
Topologie et géométrie
différentielle. Cahiers
du Séminaire dirigé par
Charles Ehresmann

ISTVAN FARY
On a topological characterization of plane geometries
Topologie et géométrie différentielle. Cahiers du Séminaire dirigé par Charles Ehresmann,
tome 7 (1965), exp. no 1, p. 1-33
<http://www.numdam.org/item?id=SE_1965__7__A1_0>

© Topologie et géométrie différentielle. Cahiers du Séminaire dirigé par Charles Ehresmann
(Secrétariat mathématique, Paris), 1965, tous droits réservés.

L’accès aux archives de la collection « Topologie et géométrie différentielle. Cahiers
du Séminaire dirigé par Charles Ehresmann » implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale
ou impression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SE_1965__7__A1_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


ON A TOPOLOGICAL CHARACTERIZATION OF PLANE GEOMETRIES

by Is tvan FAR Y
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l. Introduction.

1. Let R be the Cartesian number plane, and H the group of all homeomor-

phismes h : R - R of R onto itself; we denote by H+ the sub-group of those h’s which

conserve an orientation of R. Let GE dénote the group of all sense preserving isome-
tries of the natural Euclidean metric of R (see (4) below). 

’

If f ; R - B is a homeomorphism of R onto the plane B of the Bolyai geometry, or

the geometry of constant curvature  0, and L B is the group of all sense preserving
isometries of B , then G B = is a sub-group of H+; it is determined up to conju-

gacy in H. (Given another homeomorphism g : R - B , we set h = g-1 f. Then we have

C~). The groups GE and GB can be distinguished
by a purely group theoretical property : GE contains an invariant abelian sub-group of

dimension 2, isomorphic to the additive group of R 2 (two-dimensional vector space over
the field R 1 of reals), Gn , however, does not contain such a sub-group.

The standard unit two-sphere S 2 will be considered as the one-point compacti-
fication of the plane S 2 = R let us dénote cr the «spherical motrice of R, i.e.
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the metric of S2 cut down to R. Then both Gp and GB are equi-continuous in the

metric cr (see sections 11.5, ll.7, 11.9); evidently, any sub-group of these groups shares

this property. More generally, if G C GE or G C G B ’ then any conjugate h -1 Gh (h E H )
is also equi-continuous with respect to cr (see section 11.9, Theorem 9) ; this is not

necessarily true, if we use another metric. -

. 

2. Our principal aim is to show that this is the only way to obtain equi-conti-
nuous transformation groups.

MAIN THEOREM. Let G be an equi-continuous group of sense preserving homeomor.

phisms of R onto itself. Then G is conjugate in H to a sub-group of G~ or GB .
That is to say, supposing that

( 2) G C H+ , G is equi-continuous in o’,

then there exists an h ~ H such that

( 2 ) either h -1 Gh C’ G E or h -1 Gh C GB
holds true.

In a slightly different form our main result can be stated as follows.

THEOREM 1. Every equi-continuous group of sense preserving homeomorphisms of R

onto itself is contained in a group maximal with respect to these properties. A maximal

group satisfying ( 1 ) is either conjugate to GE or to GB .
The equivalence of the two wordings of the main result is plain. We come back

to other formulations later.

3. Conjugacy in H is a strict equivalence relation : it is «equality up to coordi-

nate transformations. . To be more specific, let us suppose tha~

f3~ g = 

holds true for the homeomorphisms f , g, h in H. Then g is described, in an appropriate
coordinate system determined by h, by the same functions as f in the Cartesian coordi-

nate system. For example, if hence

(4) { q’ = ç cos B + 7] sin 0 + /37]’ = - 03BE si n 

is its expression in Cartesian coordinate system, then g is given by the same functions

in a suitable coordinate system. As a point of fact, the function cp of two real variables

giving the first coordinate of fx , x E R, is defined by ~ ( fx ) = ~(" ~~), ’~ ( x )). If we

I ’~ ( x ) = ’~ ( hx ), as new coordinates, we 

= ~f~~ = ~f/~) = ~p ( ~ ( hx ) , ~ ( hx )) = defining the same function
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p. In particular, if in ( 2 ) the first alternative holds true, tha n all transformations of G

are described by ( 4 ) in the coordinate Then G appears as a

group of isometries of a «topological model &#x3E;&#x3E; of the Euclidean geometry (see[ 14]).

4. Conjugacy in H conserves all properties of maps which may be termed $ tope-

logical properties », hence it is a proper concept of «homeomorphism of maps » and

«homeomorphism of families of maps ~ . To illustrate this statement, let us suppose that

( 5 ) G’ = h-1Gh

where G, G’ are sub-sets of H, and h E H. As H is a topological group (see section ,.

11.5), and is an endomorphism of the whole structure, G and G’ correspond
to one another under this map. Every g E G is a sub-set of R X R , with a particular

structure. The relation ( 5 ) means that the homeomorphism
’ 

maps each sub-set J onto 

where g E G and g’ E G’. Thus a sub-set of R X R representing a g E G is mapped

homeomorphically onto a sub-set representing a g’ E G’ by a homeomorphism of the

whole space R X R .

