SÉMINAIRE HENRI CARTAN

H. CARTAN

Détermination des algèbres $H_*(\pi, n; Z_p)$ et $H^*(\pi, n; Z_p)$, p premier impair

Séminaire Henri Cartan, tome 7, nº 1 (1954-1955), exp. nº 9, p. 1-10

http://www.numdam.org/item?id=SHC_1954-1955__7_1_A9_0

© Séminaire Henri Cartan

(Secrétariat mathématique, Paris), 1954-1955, tous droits réservés.

L'accès aux archives de la collection « Séminaire Henri Cartan » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

DÉTERMINATION DES ALGÈBRES $H_{*}(\pi,n;Z_{p})$ et $H^{*}(\pi,n;Z_{p})$, p premier impair. (Exposé de H. CARTAN, 17.1.1955)

1.- Mots admissibles ; opérations correspondantes.

Considérons trois symboles ς , γ_p et φ_p . Considérons les <u>mots</u> (suites finies, y compris la suite vide) formés avec ces trois éléments. La <u>hauteur</u> n d'un mot \varpropto sera, par définition, le nombre total des lettres du mot \varpropto égales à ς ou à φ_p . Le <u>degré</u> d'un mot \ncong se définit par récurrence sur le nombre des lettres de \varpropto : le degré du mot vide est 0; un mot non vide s'écrit sous l'une des trois formes $\varsigma \varpropto$, $\gamma_p \varpropto$, $\varphi_p \varpropto$, où \varpropto est un mot; on pose

(1)
$$\begin{cases} \deg(\mathfrak{S}) = 1 + \deg(\mathfrak{A}), \deg(\mathfrak{f}_{p}) = p.\deg(\mathfrak{A}), \\ \deg(\mathfrak{f}_{p}) = 2 + p.\deg(\mathfrak{A}). \end{cases}$$

La différence entre le degré et la hauteur est le degré stable q; le degré est donc n+q.

Un mot \varpropto sera dit <u>admissible</u> si : (i) \bowtie n'est pas vide, la première et la dernière lettre de \varpropto sont \in ou ϕ_p ; (ii) pour chaque lettre \nwarrow ou ϕ_p du mot, le nombre des lettres \in situées <u>à droite</u> est <u>pair</u>.

Proposition 1. - Soit \varpropto un mot admissible de hauteur n ; pour qu'un mot $\beta \varpropto$ soit admissible de hauteur n + 1 , il faut et il suffit que le mot β soit réduit à la lettre δ si $\deg(\bowtie)$ est impair, et, si $\deg(\bowtie)$ est pair, que β soit égal à $\delta(\gamma_p)^k$ ou à $\phi_p(\gamma_p)^k$, k entier $\geqslant 0$.

C'est une conséquence irmédiate des définitions.

Un mot admissible \bowtie est dit <u>de première espèce</u> s'il se termine (à droite) par la lettre \circ ; <u>de deuxième espèce</u> s'il se termine par \mathscr{C}_p . A chaque mot admissible \bowtie , de première espèce, associons une application $f(\bowtie): \mathbb{W}/p\pi \longrightarrow H_{n+q}(\pi,n;\mathbb{Z}_p)$, où n et q désignent la hauteur et le degré stable de \bowtie ; on définit $f(\bowtie)$ par récurrence sur la hauteur du mot \bowtie , en posant les conditions suivantes : si \bowtie est de hauteur 1 (donc \bowtie = 6), $f(\bowtie)$ est la suspension \circ : $\pi \otimes \mathbb{Z}_p \longrightarrow H_1(\pi,1;\mathbb{Z}_p)$; si \bowtie = \circ β , le mot admissible β étant de hauteur n et de degré impair n+q, $f(\bowtie)$ est l'application composée $\pi/p\pi \xrightarrow{f(\beta)} H_{n+q}(\pi,n;\mathbb{Z}_p) \xrightarrow{\circ} H_{n+q+1}(\pi,n+1;\mathbb{Z}_p)$; si

 $\alpha = 6(\gamma_p)^k \beta$, le mot admissible β étant de hauteur n et de degré pair n+q, $f(\alpha)$ est l'application composée

$$\pi/p\pi \xrightarrow{f(\beta)} H_{n+q}(\pi,n;Z_p) \xrightarrow{\delta \circ \delta_{pk}} H_{pk(n+q)+1}(\pi,n+1;Z_p) ;$$
 si $\alpha = \varphi_p(\chi_p)^k \beta$, le mot admissible β étant de hauteur n et de degré pair $n+q$, $f(\alpha)$ est l'application composée

$$\pi/p\pi \xrightarrow{f(\beta)} H_{n+q}(\pi,n;Z_p) \xrightarrow{\varphi_p \circ \chi_{pk}} H_{pk+1(n+q)+2}(\pi,n;Z_p)$$
.

