SÉMINAIRE HENRI CARTAN

F. BRUHAT

Anneaux des séries formelles et convergentes

Séminaire Henri Cartan, tome 4 (1951-1952), exp. nº 11, p. 1-9

http://www.numdam.org/item?id=SHC_1951-1952__4__A11_0

© Séminaire Henri Cartan

(Secrétariat mathématique, Paris), 1951-1952, tous droits réservés.

L'accès aux archives de la collection « Séminaire Henri Cartan » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ANNEAUX DES SERIES FORMELLES ET CONVERGENTES (Exposé de F. Bruhat le 18-11-52)

1. Généralités sur les Anneaux Factoriels:

Soit A un anneau d'intégrité, avec élément unité. On dit: qu'un élément f de A est <u>inversible</u>, s'il existe g dans A tel que fg = 1; que g divise f s'il existe h tel que f = gh; que f <u>est équivalent à g</u> si f divise g et g divise f (autrement dit si les idéaux principaux (f) et (g) sont égaux); que f est <u>irréductible</u> si on ne peut pas mettre f sous la forme gh, ni g ni h n'étant inversibles dans A, autrement dit si f = gh entraîne que g ou h est inversible ou encore si (f) n'est pas le produit de deux idéaux principaux distincts de (f). Si l'idéal (f) est <u>premier</u>, f est irréductible, la réciproque n'étant en général pas vraie.

Définition 1: un anneau A d'intégrité, avec élément unité, est un anneau factoriel si tout élément non nul de A peut se mettre d'une manière et d'une seule (à l'ordre et à des éléments inversibles près) sous la forme d'un produit (fini) d'éléments irréductibles; autrement dit s'il y a décomposition unique d'un idéal principal en produit d'idéaux principaux "irréductibles" qui sont d'ailleurs premiers, car dans un anneau factoriel, on a les propriétés suivantes:

- 1) si f est irréductible, (f) est premier: autrement dit, si f divise gh, f divise g ou h;
- 2) on a un "axiome des chaînes de divseurs" pour les ideaux principaux: toute suite strictement croissante d'idéaux principaux est finie.

Réciproquement, un anneau où 1) et 2) sont vérifiées est <u>factoriel</u>:
2) assurant par un raisonnement classique, l'existence de la décomposition et 1) l'unicité.

Dans un anneau factoriel, on a une théorie du pgcd entièrement analogue à la théorie habituelle dans l'anneau des entiers.

Exemples d'anneaux factoriels: tout <u>anneau principal</u>. L'<u>anneau</u> des polynômes à coefficients dans un anneau factoriel.

2. Anneaux des séries formelles ou convergentes: on notera $\mathcal{F}_{n,K}$ l'anneau des séries formelles à n variables à coefficients dans un corps infini K quelconque (ou même dans un anneau "local"); $\mathcal{H}_{n,K}$ l'anneau des séries convergentes à n variables à coefficients dans un corps K valué complet non discret; par A_n l'un quelconque de ces anneaux.

Soit f un élément \neq 0 de A_n . Si les coefficients de f ordonné suivant les puissances de la dernière variable x_n , ne sont pas tous non-inversibles dans A_{n-1} (on dira alors que f est-régulier en x_n), on peut (cf.expose 10) mettre f sous la forme PQ, P étant un polynôme distingué en x_n , et Q étant inversible (autrement dit f étant équivalent à P). Sinon on peut faire une substitution linéaire sur les coordonnées qui rende f régulier par rapport à la nouvelle dernière variable notée z. Si g est un diviseur de f, la même substitution rendra g régulier en z, car si tous les coefficients de g étaient non-inversibles, il en serait de même de ceux de f. Par suite f et g sont équivalents à des polynômes distingués P et P' par rapport à la même variable z; de f = gh on déduit:

P = P'Q'hQ, Q et Q' étant inversibles.

Mais la formule de Weierstrass A = BQ + R n'est autre que l'identité de division des polynômes si A est un polynôme et B un polynôme distingué en z: Q'hQ est donc un polynôme en z, soit P'': d'où la décomposition P = P'P''. Si ni g ni h ne sont inversibles, ni P', ni P'' ne se réduisent à leur terme indépendant de z. Comme l'anneau A[z] est factoriel si A l'est, on en déduit par récurrence sur n le:

Théorème 1: les anneaux $\mathfrak{F}_{n,K}$ et $\mathfrak{H}_{n,K}$ sont des anneaux factoriels.

