K(\pi,n+1)$ de la classe qui correspond à $\delta(\eta) \in \operatorname{H}^{n+1}(X/Y;\pi)$. Notons, par abus de langage, η un cocycle de la classe de η ; d'après la définition même de l'application δ , on doit remonter $f_{\delta(\eta)}$ cherchée est définie par le cocycle $\delta \xi$. Or la cochaîne ξ définit une application

$$X \rightarrow L(\pi, n+1)$$

qui prolonge $f_{\eta}:Y\to K(\Pi,n)$ (on identifie $K(\Pi,n)$ à un sous-complexe de $L(\Pi,n+1)$); si on compose avec la projection canonique $p:L(\Pi,n+1)\to K(\Pi,n+1)$, on obtient une application $X\to K(\Pi,n+1)$ qui est triviale sur le sous-complexe Y, d'où une application $X/Y\to K(\Pi,n+1)$; c'est une application de la classe cherchée $f_{\mathcal{E}(\eta)}$.

Théorème 2.- Soit $u \in H^{q+1}(\pi,n+1;G)$, et soit $\sigma u \in H^q(\pi,n;G)$ le transformé du u par la suspension (la suspension des cochaînes est déduite de la suspension $K(\pi,n) \to K(\pi,n+1)$ par transposition). Soit Y un sous-complexe de X; si $\gamma \in H^n(Y;\pi)$ et $\delta \gamma \in H^{n+1}(X/Y;\pi)$, on a

(9)
$$ST(\sigma u, \eta) = T(u, \delta \eta) \in H^{q+1}(X/Y;G).$$

Autrement dit, le diagrame suivant est commutatif :

$$H^{n}(Y; \pi) \xrightarrow{T(\sigma u)} H^{q}(Y; G)$$

$$\downarrow \delta \qquad \qquad \downarrow \delta$$

$$H^{n+1}(X/Y; \pi) \xrightarrow{T(u)} H^{q+1}(X/Y; G)$$

Démonstration : avec les notations des lignes précédant l'énoncé du théorème, nous avons une application $g_{\xi}: X \to L(\pi,n+1)$ qui induit sur Y l'application $f_{\eta}: Y \to K(\pi,n)$, et définit, par passage aux quotients, une application $g: X/Y \to L(\pi,n+1)/K(\pi,n)$; cette dernière, composée avec la projection $p: L(\pi,n+1)/(K(\pi,n) \to K(\pi,n+1)$, donne $f_{\delta\eta}: X/Y \to K(\pi,n+1)$. Considérons le diagramme commutatif

 δ est un isomorphisme, puisque $L(\pi,n+1)$ est acyclique, et le composé $(\delta)^{-1}$ p* n'est autre que la suspension σ ; ceci prouve la formule (9).

Réciproque du théorème 2 : soient $u \in H^{q+1}(\Pi, n+1; G)$ et $u' \in H^q(\Pi, n; G)$ tels que, pour tout couple (X,Y) formé d'un complexe X et d'un sous-complexe Y, le diagramme

$$H^{n}(Y; \pi) \xrightarrow{T(u')} H^{q}(Y; G)$$

$$\downarrow^{\delta} \qquad T(u) \qquad \downarrow^{\delta} \qquad \downarrow^{\delta}$$

$$H^{n+1}(X/Y; \pi) \xrightarrow{T(u)} H^{n+1}(X/Y; G)$$

soit commutatif. Alors u' = o u .

<u>Démonstration</u>: appliquens l'hypothèse au complexe $X = L(\pi, n+1)$ et au sous-complexe $Y = K(\pi, n)$. On a un diagramme commutatif

d'où la commutativité du diagrarme

$$H^{n+1}(\Pi, n+1; \Pi) \xrightarrow{T(u)} H^{q+1}(\Pi, n+1; G)$$

$$\downarrow \sigma \qquad \qquad \downarrow \sigma$$

$$H^{n}(\Pi, n; \Pi) \xrightarrow{T(u')} H^{q}(\Pi, n; G)$$

Or la classe fondamentale $\beta' \in H^n(\pi,n;\pi)$ est $\sigma\beta$, β désignant la classe fondamentale de $H^{n+1}(\pi,n+1;\pi)$; comme $T(u).\beta=u$ et $T(u').\beta'=u'$, il vient $u'=\sigma u$.