To sum up, using ( 5 ) as a definition of homeomorphism of sets of maps, we may
state the following theorem.

THEOREM 2. The Main Theorem solves the homeomorphism problem for equi-continuous

transformation groups acting on surfaces.
Of course, the wording of the theorem above is rather vague. However, we will

not come back to a more precise formulation and a proof of Theorem 2 in the present

paper. Nevertheless, we want to mention that, properly formulated, the theorem above

generalizes the classical result on classification of surfaces, which corresponds to

Theorem 2 applied to the identity transformation of a surface M. (See Theorem 27,

Section VI.2 ). 

5. Let us formulate an equivalent form of Theorem 1, which is useful in some

steps of the proof. In what follows, we call surface a two dimensional, metric, C° mani-

fold without boundary, which may or may not be compact.

THEOREM 3. Let G be a group of sense preserving homeomorphisms of an orientable

surface M onto itself, which is equi.continuous in a metric of which extends to the

one point compactification of 1B1. Then M carries a complex structure preserved by all

elements g E G .

The conclusion of the theorem can be worded differently : under the hypotheses
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of our theorem, there is a conformal structure invariant under all homeomorphisms g E G.

6. We formulated above equivalent forms of our Main Theorem. Let us state

presently important special cases, and easy corollaries.

In the course of the proof of the Main Theorem, we will use a deep result of

Hilbert, which in turn is a weak special case of our theorem. In order to formulate this

theorem of Hilbert (see [ 9 ] ), we introduce the following notations :

(6) g }

~ f 7 ~ 
The first is, of course, the isotropy set (isotropy sub-group, in case G is a group) of

the point x E R ; G ( y ) is the traj ectory of y under G. We refer to section 111.4 for the
definition of the concept of «three-rigidity» appearing in the formulation of Hilbert’ s

theorem; we give here a loose, intuitive description of this concept. A transformation

group G C H is termed «three rigid) if three points from arbitrary neighborhoods of

x, y, z can be transformed arbitrarily near to x’, yB z’ only if there is a transformation

carrying x, y, z precisely into x’, y’, z’ respectively (here x, y, z, x’, y’, z’ are points
of R, not necessarily distinct, and « transformation refers to elements of the given G ) .

THEOREM (HILBERT). I f G C H + is a three-rigid transformation group of R, such that

G x( y) is infinite for all x and y (y  x ) , then G is conjugate in H to G E or 
This theorem of Hilbert gives topological characterization of the Euclidean and

the Bolyai geometry. It could be paraphrased as follows. If a transformation group of the

plane does not change distances too badly, and if its isotropy groups behave as they

should in order to be the group of all isometries of a geometry of constant curvature ~ 0 ,

then it is the group of all isometries of a geometry of constant curvature  0 .

In section 111.4 we analyse three rigidity and will show that Hilbert’s theorem,

which, by the way, inspired his V problem (see [ 19 1), is a special case of our Main

Theorem.

Another known special case of our Main Theorem, very important in its proof,
is the following (see [ 12 L [ 13 D .

THEOREM (KEREKJART6). Let g E H+ be a homeomorphism, whose powers {gp;p=0, fl, :1:2,. }
are equi-continuous in the metric o~. Then there exists an h E H, such that

E G E
holds true, i. e. h "1 gh is given by ( 4 ) in Cartesian coordinates.

This special case of the Main Theorem serves, in particular, to « adjust » the

hypotheses of Hilbert’s theorem to the condition ( 1 ). It is to be noted, however, that
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it does not imply trivially our main result. Given G satisfying ( 1 ) , as in the Main

Theorem, there is an hg ~ H for every g E G, such that GE holds true, in

virtue of Kerekjart6’s theorem. By our theorem, h can be chosen for all elements of G
simultaneously, so that ( 2 ) holds true. Let us also notice that the disjonction in ( 2 ) is

necessary, although each element of G is conjugate to some element of Gp (in parti-
cular each element of Gn is conjugate to some element of G E ) .

Among special cases of the Main Theorem let us also mention the following
classical result (see [ 11 ] ) .

THEOREM (BROUWER). I f G is a finite group of sense preserving homeomorphisms of
the 2 - sphere S 2 , then G is cyclic and conjugate, in the group of all homeomorphisms

of S 2, to a group of rotations. 
’

Other similar classical results can also be deduced from our Main Theorem.

7. Finally, using the Main Theorem it is easy to formulate results analogous to

the known theorems formulated above, and to analyse the hypotheses in them. For

example, the Main Theorem can be used to give various topological characterizations of

the Euclidean and Bolyai plane geometries.

THEOREM 4. If ( 1 J holds true, and there are two points a, b (b ~ a) such that G a (x J
and G b ( y) are both infinite for some x, y then G is conjugate in H to GE or to 
thus is the full group of sense preserving isometries of a geometry of constant curvature

i0.

THEOREM 5. I f ( I ) holds true and dim G&#x3E; 3 , then G is the full group of sense ~reserving
isometries of a geometry of constant curuature ~ 0 .