On va montrer, par récurrence sur n, que ces mêmes anneaux sont noethériens: c'est vrai pour n = 0. Soit I un idéal \neq 0 de A_n : on peut supposer que I contient un polynôme distingué en x_n , de degré p, soit P. On identifie A_{n-1} , avec le sous-anneau de A_n formé des éléments indépendants de x_n . A tout élément f de I, la formule de Weierstrass f = PQ + R associe (canoniquement une fois P choisi) un polynôme R de degré p - 1: il est clair que ces polynômes forment un module M sur A_{n-1} que l'on peut identifier avec un sous-module de $(A_{n-1})^p$. Puisque A_{n-1} est supposé noethérien, M possède un système fini de générateurs: en y adjoignant le polynôme P, on obtient un système fini de générateurs pour l'idéal I: d'où le

Théorème 2. Les anneaux $\mathcal{F}_{n,K}$ et $\mathcal{H}_{n,K}$ sont noethériens.

3. <u>Idéaux et sous-modules sur</u> $\mathcal{F}_{n,K}$ <u>et</u> $\mathcal{H}_{n,K}$. On désigne provisoirement par A_n l'anneau $\mathcal{F}_{n,K}$.

Soit donné un système fini d'eléments U_1, \ldots, U_q de $(A_n)^p$. On appelle "construction" relative à (U_1, \ldots, U_q) un système de q applications K-linéaires $F \to \lambda_i(F)$ de $(A_n)^p$ dans A_n , telles que l'on ait

$$F = \sum_{i} \lambda_{i}(F)U_{i}$$

chaque fois que F appartient au sous-module de $(A_n)^p$ engendré par les U_i . On se propose maintenant de définir ce que l'on entend par construction standard.

On convient d'abord que si un système (U_i) et un système (V_j) engendrent le même sous-module de (A_n) p , et si $F \to \lambda_i$ (F) est un construction standard pour les U_i , alors (en supposant que $U_i = \Sigma_j \alpha_{ij} V_j$) les applications $F \to \mu_j$ (F), où

$$\mu_{\mathbf{j}}(\mathbf{F}) = \sum_{\mathbf{i}} \alpha_{\mathbf{i}\mathbf{j}} \lambda_{\mathbf{i}}(\mathbf{F})$$
,

forment une construction standard pour les V_j . Cela dit, on va définir les constructions standard par récurrence sur p pour n fixé $(n \ge 0)$, puis par récurrence sur n $(n \ge 1)$; dans ce second cas, la définition étant

supposée connue pour n-1, (n \geq 1) et p quelconque, on la donnera pour n, avec p = 1.

1) Soient des U_i ϵ $(A_n)^p$, avec $n \geq 0$, $p \geq 2$. Soit u_i la première composante de U_i ; et soit $f \rightarrow \lambda_i(f)$ une construction standard pour les u_i . Considérons le sous-module formé de celles des combinaisons linéaires (à coefficients dans A_n) des U_i dont la première composante est nulle; et soit (V_j) un système fini de générateurs de ce module. On a $V_j = \Sigma_i \alpha_{ji} U_i$. On peut identifier les V_j à des éléments de $(A_n)^{p-1}$, puisque leur première composante est nulle; soit $G \rightarrow \mu_j(G)$ une construction standard pour les V_j . A chaque F ϵ $(A_n)^p$ associons $F - \Sigma_i \lambda_i(f) U_i$, en notant f la première composante de F; posons

$$F - \sum_{i} \lambda_{i}(f)U_{i} = (g), \text{ avec } G \in (A_{n})^{p-1}.$$

G dépend K-linéairement de F, donc les $\mu_{\mathbf{j}}(G)$ dépendent K-linéairement de F. Il est clair que

$$F \rightarrow \lambda_{i}(f) + \sum_{j} \mu_{j}(G) \alpha_{ji}$$

est une construction pour le système des $\mathbf{U}_{\mathbf{i}}$. Par définition, c'est une construction standard.