5.- Opérations cohomologiques additives.

On se propose de caractériser les éléments $u \in H^q(\Pi,n;G)$ tels que l'opération cohomologique T(u) soit <u>additive</u>, i.e.:

(10)
$$T(u,\xi+\xi') = T(u,\xi) + T(u,\xi')$$
,

quel que soit le CSS-complexe X et quel que soit le couple (ξ , ξ ') d'éléments de $\operatorname{H}^n(X;\pi)$.

<u>Définition</u>: une CSS-application $f: K(\Pi, n) \to K(G, q)$ sera dite <u>presque</u> multiplicative si le diagramme

$$K(\pi,n) \times K(\pi,n) \xrightarrow{f \times f} K(G,q) \times K(G,q)$$

$$\downarrow \mu \qquad \qquad \downarrow \nu$$

$$K(\pi,n) \xrightarrow{f} K(G,q)$$

où μ et ν désignent les applications définies par la multiplication du complexe $K(\pi,n)$, resp. K(G,q), est "presque commutatif"; ceci signifie, d'une façon précise, que les applications ν o $(f \times f)$ et fo μ sont <u>homotopes</u>.

Théorème 3.- Pour que l'opération cohomologique T(u) soit additive, il faut et il suffit que chaque application $f_u: K(W,n) \to K(G,q)$ de la classe

définie par u soit presque multiplicative.

Démonstration : soient ξ et $\xi' \in H^n(X; \mathbb{T})$, et soient f_{ξ} et $f_{\xi'}$, des applications $X \to K(\pi,n)$ ayant ξ et ξ' corme classes caractéristiques. Soit g l'application $X \to K(\pi,n) \times K(\pi,n)$ définie par $g(x) = (f_{\xi}(x), f_{\xi'}(x))$ pour tout simplexe x de X. L'application composée $\mu \circ g: X \to K(\pi,n)$ a pour classe caractéristique la sorme $\xi + \xi'$. Donc $f_{u} \circ \mu \circ g: X \to K(G,q)$ a pour classe caractéristique $T(u,\xi+\xi')$. L'application $(f_{u} \times f_{u}) \circ g: X \to K(G,q) \times K(G,q)$ a pour classe caractéristique $(T(u,\xi),(T(u,\xi')))$; donc ν_{o} $(f_{u} \times f_{u}) \circ g: X \to K(G,q)$ a pour classe caractéristique $(T(u,\xi),(T(u,\xi')))$; donc ν_{o} $(f_{u} \times f_{u}) \circ g: X \to K(G,q)$ a pour classe caractéristique $(T(u,\xi),(T(u,\xi')))$. La relation $(T(u,\xi),(T(u,\xi')))$ conc $(T(u,\xi),(T(u,\xi)))$ conc (T(

Cela posé, supposons que l'application f_u soit presque multiplicative : $f_u \circ \mu$ et $\vee_{\circ} (f_u \times f_u)$ sont homotopes ; donc $f_u \circ \mu \circ g$ et $\vee_{\circ} (f_u \times f_u) \circ g$ sont homotopes, et l'opération T(u) est additive. Réciproquement, supposons que T(u) soit additive ; prenons $K = K(\pi,n) \times K(\pi,n) \approx K(\pi \times \pi,n)$, et prenons pour ξ et ξ' les éléments de $H^n(\pi \times \pi,n;\pi)$, images réciproques de la classe fondamentale de $H^n(\pi,n;\pi)$ pour les deux applications $K(\pi \times \pi,n) \to K(\pi,n)$ définies respectivement par les homomorphismes $(x,y) \to x$ et $(x,y) \to y$ de $\pi \times \pi$ dans π (ces applications ne sont autres que la première et la deuxième projection du produit $K(\pi,n) \times K(\pi,n)$ dans $K(\pi,n)$). Alors $g: X \to K(\pi,n) \times K(\pi,n)$ est l'application identique, et par suite $f_u \circ \mu$ et $\vee_{\circ} (f_u \times f_u)$ sont homotopes ; donc l'application f_u est presque multiplicative.