The first of these theorems can be paraphrased as Hilbert’s theorem. It is even

easier to do this for Theorem 5 : if a group G does not change distances too badly, and

is as large as can be, then it is the group of all isometries of a geometry of constant

curvature  0

Both theorems above are special cases of the theorem formulated below.

THEOREM 6. L et P be a proposition whi ch is true or false, if formulated for an equi-
continuous transformation group acting on the plane, and has the same truth value for G

as for I f P is true for Gp and for Ga but false for proper sub-groups of these

groups, then any group G satisfying ( I ) and having property P is conjugate to G E or
to Gg.

Clearly, in Theorem 4, P is the proposition involving the trajectories of iso-

tropy sub-groups, in Theorem 5 it is the statement !... is of dimension ? 3 ~, J which is
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meaningful as G inherits a topology from H (see Section 11.5). Theorem 1 can also be

formulated in such a manner. The property P is then «... is not properly contained in a

group satisfying f2 )~.
As we mentioned earlier, there is a close connection between equi-continuity

and three-rigidity (see Section III.4).. Using this connection, we can formulate the results

above, concerning three-rigid, or even two-rigid transformation groups. If we formulate

Theorem 4 this way, we have a direct generalization of Hilbert’s theorem.

8. I reached the results presented in this paper by a thorough study of Hilbert’s

paper [ 9 ] when I realized that the property concerning the trajectories is not essential
in Hilbert’s characterization of the geometries; the property serves only to exclude

proper sub-groups of maximal equi-continuous groups. This conjecture was furthered

when I learned Kerekjarto’s theorem (see Section 1.6 ).. My former partial results are

[ 6 ] , [ 7 ] ; these results are proved anew in the present paper.

II. Some General Properties of Equi-Continuous Transformation Groups.

1. Our ultimate aim is to study transformation groups acting on the plane, but we

formulate some results more generally. We do not strive, however, for complete genera-

lity, whatever this may be, because some general statements are cumbersome in the

present application. For a general theory see [ 5 ] .

2. In what follows, we consider separable, metric spaces only, i.e. metric spaces

satisfying the second countability axiom. Let R be such a space. If G is a group, and

we are given a map

(1) 

{ 
GXR-+R

(g, x) ~ gx
such that = 

’

ex = x for all x E R ( e : neutral element of G )

then we say, somewhat loosely, that G is a transformation group acting on R .

N = {g E G I gx = x for all x I

is an invariant sub-group of G, and G’ = G/N is also a transformation group acting on

R, if we agree that ( g N )x = gx . Hence replacing G by G’, if necessary, we may

suppose

if gx = x for all x ER, then g=e

holds true; such a transformation group is called effective. In what follows, we always
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consider effective transformation groups, without stating this necessarily.

3. For fixed g I x -~ gx is a one-to-one map of R onto itself, its inverse

being x -~ If the map ( 1 ) is continuous in the discrete topology of G, I ~c -~ gx is

a homeomorphism.

4. Let H denote the set of all homeomorphisms of R onto itself. H is a group

under composition of maps, and it is a transformation group of R, for which (1) is

continuous in the discrete topology of H. Furthermore, for every transformation group G

acting on R, for which ( I ) is continuous in the discrete topology of G, there is a

natural homomorphism G ~ H mapping g into the homeomorphism x -+ g". If G is effec-

tive, this homeomorphism is an inclusion, hence G can be naturally identified to a sub-

group of H. In what follows, we always make this identification, hence consider sub-

groups of H only.

5. Let cr be a bounded metric of R. Let us prove that

(2) 4l ( f, g) = sup { I gx ) I X E R I

is a metric on H. Firstly, Af f,g) = 0 implies gx = fx for all x, I thus g = f. Secondly,

by symmetry on the right hand side of ( 2 ) . Thirdly,

A( f, g ) - e cr  ,h" ) + 

 ~ (f~ ~) + 

for every e&#x3E; 0.. Thus A is a metric for H. Also, it is easy to check that ( 2) is a

continuous map. A sequence {/..! of elements of H converges to g E H , if the maps

converge uniformly in the uniform topology of R defined by cr . The metric A may

change, if cr is replaced by another bounded metric inducing the same topology.
We always use the metric ( 2 ) when dealing with topological properties of the

space G of a sub-group of H. Then the metric cr on R must be specified; of course,
R will not be, in general, complete in this metric.

6. A sub-group G of H is called group of isometries of cr, if

(3 ) 03C3(gx, gy) = y ) 
’

for every pair of points x, y in R and every g E ~ . The set of all elements of H satis-

fying ( ~ ) is the group of isometries of of course, this can be reduced to the

neutral element e. We will use the following result of [ 4 ] .

THEOREM 7. I f R is locally compact and has but a finite number of connected compo-
nents, the group of isometries of any given bounded metric o~ on R is a locally com-

pact sub-group of H.
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7. Given a sub-group G of H, it is possible to inuoduce a new metric cr on the

set R, in such a way that G be a group of isometries of If we also require that the

topology of cr be the same as the given topology of R, the concept of equi-continuity
comes up naturally. Let us introduce and discuss this concept.