A chaque not admissible \bowtie , de deuxième espèce, on associe une application $f(\bowtie): {}_p\pi \xrightarrow{} H_{n+q}(\pi,n;Z_p)$, où n et q désignent la hauteur et le degré stable de \bowtie ; on définit $f(\bowtie)$ par récurrence sur la hauteur du mot \bowtie , en posant les conditions suivantes : si \bowtie est de hauteur 1 (donc $\bowtie=\varphi_p$) $f(\bowtie)$ est l'application $\phi_p: {}_p\pi \xrightarrow{} H_2(\pi,1;Z_p)$; la récurrence se fait comme dans le cas d'une suite de première espèce : on pose $f(\delta|\beta)=\delta$, $f(\beta)$, $f(\delta(\lozenge_p)^k\beta)=\delta\circ \lozenge_p k\circ f(\beta)$, $f(\varphi_p(\lozenge_p)^k\beta)=\varphi_p\circ \lozenge_p k\circ f(\beta)$.

Proposition 2.- Les applications f(x) sont linéaires, lorsque l'entier premier p est impair.

En effet, 6: $\pi/p\pi \to H_1(\pi,1;Z_p)$ et $\phi_p:_p\pi \to H_2(\pi,1;Z_p)$ sont linéaires; la démonstration se fait alors par récurrence sur la hauteur de α , en observant que β est linéaire sur les éléments de $\beta_{n+q}(\pi,n;Z_p)$ (n+q impair), et que β 0 β_{pk} 0 et β_{pk} 1 sont linéaires sur les éléments de $\beta_{n+q}(\pi,n;Z_p)$ 1 (n+q pair). Ce dernier point résulte de la formule (3) de l'Exposé n° 7 (propriétés des puissances divisées) et du fait que β 0 et β_{pk} 2 sont des applications linéaires qui s'annulent sur les éléments décomposables (Exposé n° 6, proposition 1 et proposition 3).

2.- Les algèbres U(M(n)).

Pour chaque entier $n \geqslant 1$, définissons un Z_p -espace vectoriel gradué $M^{(n)}$, comme suit ; c'est la somme directe d'autant d'exemplaires de π/p π qu'il y a de mots admissibles \bowtie de hauteur n et de première espèce, et d'autant d'exemplaires de p qu'il y a de mots admissibles \bowtie de hauteur n et de deuxième espèce. Chaque exemplaire de π/p π (resp. de p) est affecté d'un degré égal au degré du mot \bowtie qui l'indexe. Pour chaque \bowtie , on a une application linéaire $f(\bowtie)$ de la composante d'indice \bowtie de $M^{(n)}$ dans $H_{\ast}(\pi,n;Z_p)$; cette collection d'applications définit une application linéaire de $M^{(n)}$ dans $H_{\ast}(\pi,n;Z_p)$, qui conserve le degré. Nous noterons $f^{(n)}$ cette application.

Or l'algèbre $H_{\mathbf{x}}(\Pi,n;\mathbb{Z}_p)$ est une algèbre graduée anticommutative, munico de puissances divisées (pour les éléments de degré pair > 2) satisfaisant aux conditions (1), (2), (3), (4') et (5) de l'Exposé n° 7. On peut donc appliquer à l'application linéaire $f^{(n)}:M^{(n)}\longrightarrow H_{\mathbf{x}}(\Pi,n;\mathbb{Z}_p)$ le théorème 2 de l'Exposé n° 8: l'application $f^{(n)}$ se prolonge, d'une seule manière, en un homomorphisme $g^{(n)}$ de l'algèbre universelle $U(M^{(n)})$ dans l'algèbre $H_{\mathbf{x}}(\Pi,n;\mathbb{Z}_p)$, homomorphisme compatible avec les structures d'algèbres graduées et avec les puissances divisées.