Théorème 4.- Pour que l'opération cohomologique T(u) soit additive, il suffit que $u \in H^q(\pi,n;G)$ soit dans l'image de la suspension $\sigma: H^{q+1}(\pi,n+1;G) \to H^q(\pi,n;G)$. (cf. [1], théorème 16.2).

performs tration: Soit $u = \sigma \cdot u'$; nous devons montrer que les deux applications $f_u \circ \mu$ et $v \circ (f_u \times f_u)$ de $K(\mathbb{T},n) \times K(\mathbb{T},n)$ dans K(G,q) définissent le même homomorphisme des groupes de cohomologie. D'après la théorie des obstructions rappelée dans l'Exposé 1, paragraphe 3, il existe une application continue $f: X \longrightarrow Y$ d'un espace X du type $\mathcal{K}(\mathbb{T},n+1)$ dans un espace Y du type $\mathcal{K}(G,q+1)$, telle que l'image f^* de la classe fondamentale de $H^{q+1}(G,q+1;G)$ soit l'élément donné $u' \in H^{q+1}(\mathbb{T},n+1;G)$. Prenons un point $a \in X$ et son image $f(a) \notin Y$; soit X' l'expace des lacets de Y

au point f(a). Alors f induit une application continue $g: X' \to Y'$, comptible avec la multiplication des espaces X' et Y'. D'ailleurs X' et Y' sont des espaces du type $\mathcal{H}(\mathbb{T},n)$ et $\mathcal{H}(G,q)$ respectivement, et la classe correctéristique de l'application g est l'image par g^* de la classe fondamental de $H^q(G,q;G)$; c'est donc $\mathfrak{T}u'=u$. Ainsi u est la classe caractéristique d'une application multiplicative d'un espace X' du type $\mathcal{H}(\mathbb{T},n)$ dans un espace Y' du type $\mathcal{H}(G,q)$, tous deux doués d'une multiplication. Soit g l'application des complexes singuliers g g g g definie par g alors le diagramme

$$S(X') \times S(X') \xrightarrow{h \times h} S(Y') \times S(Y')$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S(X') \xrightarrow{h} S(Y')$$

où les flèches verticales désignent les applications définies par la multipliention des espaces X' et Y', est commutatif. En passant à la cohemelogie, on obtient encore un diagramme commutatif, et ceci achève la démonstration.

6.- Cas des opérations modulo p (p premier).

Dans ce dernier numéro, on suppose que pG=0; autrement dit : tout élément du groupe G est d'ordre p (promier). Alors $H^q(\mathfrak{W},n;G)$ s'identifie canoniquement à $Hom(H_q(\mathfrak{W},n;Z_p),G)$, espace vectoriel des applications linéaires du Z_p -espace vectoriel $H_q(\mathfrak{W},n;Z_p)$ dans le Z_p -espace vectoriel G. On a donc la notion d'un élément $u\in H^q(\mathfrak{W},n;G)$ orthogonal à un sous-espace donné de l'espace d'homologie $H_q(\mathfrak{W},n;Z_p)$.

Théorème 5.- Pour qu'un élément $u \in H^q(\mathfrak{M},n;G)$ (avec pG=0) définisse une opération T(u) additive, il faut et il suffit que u soit orthogonal au sous-espace des éléments décomposables de $H_q(\mathfrak{M},n;Z_p)$. (Rappelons qu'un élément de degré q est décomposable s'il est sorme de produits d'éléments de degrés < q).