2) Soit $n \ge 1$, et p = 1. Etant donnés des $U_i \in A_n$ non tous nuls, on peut supposer que U_1 est équivalent à un polynôme distingué P (quitte à permuter les U_i); alors les U_i (pour $i \ge 2$) sont congrus, modulo P, à des polynômes en $x_n = z$, de degré < r (en notant r le degré de P). L'idéal engendré par les U_i est le même que celui engendré par P et ces polynômes de degré < r; pour définir une construction standard, on peut donc supposer que U_1 est un polynôme distingué de degré r, et que les U_i (pour $i \ge 2$) sont des polynômes en z, de degré $\le r$ -1.

Considérons l'ensemble B des polynômes en z (à coefficients dans A_{n-1}) qui appartiennent à l'idéal (U_1,\ldots,U_q) et sont de degré \leq r-1. Chacun d'eux peut s'écrire comme combinaison linéaire des U_i , avec des coefficients qui, pour $i\geq 2$, sont des polynômes de degré \leq r-1 (à coefficients dans A_{n-1}); le coefficient de U_1 est alors nécessairement un poly

nôme en z de degré \leq r-2. Ainsi les polynômes de B sont des combinaisons linéaires, à coefficients dans A_{n-1} , des polynômes $z^{\alpha}U_1$ ($\alpha \leq r-2$) et $z^{\beta}U_1$ ($i \geq 2$, $\beta \leq r-1$). Prenons une construction standard (pour l'anneau A_{n-1}) relative aux $z^{\alpha}U_1$ et aux $z^{\beta}U_1$ ($i \geq 2$) considérés comme des éléments du module $(A_{n-1})^{2r-1}$: à tout polynôme R de degré \leq 2r-2, elle associe des μ_{α} et des $\mu_{\beta,i}$ qui dépendent K-linéairement de R, et sont tels que si R appartient au sous- A_{n-1} -module engendré par les $z^{\alpha}U_1$ et les $z^{\beta}U_i$, on ait

$$R = \sum_{\alpha \leq r-2} \mu_{\alpha}(R) z^{\alpha} U_{1} + \sum_{\substack{i \geq 2 \\ \beta \leq r-1}} \mu_{\beta,i}(R) z^{\beta} U_{i} .$$

D'autre part, soit $f = Q(f)U_1 + R(f)$ l'opération de division par le polynôme distingué U_1 . Posons

$$\begin{cases} \lambda_{1}(f) = Q(f) + \sum_{\alpha} \mu_{\alpha}(R(f))z^{\alpha}, \\ \lambda_{1}(f) = \sum_{\beta} \mu_{\beta,1}(R(f))z^{\beta} \text{ pour } i \geq 2. \end{cases}$$

On vérifie facilement que les $\lambda_i(f)$ (pour $i \ge 1$) forment une construction relative aux U_i . Par définition, c'est une construction standard.

Théorème 3. Soit K un corps valué complet. Si des U_i (en nombre fini) appartiennent à $(\mathcal{H}_{n,K})^p$ et si (λ_i) est une construction standard relative au système (U_i) , alors pour tout $F \in (\mathcal{H}_{n,K})^p$, $\lambda_i(F) \in \mathcal{H}_{n,K}$.

Ce résultat se démontre par récurrence sur n et p; il suffit de savoir que, si dans l'identité de Weierstrass f=PQ+R dans $\mathfrak{F}_{n,K}$, f et P appartiennent à $\mathfrak{H}_{n,K}$, il en est de même de Q et R.

Autrement dit, on peut faire tous les raisonnements relatifs aux constructions en restant dans le domaine des séries convergentes et donner une définition des constructions dans \mathcal{H} : le th. 3 exprime (notamment) le fait que les constructions standards dans \mathcal{H} sont les "restrictions" des constructions standards dans \mathcal{F} . Désormais nous désignerons de nouveau par A_n l'un quelconque des anneaux $\mathcal{F}_{n,K}$ ou $\mathcal{H}_{n,K}$.

Corollaire: si un sous-module M <u>de</u> $(\mathcal{F}_{n,K})^p$ est engendré par des séries convergentes U_i , toute série convergente F qui appartient à M, est combinaison linéaire des U_i avec des coefficients qui sont des séries convergentes.

Complément au théorème 3: <u>les</u> U_1 et la construction standard (λ_1) étant donnés, on peut à chaque voisinage V <u>de</u> 0, <u>associer un autre voisinage</u> W <u>de</u> 0 de telle sorte que si F est convergente dans V, <u>les</u> λ_1 (F) sont convergentes dans W.