 $\frac{\text{Th\'eor\`eme fondamental}: 1'\text{homomorphisme}}{\text{g\`ebre}} \quad \text{U(M$^{(n)}$)} \quad \underbrace{\text{sur 1'alg\`ebre}}_{\texttt{\#}} \quad \text{H}_{\texttt{\#}}(\texttt{T,n;Z}_p) \quad \text{(p premier impair).}$

Ce théorème détermine complètement l'algèbre d'homologie $H_{*}(\mathbb{T},n;\mathbb{Z}_p)$ avec ses puissances divisées. Il implique que l'application linéaire $f^{(n)}$ applique biunivoquement $M^{(n)}$ sur un sous-espace vectoriel gradué de $H_{*}(\mathbb{T},n;\mathbb{Z}_p)$.

3.- Démonstration du théorème fondamental.

Pour plus de clarté, écrivons $M^{(n)}(\pi)$ au lieu de $M^{(n)}$, et $g^{(n)}(\pi)$ au lieu de $g^{(n)}$. Il est clair que $M^{(n)}(\pi)$ et $U(M^{(n)}(\pi))$ sont des foncteurs covariants du groupe abélien π , ainsi que $H_*(\pi,n;Z_p)$; et que $g^{(n)}(\pi):U(M^{(n)}(\pi))\longrightarrow H_*(\pi,n;Z_p)$ est une application naturelle de foncteurs. Chacun des foncteurs $U(M^{(n)}(\pi))$ ec $H_*(\pi,n;Z_p)$ commute avec les limites directes; donc, il suffit de prouver que $g^{(n)}(\pi)$ est un isomorphisme, lorsque π est un groupe de type fini. Alors π est somme directe d'un nombre fini de groupes cycliques dont l'ordre est infini ou une puissance d'un nombre premier π . Or si π est une somme directe $\pi' + \pi''$, les injections $\pi' \to \pi$ et $\pi' \to \pi$ identifient $U(M^{(n)}(\pi))$ au produit tensoriel $\pi' \to \pi$ identifient $\pi' \to \pi$ au produit tensoriel $\pi' \to \pi$ identifient $\pi' \to \pi$ in $\pi' \to \pi$ au produit tensoriel $\pi' \to \pi$ identifient $\pi' \to \pi$ in $\pi' \to \pi$ au produit tensoriel $\pi' \to \pi$ identifient $\pi' \to \pi$ in $\pi' \to \pi$ au produit tensoriel $\pi' \to \pi$ identifient $\pi' \to \pi$ in $\pi' \to \pi$ au produit tensoriel $\pi' \to \pi$ identifient $\pi' \to \pi$ in $\pi' \to \pi$ identifient $\pi' \to \pi$ in $\pi' \to \pi$ identifient $\pi' \to \pi$ in $\pi' \to \pi$ identifient $\pi' \to \pi$ identifient $\pi' \to \pi$ in $\pi' \to \pi$ identifient $\pi' \to \pi$ identifient $\pi' \to \pi$ in $\pi' \to \pi$ identifient $\pi' \to \pi$ in $\pi' \to \pi$ identifient $\pi' \to \pi$

Supposons d'abord que $\mathbb T$ soit cyclique d'ordre q^f , q premier $\neq p$. Alors $\mathtt{M}^{(n)} = 0$ pour $n \gg 1$ et $\mathtt{U}(\mathtt{M}^{(n)})$ est réduit aux scalaires ; or il en est de même de $\mathtt{H}_{\mathbf{x}}(\mathbb T,n;Z_p)$: il suffit de montrer que l'algèbre $\mathtt{H}_{\mathbf{x}}(\mathbb T,1;Z_p)$ est réduite aux scalaires, car alors une application répétée du théorème 2 de l'Exposé n° 2 entraînera que l'algèbre $\mathtt{H}_{\mathbf{x}}(\mathbb T,n;Z_p)$ est réduite aux scalaires, pour tout \mathtt{n} . Pour étudier $\mathtt{H}_{\mathbf{x}}(\mathbb T,1;Z_p)$, nous utiliserons la construction

acyclique classique, ayant pour algèbre initiale $Z(\pi)$ l'algèbre d'un groupe cyclique π d'ordre h (h entier quelconque); il s'agit d'une construction à coefficients entiers, déjà utilisée à la fin de l'Exposé n° 6, et que nous réduirons ensuite modulo p .