Démonstration : d'après le théorème 3, il s'agit d'exprimer que les deux applications $f_u \circ \mu$ et $\nu \circ (f_u \times f_u)$ ont même classe caractéristique $\nu \in H^q(K(\Pi,n) \times K(\Pi,n);G)$. Or ν s'identifie à un homomorphisme $H_q(K(\Pi,n) \times K(\Pi,n);Z_p) \to H_q(G,q;Z_p) \approx G$. On doit donc exprimer la commutativité du diagramme

$$\begin{array}{ccc}
H_{\mathbf{q}}(\mathbb{K}(\pi,n) \times \mathbb{K}(\pi,n);\mathbb{Z}_{p}) & \longrightarrow & H_{\mathbf{q}}(\mathbb{K}(G,\mathbf{q}) \times \mathbb{K}(G,\mathbf{q});\mathbb{Z}_{p}) \\
& & \downarrow & & \downarrow & & \downarrow \\
H_{\mathbf{q}}(\mathbb{K}(\pi,n);\mathbb{Z}_{p}) & \longrightarrow & H_{\mathbf{q}}(\mathbb{K}(G,\mathbf{q});\mathbb{Z}_{p})
\end{array}$$

où les homomorphismes horizontaux sont induits par $f_u \times f_u$ et f_u respectivement, et les homomorphismes verticaux par la multiplication de K(W,n), resp. de K(G,q). Autrement dit, on doit avoir communativité dans le diagrame

$$\frac{\sum_{i+j=q} H_{i}(\pi,n;Z_{p}) \otimes H_{j}(\pi,n;Z_{p})}{\downarrow} \xrightarrow{H_{q}(G,q;Z_{p}) \otimes 1 + 1 \otimes H_{q}(G,q;Z_{p})}$$

$$H_{q}(\pi,n;Z_{p}) \xrightarrow{H_{q}(G,q,Z_{p}) \approx G}$$

et pour cela il faut et il suflit que, pour 0 < i < q , l'application composée

 $\begin{array}{l} H_{\mathbf{i}}(\Pi,n;Z_p) \otimes H_{\mathbf{q}-\mathbf{i}}(\Pi,n;Z_p) \xrightarrow{\varphi} H_{\mathbf{q}}(\Pi,n;Z_p) \xrightarrow{\psi} G \text{ , où } \varphi \text{ est défini per nultiplication en homologie mod. p , et où } \Psi \text{ est l'application définie par la classe de cohonologie u , soit <u>nulle</u>. Coci exprime que u est orthogonal nux éléments décomposables de <math>H_{\mathbf{q}}(\Pi,n;Z_p)$.

Remarque: en supposant toujours pG=0, unc condition nécessairs et seffisante pour que T(u) soit additive est que l'application $H_*(\pi,n;Z_p) \to H_*(G,q;Z_p)$ des algèbres d'homologie, définie par $f_{ij}: K(\pi,n) \to K(G,q)$, soit <u>multiplicative</u>.

(En effet, si cette application est multiplicative, elle s'annule sur les produits d'éléments de $H_i(\pi,n;Z_p)$ et $H_{q-i}(\pi,n;Z_p)$, pour i>0. Réciproquement, si T(u) est additive, le critère du théorème 3 entraîne que l'application des algèbres d'homologie est multiplicative).

Autre remarque : on verra dans l'Exposé suivant que le sous-espace de $H^q(\pi,n;G)$ formé des éléments orthogonaux aux éléments décomposables de l'homologie $H_q(\pi,n;Z_p)$, est exactement l'image de la suspension $H^{q+1}(\pi,n+1;G) \to H^q(\pi,n;G)$, lorsque pG=0. Le théorème 5 a donc pour conséquence que les opérations cohomologiques additives T(u) sont exactement celles associées aux éléments u situés dans l'image de la suspension ; ceci complète le théorème 3 dans le cas où pG=0. On ignore si ce résultat est encore vrai sans restriction sur le groupe G.

BIBLIOGRAPHIE

^[1] EILENBERG-MACLANE - On the groups $H(\pi,n)$, III (Ann. of Math., 60, 1954, p. 513-557).

^[2] EILENBERG-ZILBER - Semi-simplicial complexes and singular homology (Ann. of Math. 51, 1950, p. 499-513).