Démonstration par récurrence sur n et p, grâce au résultat analogue démontré pour l'identité de Weierstrass (cf. exposé 10). Voir plus loin le cas spécial du corps des complexes (Théorème 5).

Propriétés topologiques des constructions standards:

Topologie de la convergence simple des coefficients: supposons donnée sur K une structure de corps topologique (ou plus généralement, si K est un anneau "local," une structure d'anneau topologique). Nous dirons que f ϵ $\mathcal{F}_{n,K}$ tend vers zéro dans $\mathcal{F}_{n,K}$ pour la topologie de la convergence simple des coefficients, si chacun des coefficients $\mathbf{a}_{k_1 \dots k_n}$ du développement Σ $\mathbf{a}_{k_1 \dots k_n}$ \mathbf{x}_1^k \mathbf{x}_1^k \mathbf{x}_1^k de f en série entière en $\mathbf{x}_1, \dots, \mathbf{x}_n$ tend (séparement) vers zéro dans K: un élément d'un système fondamental de voisinages de zéro sera défini par la donnée d'un voisinage V de o dans K et de p systèmes de n indices $(\mathbf{k}_1, \dots, \mathbf{k}_1)$ et se composera des f telles que $\mathbf{a}_{k_1 \dots k_1}$ ϵ V pour $\mathbf{i} = 1, \dots, p$. On désignera par \mathcal{F}_n^s cette topologie, qui est évidemment séparée si K est séparé, et compatible avec la structure d'anneau. On notera de même \mathcal{F}_n^s la topologie produit sur $(\mathcal{F}_{n,K})^p$ et la topologie induite par celle-ci sur $(\mathcal{F}_{n,K})^p$.

Théorème 4: si (λ_i) est une construction standard, les applications $F \to \lambda_i(F)$ sont des applications linéaires continues de $(\mathcal{F}_{n,K})^p$ (resp. $(\mathcal{H}_{n,K})^p$) dans $\mathcal{F}_{n,K}$ (resp. $\mathcal{H}_{n,K}$) pour la topologie de la convergence simple des coefficients.

Démonstration par récurrence sur n et p en reprenant la définition d'une construction standard: il suffit de raisonner dans $(\mathcal{F}_{n,K})^p$. On voit immédiatement que \mathcal{F}_n^s peut encore être définie par récurrence sur n, en identifiant $\mathcal{F}_{n,K}$ avec l'anneau des séries formelles à une variable à coefficients dans $\mathcal{F}_{n-1,K}$: \mathcal{F}_n^s est alors la topologie de la convergence simple des coefficients dans cet anneau, $\mathcal{F}_{n-1,K}$ étant muni de la topologie \mathcal{F}_{n-1}^s : en particulier \mathcal{F}_n^s induit sur le module des polynômes en z de degré \leq p-1 identifié avec $(\mathcal{F}_{n-1,K})^p$, la topologie \mathcal{F}_{n-1}^s : d'où immédiatement le passage de p à p+1 (cf. supra 1).

D'autre part, dans l'identité de Weierstrass f = PQ + R, Q et R dépendent continûment de f pour g fixé (pour \mathfrak{I}_n^s): en effet chaque coefficient de Q et R ordonnés en z s'exprime par une combinaison linéaire à coefficients ne dépendant que de P, d'un nombre fini de coefficients de f ordonné en f (voir les formules explicites de l'exposé 10). Si $f \to 0$ pour f_n^s , chacun de ses coefficients tend vers f pour f donc aussi chaque coefficient de f et f par suite f et f pour f d'après la remarque précédente. On en déduit le passage de f f f f f f dans f f étant nécessairement continue. Quant au corollaire, c'est une conséquence immédiate du Théorème et de la définition d'une construction.

Si on prend en particulier sur K la topologie discrète, \mathfrak{I}_n^s est la topologie définie par les puissances \mathbf{I}^K de l'idéal maximal I des noninversibles (dans $\mathfrak{I}_{n,K}$) ou dans $\mathfrak{K}_{n,K}$) (voir Appendice). On en déduit le

Corollaire 2: soient f_1, \ldots, f_p des éléments d'un idéal \mathfrak{a} de $\mathfrak{F}_{n,K}$ (resp. $\mathfrak{H}_{n,k}$) et ϕ un élément de $\mathfrak{F}_{p,K}$ (resp. $\mathfrak{H}_{p,k}$): $\phi(f_1, \ldots, f_p) \in \mathfrak{a}$.