On pose A=Z(T) avec l'augmentation ε égale à 1 sur chaque élément de T ; on choisit un générateur a du groupe cyclique T d'ordre T , et on pose T =

- (2) dx = a 1, $d\chi_k(y) = (1 + a + ... + a^{h-1})x \chi_{k-1}(y)$, pour $k \gg 1$. On a donc $d(x \chi_k(y)) = (a 1) \chi_k(y)$, et il est immédiat que M est acyclique. Par passage au quotient, on obtient la différentielle \overline{d} de l'algèbre finale $N = E(x,1) \otimes P(y,2)$:
- (3) $\overline{d}x = 0$, $\overline{d}_{k}(y) = hx_{k-1}(y)$ pour $k \gg 1$.

Revenons maintenant au cas où $h=q^f$, q premier $\neq p$. Si on réduit modulo p, on obtient $\overline{d}x=0$, \overline{d} $\chi_k(y)=hx$ $\chi_{k-1}(y)$, où h est un élément inversible du corps Z_p . Donc N est acyclique, comme annoncé ; le théorème fondamental est ainsi dé-montré dans le cas où W est cyclique d'ordre q^f , q premier $\neq p$.

Examinons maintenant le cas où Π est cyclique infini, ou cyclique d'ordro p^f . On choisit un générateur a de Π ; si Π est infini, $p^{\Pi}=0$; si est d'ordre p^f , on choisit $a^{p^{f-1}}$ comme générateur de p^f . Alors l'espace vectoriel $M^{(n)}(\Pi)$ a une <u>base</u> bien définie, indexée par les mots admissibles de première espèce (si Π infini), resp. par tous les mots admissibles (si Π fini).

Lemme 1.- sous ces hypothèses, il existe un homomorphisme de $U(M^{(1)}(\pi))$ dans la bar construction $\mathfrak{B}(Z_p(\pi))$, compatible avec les puissances divisées, et qui, par passage à l'homologie, donne $g^{(1)}(\pi)$ qui est un <u>isomorphisme</u>.

Démonstration du lemme 1.: nous devons examiner successivement le cas où TT est cyclique infini et celui où TT est cyclique d'ordre pf. Dans le premier cas, il existe une construction acyclique $A\otimes_{\mathbb{Z}_p}\mathbb{N}$, où $A=\mathbb{Z}_p(\pi)$, $\mathbb{N}=\mathbb{E}_p(x,1)$ (algèbre extérieure à un générateur x de degré 1 et à coefficients dans \mathbb{Z}_p), avec la différentielle dx=a-1 (a désignant toujours le générateur de TT). Soit $\lambda:\mathbb{E}_p(x,1)\longrightarrow \widehat{\mathbb{G}}(\mathbb{Z}_p(\mathbb{T}))$ l'unique homomorphisme spécial (théorème 5, Exposé n° 4); il est compatible avec les puissances

divisées (théorème 3, Exposé n° 7) et définit un <u>isomorphisme</u> $\lambda_{\mathbf{x}}: \mathrm{E}_p(\mathbf{x},1) \approx \mathbb{E}_{\mathbf{x}}(\mathbb{G}(\mathbf{Z}_p(\mathbb{W}))) \quad \text{(en vertu du théorème 2, Exposé n° 2). Considérons l'isomorphisme } \mu: \mathbb{U}(\mathbb{M}^{(1)}) \longrightarrow \mathbb{E}_p(\mathbf{x},1) \quad \text{qui envoie l'unique élément de base de } \mathbb{M}^{(1)} \quad \text{dans l'élément } \mathbf{x} \cdot \text{Considérons l'application composée} \\ \lambda \circ \mu: \mathbb{U}(\mathbb{M}^{(1)}) \longrightarrow \widehat{\mathbb{G}}(\mathbb{Z}_p(\mathbb{W})) \quad \text{; par passage à l'homologie, on trouve un isomorphisme, d'après ce qui précède. Or cet isomorphisme est g (1), car il coîncide avec f (1) sur l'élément de base de <math>\mathbb{M}^{(1)}$; cela résulte du fait que \mathbf{x} est la suspension de \mathbf{a} . Ceci prouve le lemme 1 dans le cas où \mathbb{W} est cyclique infini.