DEFINITION 1. A set K o f el ements o f H is called equi-continuous, with respect to a

given metric cr o f R, i f there is a f unction 6)&#x3E; 0 de f in ed f or all x E R and

8&#x3E; 0, and such that

(4) o’f~.y) e; implies e

f or all k E K . ? is call ed equi-continuity modulus o f K.

REMARK. If there is a cp which is constant with respect to x, we may say that the equi-

continuity is «uniforms; we will not be concerned with this special case. Let us also

remark that some authors use the term «pointwise equi-continuous » instead of eq.ui-
continuous.

Let K be a given equi-continuous sub-set of H containing e , and e) its

modulus with respect to a given bounded metric cr. We introduce a new metric cr on the

set R, by 
’

f3) I 6RJ.

~e have supposed e E K, thus

( 6 &#x3E; y) &#x3E; C7’~. y)

holds true. Naturally, cr(’x, y ) = 0 implies crfx, y) = 0, thus y = x ; also y ) &#x3E;_ 0

by ( ~ ). Symmetry cr(’~,y~=cr~,~) is evident. As to the triangle inequality :

~’(x~ y) - + 

 cr(~~) + 

if x, y, z are given, and e&#x3E; 0 is any number. This completes the proof to the effect

that ( ~ ) is a metric of R .

The inequality (6~ shows, furthermore, that :

(~) if then 

Until now, we have not used the equi-continuity of the family K, Using the modulus cp

of the family, we will prove now the converse implication

( 8 ) if lim ~-( x, xn ) = 0, then = 0 .

The hypothesis in (8) means that for n ? N( e), ~~) e), hence 

for all k E K, thus o-~,~~) e, implying the conclusion in (8) . We proved then the

following lemma.
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LEMM A 1. For any set KC H, f3) metric Of2 set R; in case e ~ K, (6) bolds

true. If K is an equi-continuous family, the metric (5) induces the topolgy of R, in
particular, both f 7 ) and f 8 ) hold true.

In the future we will be interested in properties of sub-groups of H which are

hereditary with respect to inclusion. The lemma below will show that, when dealing with

hereditary properties,we may suppose G closed in ~f.

LEMMA 2. KC H be an equi-continuous set. Then its closure K XM the space

f H, 0394) (see ( 2 )) is also equi-continuous.

PROOF. Let ~f~, e) be die modulus of K. We claim that e /2) is a modulus

for K. In order to prove this, let be given a g 6JK, and a sequence ~K such that
~ Afg, ~~) == 0. Supposing then y ~ e/2), we have -

i Crf ~~ x; + x, ~~y) + ~y~

 ~+ ~ + ~
2014 4 ’ 2 ’4

if n is appropriately chosen .

THEOREM 8. 7/ G is an equi-continuous sub-group o/ H, then it is a group of isome-

tries o/ metric cr o/ R. The closure G o/ G in H is a locally compact group.

PROOF. In virtue of Lemma 2, we may suppose G = G. We consider a bounded metric

cr of R, and we introduce cr by (3~ with K = G. By Lemma 1, 0- is a metric of the

space R. Now for every ~ ~(7,

03C3(gx,gy) = sup { erf ~ G{ = sup { hy) : h ~G }

= 

thus ~ is an isometry of cr . By Theorem 7 the group of all isometries of cr is locally

compact, thus G is a closed sub-space of a locally compact space. This completes
the proof.

LEMMA 3. Lef G ~ H be an equi-continuous family such that R be the union of com-

pact sub-sets A ., x ~ 7, /or 

~ {~~~ g ~G. or g’~ 6 (?;
is contained XM a compact Bi. Under these conditions G is precompact, !.e. its closure

in H is compact.

PROOF. Given a sequence g ~G, we can replace it by a sub-sequence which is con-

vergent on a countable, everywhere dense set; let us denote now this sub-sequence by

{ g~! . The restrictions ~~t ~.~ ~ fixed, satisfy the conditions of the well known Ascoli

theorem, hence g’’~=~:~ f~ )~-) exists and is a continuous map, for every x 67.
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Now and coincide on an everywhere dense sub-set of thus there

exists a map g such that = g f~~ . Clearly, g = lim gn. Hence g a continuous

map. can apply the argument to the sequence this proves that g is a homeo-

morphism.

DEFINITION 2. Let K C H be a given set of homeomorphisms. We say that K is boun-

ded at x E R, if Kx = { y = kx, k E K~ is a precompact set..

LEMMA 4. Let R be locally compact, and K an equi.continuous sub-set of H. The

set E of points of R where K is bounded is an open set. (It may be empty).

PROOF. Let cp be the modulus of K. Given xo E E, the local compactness of R implies
that there is an e&#x3E; 0 such that the E- neighborhood U of Kxo be precompact. By
equi-continuity, Kx C U, if a( x x )  E) thus K is bounded at each point of a

e)-neighborhood of xo. This completes the proof of the lemma.

9. The specific metric cr chosen on R had no importance until now. We will

prove presently a theorem in which we have to narrow down the choice of cr.