Démonstration par passage à la limite suivant la topologie des \textbf{I}^K à partir du cas où ϕ est un polynôme.

Autres topologies: supposons donnée sur A_n une topologie \mathfrak{I}_n compatible avec la structure d'anneau: le théorème 4 et son corollaire se démontreront la même manière que ci-dessus, si les topologies \mathfrak{I}_n vérifient les deux axiomes:

- 1°) \mathcal{I}_n induit sur le module des polynômes en \mathbf{x}_n , de degré \leq p-1, de \mathbf{A}_n , identifié avec $(\mathbf{A}_{n-1})^p$, la topologie produit des \mathcal{I}_{n-1} ;
- 2°) Le quotient Q et le reste R de l'identité de Weierstrass f = PQ + R sont des fonctions continues de f pour \mathcal{T}_n , quand P est fixe.

En particulier, on peut prendre (pour K valué complet) sur $\Re_{n,K}$ la topologie de la convergence au sens des majorantes sur un voisinage de 0 (cf. exposé 10). On aura alors en plus un "complément au th. 4" analogue au complément au th. 3, portant sur les voisinages et les bornes de s majorantes.

Si K est le corps des complexes c on peut prendre sur $\mathcal{H}_{n,\,c}$ la topologie de la convergence uniforme dans un voisinage de zéro: on a d'ailleurs le théorème:

Théorème 5: soient U_1, \ldots, U_q des fonctions holomorphes à l'origine (à valeurs p-dimensionnelles) et soit $(\lambda_1, \ldots, \lambda_q)$ une construction standard pour (U_1, \ldots, U_q) . Alors il existe un système fondamental Φ de voisinages compacts de 0 jouissant de la propriété suivante: si F (à valeurs p-dimensionnelles) est holomorphe sur un $V \in \Phi$ (c-à-d dans un voisinage ouvert de V), les $\lambda_1(F)$ sont aussi holomorphes sur V; en outre on peut attacher à chaque $V \in \Phi$ un nombre k > 0 tel que pour toute F holomorphe sur V et de "module" ≤ 1 sur V, les $\lambda_1(F)$ soient de module $\leq k$ sur V.

(Pour la démonstration, voir H. Cartan, Idéaux de Fonctions analytiques, Annales de l'E.N.S., 61 (1944), p. 191 et seq.)

Appendice: le fait que tout idéal de $\mathcal{F}_{n,K}$ (resp. $\mathcal{H}_{n,K}$) est fermé pour la topologie définie par les puissances de l'idéal maximal I, résulte d'une proposition générale d'algèbre et peut se démontrer sans utiliser le Vorbereitungssatz: soit A un anneau noethérien avec élément unité et soit J un idéal de A tel que 1 + x soit inversible dans A pour tout x de J: alors tout idéal de A est fermé pour la topologie sur A dans laquelle un système fondamental de voisinages de zéro est formé des puissances J^n de l'idéal J.

Les hypothèses "passant au quotient" par un idéal quelconque de A, il suffit de montrer que $\bigcap_1^\infty J^n = \{0\}$: posons $C = \bigcap_1^\infty J^n$: on a $J \cdot C$ = C: en effet il suffit de montrer $C \in J \cdot C$; ou encore d'après le théorème sur la décomposition des idéaux en composantes primaires, que tout idéal primaire contenant $J \cdot C$ contient C: en effet, s'il ne contenait pas C, il contiendrait une certaine puissance de J, donc C. Supposons alors que $C \neq 0$ et soit C_1, \ldots, C_q une base minimale de C (c-à-d telle qu'aucun vrai sous-ensemble des C_1 ne soit une base de C). Comme $J \cdot C = C$, on a $C_1 = \sum_{i=1}^n \lambda_i c_i$ avec $\lambda_i \in J$. D'où:

$$(1 - \lambda_{\underline{i}}) c_{\underline{i}} = \sum_{\underline{i}=2}^{q} \lambda_{\underline{i}} c_{\underline{i}} .$$

Mais d'après les hypothèses, $1-\lambda_1$ est <u>inversible</u> et par suite c_2,\ldots,c_q forme encore une base de C, ce qui contredit l'hypothèse de minimalité faite sur les c_i : par suite $C=\{0\}$.