Supposons maintenant que $\mathbb T$ soit cyclique d'ordre p^f . Prenons la construction acyclique décrite ci-dessus ; on a donc $N=E_p(x,1)\otimes P_p(y,2)$, avec $\overline d=0$ sur N. La classe d'homologie x est la suspension de a , celle de y est la transpotence de ap^{f-1} , en vertu du calcul fait à la fin de l'Exposé nº 6. Soit λ l'unique homomorphisme spécial $N\to \overline B(Z_p(\Pi))$; il est compatible avec les puissances divisées, donc est déterminé par la connaissance de $\lambda(x)$ et $\lambda(y)$; par passage à l'homologie, il définit un isomorphisme λ : $N \approx H_{\infty}(\overline B(Z_p(\Pi)))$. Considérons l'isomorphisme μ : $U(M^{(1)})\to N$ qui envoie le générateur a de $\overline M/p\,\overline M$ dans x, et le générateur a p^{f-1} de $p^{\overline M}$ dans y . L'application composée $\lambda \circ \mu$: $U(M^{(1)}) \to \overline B(Z_p(\Pi))$ est compatible avec les puissances divisées, et, par passage à l'homologie, définit un isomorphisme. Cet isomorphisme coïncide avec $f^{(1)}$ sur chacun des deux éléments de base de $M^{(1)}$, donc c'est $g^{(1)}$.

4.- <u>Démonstration du théorème fondamental</u> (Suite).

Lemme 2: π étant cyclique infini ou d'ordre p^f , engendré par a , il existe, pour chaque entier $n \geqslant 1$, une construction acyclique (sur le corps Z_p) ayant $U(M^{(n)}(\pi))$ comme algèbre initiale (avec différentielle nulle), et $U(M^{(n+1)}(\pi))$ comme algèbre finale (avec différentielle nulle); et cette construction satisfait à la condition (Γ) que voici : les éléments de la base de $M^{(n+1)}(\pi)$ se déduisent des éléments de la base de $M^{(n)}(\pi)$ par les opérations suivantes (dans la construction acyclique) :

6 appliquée à chaque élément de degré <u>impair</u> de la base de $M^{(n)}(\Pi)$;

6 γ_{pk} (k \geqslant 0) et ϕ_p γ_{pk} (k \geqslant 0) appliquées à chaque élément de degré pair de la base de M^(n)(n) .

Il est clair qu'une fois ce lemme prouvé, une application répétée du théorème 5 de l'Exposé n° 4 fournira, compte tenu du lemme 1, des homomorphismes $U(M^{(n)}) \to \mathbb{R}^{(n)}(Z_p(\Pi))$, compatibles avec les puissances divisées, et qui,

par passage à l'homologie, donneront des <u>isomorphismes</u> compatibles avec les opérations 6, χ_p et φ_p ; et, à cause de la condition (Γ) du Lemme 2, on verra de proche en proche que ces isomorphismes sont précisément les homomorphismes $g^{(n)}$, puisqu'ils coîncident avec $f^{(n)}$ sur la base de $M^{(n)}$. Ceci achèvera de prouver le théorème fondamental.

Démonstration du lemme 2: l'algèbre $U(M^{(n)})$ est le produit tensoriel des algèbres universelles des sous-espaces de dimension 1 de $M^{(n)}$ engendrés par les éléments de la base de $M^{(n)}$. Soit x un élément de la base de $M^{(n)}$; si x est de degré impair 2q-1, l'algèbre universelle du sous-espace engendré par x est $E_p(x,2q-1)$ (algèbre extérieure à coefficients dans Z_p), si x est de degré pair 2q, l'algèbre universelle du sous-espace engendré par x est $P_p(x,2q)$ (algèbre des polynômes divisée à coefficients dans Z_p). On va montrer les deux propositions suivantes :

Proposition 3.- Si x est de degré 2q-1, il existe une construction acyclique ayant $E_p(x,2q-1)$ comme algèbre initiale (différentielle nulle), et $P_p(y,2q)$ comme algèbre finale (différentielle nulle); y se déduit de x par la suspension 6.

Proposition 4.- Si x est de degré 2q, il existe une construction acyclique ayant P_p(x,2q) comme algèbre initiale (différentielle nulle), et dont l'algèbre finale (à différentielle nulle) est un produit tensoriel infini