Let R be a locally compact space and R = R its one point compactifi-
cation. If R is metric, and cr is one of its distance functions, then cr 1 R X R is a

bounded metric. Vice versa, given cr, metric of R , it may or may not be possible to

extend it to a metric of R. In the first case we will say that « 0- has an extension to the

one point compactification of R ». Every h E H can be extended to R, hence is uni-

formly continuous in the metric cr .

THEOREM 9. Let R be locally compact, o~ a metric having extension to the one point

compactification of R, I and K C H an equi-continuous family in this metric. Then every

conjugate set h -1 Kh is equi-continuous in the same metric.

PROOF. Let cp be the modulus of K and S( E) the modulus of continuity for both h

and h ~1. Direct computation shows that

I e) = S( § (6=)))

is a modulus of equi-continuity of the set of maps h "~ Kh . -

III. Equi-Continuous Transformation Groups Acting on the Plane.

1. In what follows, we will be concerned with special and specific questions,
hence we specialize our notations and our hypotheses. From now on R always denotes

the number plane, and cr is the metric on R obtained by stereographic projection from

the sphere (see Section 1.1); in particular, cr can be extended to the one-point compac-
tification of R, which is S 2 . H stands for the group of all homeomorphisms of R ;

H+ is the sub-group of orientation preserving homeomorphisms. We consider sub-groups
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G C H+ satisfying two conditions : 
’

( JU G is equi-continuous in 03C3 (G C H+);

( 2 ) G is closed in the space H, 
’

where H has the metric A defined in ( 2 ) of Section II.5 . Clearly, ( 1 ) is the hypothesis
of the Main Theorem (Section 1.2) ; in view of the Remarks in Section 11.8, we may

. suppose ( 2 ) .

2. If 6 = ~ (mod 27T ) in ( ~ ) of Section 1.3, th e map defin ed is called translation

t ; if OL= /3= 0 ,the formula gives a rotation r with angle 

TERMINOLOGY. A map is called topological translation, and topological
rotation with angle e (mod 2 ~ ) .

This terminology is justified by the following lemma.

LEMMA 5. I f g E H is conjugate to two rotations with angles 03B81 and 82 , then 82 = 8t
(mod 2’~ ) .

PROOF. Let us suppose that

g = ( i = 1 , 2 )

holds true, are rotations and hiE H. ° Th en r 2 = k -t r 1 k , hence invariant
sets under r2 correspond to invariant sets under r;. We consider an x , which is not

the center of rotation of ri, and the cyclic order of the points

( 3 ) ( n integer)

on the circle invariant under r i . This set is mapped by k "1 into a similar set with

respect to r 2 . As the cyclic order in the set ( 3 ) in the same as in

rn 2 
we have 8z = el (mod 2 ~ ) .

In the case of a topological rotation,we can thus speak without ambiguity : ( a)
about its center, which is its only fixed point, unless it is the identity e; (b) about

the angle 8( mod 27T ) of the rotation. If ~/ 2 ~t is irrational, the closure of ( 3 ) is an

. invariant circle, hence, for a topological rotation, which is not periodic, invariant

Jordan curves are uniquely determined.

Any two translations are conjugate, thus any two topological translations are

also conj ugate in H.

3. Given a group GC H +, satisfying conditions ( 1 ), (2), Kerekjarto’s theorem
(see Section 1.6) shows that every g ~ G is either a topological translation or a topo-

logical rotation (see Terminology in the previous Section). This fact has important
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implications for sequences of transformations. The most striking corollary is this :

if a sequence G converges in two distinct points it converges everywhere. Less

surprising, but technically more important is the fact that a sequence bounded

in one point is pre-compact. These facts follow from our special hypotheses (the group
acts on the plane); the existence of a general invariant metric (see Theorem 8 in Sec-

tion 11.8) does not imply them.

THEOREM 10. Let G be a group satisfying conditions ( I’ ), ( 2 ), and gn E G a given

sequence of transformations of G, which is bounded in a point, thus such that }

is precompact for some xo E R , Then the sequence sub-set of H, is pre-compact.

I f there are two-points xo, x 
1 (x1 ~ xo ), such that

(4) t 

exist, then

( 5 ) lim gn = g
exists and belongs to G. I f ya = xo and Y1 = xl’ then g = e.

PROOF. Set S 2 = R R ~ S 2 denotes the map g with enlarged, compact range..

By replacing the range of each map by a compact space, we can apply the Ascoli theo-

rem to the equi-continuous sequence { gn ~ . This shows that the sequence can be thin-
ned out and a convergent sub-sequence gn : n } results : ’

(6) k = lim gn (k : R ~ R ( 6 ) k 
n ~ I 

g n ( k : R -+ R U Cù )

We define

( 7 ) 

Our aim will now be to show

(8) n== 0.

Before arriving to this conclusion, we have to discuss the structure of k, and apply

Kerékj arto’ s theorem in two different ways.

As the complement of H contains we have H 4= R. Let us prove the

the following statements :

( 9 ) one-to-one map

k "1 ~ R-n is continuous at each point of definition.

PROOF OF ( 9 ). Let us suppose that, contrary k ( x t ) = k ( x 2 ) = y, x ~ ~ x 1
in R-n. We will show that this leads to a contradiction. As a point of fact,

if is the modulus of G, and 3~cr~.,~ ), the sequence 1
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takes points from the disc centered to y and of radius s) into points at distance &#x3E; e,
and this is a contradiction.

PROOF OF ( 10 ). On every compact set contained in R, i s uniform limit of the equi-
continuous set of functions g ~ , n E I, by ( 9 ) above. Hence k -1 is continuous. Let us

. 

add here that there may be points x, where is not defined, or the set is 
‘

not precompact.

From here on, we divide the proof in parts (a),(b) depending whether Kerek-

jartb’s theorem applies to a map with fixed point or to a map without fixed point. In

both cases we want to prove ( 8 ) .

( a) We suppose that there is a point z o E R such that

( I I ) ( z~ E R ).
Let us define

( 12 ) n = { x for some P ?: 0 !;

(13) U = R - 03A9~.

Then z o E U, and a disc centered to zo also belongs to U by Section 11.8, Lemma 4; in
particular, U is not empty.

Let V be the interior of the component of 2r in U. By definition, and by the

results above V is not empty, connected open set in R. Let us prove :

( 14 ) V is simply connected.

PROOF OF ( 14 ). Let us suppose that, contrary to ( 14 ), there is a Jordan curve C in

V whose bounded complement W contains a point y From this hypothesis we

arrive at a contradiction as follows. gp ( W ) , for some fixed p , I contains points from

arbitrary neighborhoods of 6J, hence its boundary curve h as the same property

as gf is a homeomorphism. Let y E gf ( C) be such a point; xi = i 
is on C ,

and contains a convergent sub-sequence with limit point x. By equi-continuity, the

sequence converges to contrary to the construction C C V and the defini-

tion of V.

( I5 ) homeomorphism of V onto V;

( I6 ) ka conserves the orientation of V;

( 17 ) J is an equi-continuous family.

PROOF o F ( 15 ). No point of V belongs to the closure of thus the sequences

( g~ ~, ~ = 0, fl,... are all bounded at every x E V. Hence exists; it is continuous.

Let P be a path from zQ (see ( 11 )) to x E V. Then is a path from zo to k-1x,
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thus E V. This proves ( I 5 ).

PROOF OF (16). On compact sub-sets of i s th e unif orm limit of s ense preser-

ving homeomorphisms. This remark, used in connection with some standard cohomology

theory, or direct reasoning, enables one to prove ( 1 6 ).

PROOF OF (17). By the proof of ( 15 ), k~ is the limit of an equi-continuous sequence
of transformations. (See Section 11.7, Lemma 2 ).

From Kerékjártó’ s theorem we deduce immediately

( 18 ) k o is a topological rotation.

In particular, we have

( 29) There is a family of Jordan curves Ct, t real, t &#x3E; 0, 
, 

’

filling V - z and invariant under ko . ~
After this preparation, we will be able to prove

( 20 ) V = R .

PROOF OF (20). If ( 20 ) is not true, there is a point yo on the boundary V - V of V.

Let us suppose now first that the rotation number 8 of ko is such that 03B8/203C0 is rational,

, 
hence there is an integer m such that is the identity in V ; we may suppose that

= Then km , defined by the sequence { ~ : i E 2} is not continuous at yQ,

because ] V is the identity, and = This is a contradiction. We consider

now the case when ~9/2’77 is irrational, and we fix a sequence m Ie such that 0

. (mod27T), thus tend to the identity map in V. We consider now the table 

For every fixed point y 1 ~ we can find a sub-sequence E K, having the

following properties :

( 21 ) i 

Hence, we can satisfy these conditions for a set Y everywhere dense in V, and a

suitable sub-sequence { z E J’, k E K’!. As above this leads to a contradiction.
This completes the proof of ( 3 ), or ( 20 ), in case ( I I ) holds true.

( b) We suppose that ( II ) cannot be satisfied, hence

(22) x (for all x ~jR) 

holds true. In this case we will use properties of «translation arcs» in the sense of

Brouwer (see [1] ,[ 11] ,[ 16]).
L et u s prove

(23) == 0 .
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In fact, if a point x is in k-103A9, then kx E H. But 03A9 ~ R, thus 03C9, hence 

Thus the closed set H, and

are disjoint, ~e set :

~=~’’~-1 f~? 2~~Q=~)~
we want to show that the set

n * = u n, p
is closed.

Let B be a «translation arc ~ connecting xo 6~ and kxo not intersecting
n except Then

A ,

is a curve in the plane, which is a Jordan arc on S ~ connecting kxQ This fol-

lows from Brouwer’s theory of translation arcs. Supposing that Q is not closed, an
appropriate sub-arc of A closed by a small segment is a Jordan curve whose bounded

complement contains a fixed point (a z such that f22~ holds true). This argument

shows that Q is closed. 