$$\mathbf{E}_{\mathbf{p}}(\mathbf{y}_{\mathbf{0}}, \mathbf{2q+1}) \otimes \ldots \otimes \mathbf{E}_{\mathbf{p}}(\mathbf{y}_{\mathbf{k}}, \mathbf{2p}^{\mathbf{k}}\mathbf{q+1}) \otimes \ldots \otimes \mathbf{P}_{\mathbf{p}}(\mathbf{z}_{\mathbf{0}}, \mathbf{2pq+2}) \otimes \ldots \otimes \mathbf{P}_{\mathbf{p}}(\mathbf{z}_{\mathbf{k}}, \mathbf{2p}^{\mathbf{k+1}}\mathbf{q+2}) \otimes \ldots \otimes \mathbf{P}_{\mathbf{p}}(\mathbf{z}_{\mathbf{k}}, \mathbf{2p}^{\mathbf{k}}\mathbf{q+1}) \otimes \ldots \otimes \mathbf{P}_{\mathbf{p}}(\mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}) \otimes \ldots \otimes \mathbf{P}_{\mathbf{p}}(\mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}) \otimes \ldots \otimes \mathbf{P}_{\mathbf{p}}(\mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}) \otimes \ldots \otimes \mathbf{P}_{\mathbf{p}}(\mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}) \otimes \ldots \otimes \mathbf{P}_{\mathbf{p}}(\mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}) \otimes \ldots \otimes \mathbf{P}_{\mathbf{p}}(\mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}})$$

$$\underline{o}\underline{\hat{\mathbf{u}}} \quad \mathbf{y}_{k} = 6 \ \mathbf{y}_{\mathbf{p}k}(\mathbf{x}) \quad \underline{\mathbf{e}}\underline{\mathbf{t}} \quad \mathbf{z}_{k} = \mathbf{\varphi}_{\mathbf{p}} \ \mathbf{y}_{\mathbf{p}k}(\mathbf{x})$$

Une fois ces propositions démontrées, un produit tensoriel de constructions acycliques donnera la construction acyclique du lemme 2, qui sera ainsi prouvé.

La proposition 3 est évidente : sur le produit tensoriel $E_p(x,2q-1)\otimes P_p(y,2q)$, on met la différentielle d que voici :

$$dx = 0$$
, $dy_k(y) = xy_{k-1}(y)$ pour $k \gg 1$.

Ceci est bien une construction acyclique, et la différentielle \bar{d} est nulle ; la relation dy = x montre que y est la suspension de x.

Démontrons la proposition 4. L'algèbre $P_p(x,2q)$ est, d'après l'Exposé no 7, paragraphe 7, un produit tensoriel

$$Q_p(x,2q) \otimes Q_p(\gamma_p(x),2pq) \otimes \ldots \otimes Q_p(\gamma_{pk}(x),2p^k q) \otimes \ldots ,$$

où $Q_p(x,2q)$ désigne l'algèbre des polynômes <u>tronqués</u> à un générateur x de degré 2q (quotient de l'algèbre des polynômes ordinaires, à une lettre x, par l'idéal engendré par x^p). Il suffit de faire une construction acyclique ayant comme algèbre initiale chacune des algèbres de ce produit tensoriel ; puis on fera le produit tensoriel de ces constructions. Ainsi la proposition 4 va résulter du fait suivant : <u>il existe une construction acyclique ayant comme algèbre initiale</u> $Q_p(x,2q)$ (<u>différentielle nulle</u>) et comme algèbre finale $E_p(y,2q+1) \otimes P_p(z,2pq+2)$ (<u>différentielle nulle</u>), avec y = 6(x), $z = \varphi_p(x)$. C'est ce qu'on va montrer.

On définit, sur $Q_p(x,2q)\otimes E_p(y,2q+1)\otimes P_p(z,2pq+2)$, la différentielle d que voici :

(4)
$$dx = 0$$
, $dy = x$, $d\chi_k(z) = x^{p-1} y \chi_{k-1}(z)$ pour $k \ge 1$.

On vérifie que, en ce qui concerne les éléments de degré > 0 , le noyau de det l'image de des sont identiques : chacun d'eux est engendré par les éléments $\mathbf{x}^h\mathbf{x}_k(\mathbf{z})$ (1 \leq h \leq p-1 , k > 0) et \mathbf{x}^{p-1} y $\mathbf{x}_k(\mathbf{z})$ (k > 0). Par passage au quotient, $\bar{\mathbf{d}}=0$ sur l'algèbre finale. La relation dy = x montre que $\mathbf{y}=6(\mathbf{x})$, et la relation dz = \mathbf{x}^{p-1} y montre que $\mathbf{z}=\varphi_p(\mathbf{x})$.

La démonstration du théorème fondamental est ainsi terminée.

5.- Structure de l'algèbre de cohomologie $H^*(\pi,n;Z_p)$, p impair.

L'application diagonale a \rightarrow (a,a) de T dans T+T définit un diagramme commutatif

dans lequel les flèches verticales désignent les isomorphismes $g^{(n)}$ du théorème fondamental. On observe que $M^{(n)}(\Pi+\Pi)$ est naturellement la somme directe $M^{(n)}(\Pi)+M^{(n)}(\Pi)$. L'application diagonale $M^{(n)}(\Pi)\to M^{(n)}(\Pi)+M^{(n)}(\Pi)$ s'écrit, avec la notation du produit tensoriel, $x\to x\otimes 1+1\otimes x$. Ainsi, si on identifie $H_{\mathbf{x}}(\Pi,n;\mathbb{Z}_p)$ à l'algèbre universelle $U(M^{(n)}(\Pi))$ au moyen de $g^{(n)}$, la structure multiplicative de la cohomologie $H^{\mathbf{x}}(\Pi,n;\mathbb{Z}_p)$ est colle qui est définie, sur le <u>dual gradué</u> $Hom^{\mathbf{y}}(U(M^{(n)}),\mathbb{Z}_p)$, par l'homomorphisme $\Delta: U(M^{(n)}) \to U(M^{(n)}) \otimes U(M^{(n)})$ (homomorphisme d'algèbres graduées, compatible avec les puissances divisées) qui envoie chaque $\mathbf{x} \in M^{(n)}$ dans l'élément $\mathbf{x} \otimes 1+1\otimes \mathbf{x}$.

On est ramené à un problème d'algèbre pure : soit M un module libre gradué (sur un anneau commutatif Λ), et soit Δ l'homomorphisme $U(M) \longrightarrow U(M) \otimes_{\Lambda} U(M)$, compatible avec les puissances divisées, qui envoie x dans $x \otimes 1 + 1 \otimes x$, pour tout $x \in M$. On cherche la structure multiplicative définie par Δ sur le dual $\operatorname{Hom}_{\Lambda}^{\bullet}(U(M),\Lambda)$. Soit $M = M^{-} + M^{+}$, où M^{-} désigne le sous-module des éléments de degré impair, et M^{+} le sous-module des éléments de degré pair. On a

 $\triangle^-: E(M^-) \to E(M^-) \otimes E(M^-)$, $\triangle^+: S(M^+) \to S(M^+) \otimes S(M^+)$.

of est bien connu, et définit sur Hom'(E(M), \wedge) la structure multiplicative de l'algèbre extérieure E(M') du dual $M' = Hom'(M, \wedge)$. Si $x \in M'$, on a $\wedge^+ \chi_k$ (x) = χ_k (x \otimes 1 + 1 \otimes x) = $\sum_{i+j=k} \chi_i$ (x) \otimes χ_j (x). Dans le cas où M' possède une base formée d'un seul élément x, S(M') possède une base formée des χ_k (x) (k \geqslant 0); soient x^{ik} les éléments de la base duale; on trouve le la la la sull'iplication $x^{ij}.x^{ij}=x^{i+j}$, donc le dual de S(M') and l'algèbre duale de S(M') and l'algèbre duale de S(M') est l'algèbre symétrique $\sum_{i=1}^{\infty} M_i^{ij}$, quotient de l'algèbre tensorielle T(M') par l'idéal bilatère engendré par les éléments

Finalement, si M est un module gradué ayant une base finie en toute dimension, l'algèbre duale de U(M) (pour l'application Δ) est l'algèbre $L(M^{!}) = E(M^{!}) \otimes \sum (M^{!})$, qu'on appelle l'algèbre anticommutative libre du module $M^{!}$ dual de M (i.e.: $M^{!} = \text{Hom}^{!}(M, \Lambda^{!})$.

Revenons à l'algèbre de cohomologie $H^*(W,n;Z_p)$. On a prouvé :

 $x' \otimes y' - y' \otimes x', x' \in M'^+, y' \notin M'^+$

Théorème 2. Soit, pour p premier impair, M'(n) le Z_p-espace vectoriel gradué, somme directe d'autant d'exemplaires de Hom(π ,Z_p) qu'il v a de mots admissibles de première espèce et de hauteur n , et d'autant d'exemplaires de Hom(π ,Z_p) qu'il v a de mots admissibles de deuxième espèce et de hauteur n ; chaque sous-espace Hom(π ,Z_p) , resp. Hom(π ,Z_p) , est affecté d'un degré égal au degré du mot α qui l'indexe. L'isomorphisme g du théorème fondamental définit alors, par dualité, un isomorphisme de l'algèbre de cohomologie π *(π ,n;Z_p) sur l'algèbre anticommutative libre π (π).