Now n , thus, if we set

(25) U = R - 03A9*
then we have k U = ~7. As R is not the union of a countable family of pairwise disjoint
closed sets, ~7 4= (3 .

. As in part ( a), it is easy to see that

(26) ~~ = ~ ) ( U

satisfies the conditions of Kerekjarto’s theorem. By hypothesis (22) holds true, hence
~ is a topological translation. Hence there is an

E : translation domain for ko limited by L , ko L.

The set H is closed, connected, and, if it is not empty, it will contain two points

y 1, y2 belonging to the closure E’ of a kmo E , m integer. Then E’ and k-1o E’ ‘ intersect

in a point of the closure of L’ = ~~ L, and the same holds true This contra-

diction shows that (8) holds true. We have thus established the first statement of the

theorem.

Let us suppose holds true. be two cluster points of the

sequence {gn}. Then h-12h1 has two different fixed points, hence, by Kerékjátó’s
theorem, it is the identity. This shows that ( 5 ) holds true, and concludes the proof



16

of the theorem.

4. Equi-continuity is closely related to the concept of n- rigidity introduced by
Hilbert and used in his topological characterization of Gp and Go (see Section 1.6).
A slight generalization of Hilbert’s definition follows :

. DEFINITION 3. Let G be a given set of homeomorphisms of a space R onto itsel f.G is

called n - rigid, if the following conditions are satis f ied. Given the points xtr, xt, yts,

yt, i = 1 ,..., n, r, s = 1, 2 ,..., such that

( 2 7) xi = lim xir~ 

~ = 2 ,..., y?)
(28) y.= lim 

’

% 
s ~ 00 

%s

and homeomorphisms gr E G such that

( 29 ) (~=~.~~/r=~2,..J

then, by the condition of n-rigidity, there is at least one g E G, such that

(30) = y i (i * I , ,..., n)

holds true.

R E M A R K S . 1. A compact family of transformation s i s n - rigid, for every n. PROOF.

Replace I by a convergent sub-sequence, and take as g the limit of this sub-sequence
2. If m  n , then n - rigidity implies 772-rigidity. PROOF. In the definition, we do not

suppose xi =1= xl for i 4" /. 3. We can use the concept of I -rigidity in the definition of

n - rigidity, as follows. If R X... X R is the product space of n equal factor, every

g E G defines a map

G is n . rigid, if and only if the set G = { g g E G I is one-rigid.

THEOREM 11. L et G be an e qui-continuous group of orientation preserving homeo-

morphisms of the plane R onto itself, which is closed in H. Then G is n.rigid for all

integers r~ &#x3E; I.

PROOF. We use the notations of Definition 3 above. We take ( 27 ) for i = I . Let us

prove that the sequence gr is bounded at the point xl. Let D be a compactdisc centered

to and 8&#x3E; 0 so small that the union of discs of radius e intersecting D be compact
(recall that we use the spherical metric of R ). For r &#x3E; cr( x t, and

x 1, ED, thus the disc of radius 8 and centered to intersects D. Hence, by
Theorem 10, the closure of I in G is compact, and our Remark 1 above applies.
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THEOREM 12. Let G C H ~ two rigid group o/ homeomorphisms. Then G is equi-

continuous and closed in H.

PROOF. Let us suppose that, contrary to the first claim of Theorem 12, there is a point

, x E R, a sequence of points x and a sequence of G, such that ,

~3~ ) lim ~~ = xo
r -~ 00 

° °

f32; e~

holds true. Passing to a sub-sequence g~,, r E jf, if necessary, we may suppose that

lim gr~ = y° °

lim or ) = z
r ~/ 

°

exist on the sphere S 2 = R One of the points yo, xo may be the point ~3, but,

by f 32 ), not both of them.

If Cc) and ~ the two rigidity condition implies that there be map-

ping x into y and x into xo . This is a contradiction, hence we have yo~= ,t~ or 
’

"o = _. 

’

Let us suppose that y 
= 6~, and let C be the disc on S ~ centered to 6J and of

radius e /2.. The segment [ ~ , x or ] intersects the boundary of C in yr, if r is large

enough. 3et yor = Then y~~ is on the segment [ xQ, x ] , hence lim y~~ = xQ .

By thinning out the sequence I , we may suppose, we get a convergent sequence

lim y = y
Again, we have a contradiction with the rigidity condition. The case, when zo = 

similar, thus we proved that G is an equi-continuous family.
Let us prove that G is closed in H . Given g = lim g , g E G. Then the condi-

- tions of Definition 3 are satisfied with xir = x., y. = gr(xi), z = 1 ,2. Thus there is an

h E G, such that = ~f~J. ~ = 1, 2. As the closure G of G in H is an equi-
continuous family by the first statement of Theorem 12 , which has been proved already,
and by Lemma 2 in Section 11.6, Kerekjarto’s theorem (Section 1.6) applies to and

shows that it is the identity, as it has two fixed points. Thus g = h, hence G is closed

in H .

COROLLARY 1. G is two rigid i f and on ly i f both conditions (1),(2) are satified.

COROLLARY 2. A two rigid group C H+ is ?? - rigid f or all integers n &#x3E; 2.