L'isomorphisme précédent est un isomorphisme naturel de foncteurs contravariants du groupe abélien $\mathbb T$. On observera que l'algèbre $L(\mathbb M^{(n)})$ est universelle vis-à-vis des applications linéaires (de degré 0) de l'espace vectoriel gradué $\mathbb M^{(n)}$ dans les algèbres graduées anticommutatives.

6.- Schémas décrivant les mots admissibles.

Soit \varpropto un mot admissible. Considérons la suite (éventuellement vide) des lettres du mot \varpropto qui sont distinctes de la lettre \lnot . Numérotons-les, de gauche à droite, par les entiers 1, 2, Si \varpropto désigne la i-ième de ces lettres, soit $2k_i$ le degré du mot β_i obtenu en enlevant du mot \varpropto la lettre \varpropto et toutes celles qui sont à gauche de \varpropto . Alors le mot \varpropto β_i est de degré $2k_i$ p si \varpropto $= \chi_p$, et de degré $2k_i$ p + 2 si \varpropto $= \varphi_p$. Soit a_i la différence des <u>degrés stables</u> des mots \varpropto β_i et β_i ; on a

(5)
$$a_i = 2k_i(p-1) + u_i$$
, avec $u_i = 0$ si $\alpha_i = \alpha_p$, $u_i = 1$ si $\alpha_i = \alpha_p$

Il est commode de définir l'entier a_i pour tout $i \gg 1$, en convenant que $a_i = 0$ si i est plus grand que le nombre des lettres du mot \leadsto distinctes de 6. Un mot qui ne contient que 6 définit donc la suite $a_1 = 0$, $a_2 = 0$, ...

Théorème 3.- La suite (a₁, ..., a_i, ...) associée à un mot admissible de hauteur n et de degré stable q satisfait aux conditions:

(i)
$$a_i \equiv 0$$
 ou 1 (mod. $2p - 2$) pour tout i,

(ii)
$$a_i \gg p a_{i+1}$$
 pour tout i,

(iii)
$$\sum_{i} a_{i} = q,$$

(iv)
$$p a_1 < (p-1)(n+q)$$

Réciproquement, étant donnés n et q, toute suite (a_i) satisfaisant à (i), (ii), (iii) et (iv) est associée à un mot admissible de hauteur n et de degré stable q, et ce mot est unique.

Réciproquement, soient des a_i vérifiant (i), (ii) et (iv). Définissons, pour chaque i, les entiers k_i et u_i au moyen de (5), ce qui est possible grâce à (i). Alors (ii) entraîne $k_i - p k_{i+1} - u_{i+1} \ge 0$. Posons $h_{i+1} = k_i - p k_{i+1} - u_{i+1}$. S'il existe un mot admissible \bowtie donnant naissance

à la suite (a_i) , le nombre des lettres σ situées entre α_i et α_{i+1} dans ce mot est nécessairement égal à $2h_{i+1}$, et on a $\alpha_i = \chi_p$ si $u_i = 0$, $\alpha_i = \phi_p$ si $u_i = 1$. Ceci détermine le mot α_i , sauf qu'il faut encore connaître le nombre h_1 des lettres σ venant à gauche de σ dans le mot σ . On doit avoir σ and σ est bien σ i σ i σ et est σ o si σ i σ i grâce à la condition (iv) Le degré stable σ du mot σ satisfait à (iii). Le théorème est entièrement prouvé.

Remarque: la connaissance des entiers h_{i+1} ($i \geqslant 1$), qui sont $\geqslant 0$, et celle des entiers u_i (égaux à 0 ou 1) détermine entièrement la suite des a_i , par les formules

(6)
$$k_{i} = \sum_{j \geq 0} p^{j} (h_{i+j+1} + u_{i+j+1}), \quad a_{i} = 2k_{i}(p-1)+u_{i}$$
.

Autre remarque: pour que le mot \bowtie associé à une suite (a_i) soit de deuxième espèce, il faut et il suffit que le dernier des a_i non nuls soit égal à 1.

Dernière remarque : les résultats précédents valent aussi pour p=2 lorsque TT est cyclique, car alors les applications $f(\propto)$ sont encore additives.