In view of these results, we can use the following definition.

D E F IN IT ION 4. I f the group G acts on the plane, and is n - rigid for some
~ 2L2, then it is termed rigid.

Equivalently, G is termed rigid if it satisfies both conditions ( 1 ), ( 2 ).
Let us emphasize again that this definition applies only to groups acting on the

plane. For other transformation groups n- rigidity clearly implies m- rigidity, m  n, but

I do not know other non trivial cases of converse implications.
By Theorem 8, hence, essentially by a simple application of the main result

of [ 4 ] , a rigid group is locally compact. The group of homoteties acting on R is locally
compact but not rigid. It would be desirable to have a theory of groups acting rigidly
on spaces.

IV. Proof of the Main-Theorem for Zero-Dimensional Groups.

1. We begin presently a deeper study of rigid groups G acting on the plane R.
We will prove the Main Theorem (Section 1.2) in case

( 1 ) G C H + is rigid

( 2 ) dim G = 0

(see Section 111.4, Definition 4). We will use methods suitable to the case at hand. We
consider the quotient space

(3) R*=R/G

and the canonical map

(4) f : R -~ R/G .

Our aim is to introduce a Euclidean or Bolyai metric in R, in which G is a group of

isometries. We will find this via an appropriate conformal structure. ’

In view of Section 11.7, Theorem 8, we can apply in the future results concer-

ning locally compact groups in our study of rigid groups. The extensive and deep theory
of locally compact groups is not always helpful, however, because we have to deal

with «highly discontinuous groups ~ . An exception is the Theorem 13’ formulated below,
where a non trivial result of the general theory has important implications in the

present special case.

2. Unless the contrary is stated, we suppose ( 1 ), ( 2) above. A point x* of the

quotient space ( 3 ) is sometimes thought of as a set

(4) I

in the plane R, sometimes a point of a quotient space. We set :
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(5) E ={x I

(see (6), (7 ) in Section 11.6); in other words, E is the set of fixed points of topological
rotations ( =1= e ) contained in G. We will prove that both E and

(6) 

where f is the map ( 4 ) , are discrete sub-spaces of R, R * respectively.
The following result from the general theory of locally compact groups will be

useful (see [ 15 ] ).

THEOREME 13. In a separable, metric, locally compact topological group G, which is

zero-dimensional, the open sub-groups form a complete system of neighborhoods of the

neutral element e.

Thus, if U is any neighborhood of e in G, then there exists a sub-group K of

G such that K C U, and K is open in G, in particular a neighborhood of e. Since K is

an open set the quotient space G/ K is discrete..

We will also need the following theorem from [ 15 ] .

THEOREM 14. There is a function ’~ ( m ), m integer, ’~ ( m ) 3 ~ , such that every perio.

dic map r : S 2 -+ S 2 of period m moves at least one point at a distance &#x3E; ’~ ( r~ ) ,

From these theorems, and the Theorem of Brouwer (Section 1.6), we will deduce

now the following result.

THEOREM 15. Let G C H ~ be a zero-dimensional, rigid group acting on the plane. Then

every x E R is the center of a topological disc D ( x ) (i, e. a closed domain, limited by
a Jordan curve), such that

(7) then gx = x, and gD(x) = D(x).

Hence for x ~ E (see ( 5 )), the topological discs

(8) gD(x) (gEG)

are pairwise disjoint, and 

( 9 ) is a homeomorphism E ).

If, however, x E E, f 1 D(x) identifies points as a cyclic group of rotations of adisc;
in particular, the quotient space is homeomorphic to a disc.

PROOF. Given x 0 E R , let V be an open disc centered to x o.Set
( 10 ) U=(g 

By the definition of the metric A on H (see ( ~ ) in Section II. 5), ~ is an open neighbor-
hood of the identity e of G, and by Theorem 10, Section III.3, it is precompact. By
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Theorem 13 above, U contains a sub-group K° which is open; its closure K is then a

compact neighborhood of e in G, and a group.

If t is a topological translation, its powers are all distinct, and have no cluster

points, hence such a t cannot belong to K. In other words all elements of K are topolo-

gical rotations..

ve extend each g E K into a map S 2 -+ S 2 .. We have then a group with the fol-
lowing properties. K is compact, zero-dimensional, rigid, and every g E K is a topo-

logical rotation of S 2 . We want to prove the following statement :

( I I ) there is an e &#x3E; 0, such that every r E G e ) moves at

least one point at a distance &#x3E; e .

PROOF OF (11). Supposing that ( II ) is not true, for every n, we have an rn E G, I

r 4= e, such that 1/M. By Theorem 14, the order of r tends to infinity
with n, thus the rotation numbers 8 tend to 0 with n. We may suppose that the centers
of rotations converge to a point z. Given a number e (mod 2 ~t ) , we can take appro-

priate powers 772 of rn in such a way that

will converge to an element of K which has 03B8(mod 203C0) as rotation number. This means,

howewer, that a full rotation group of dimension 1 is contained in K, which is a contra-

diction with the hypothesis dim K = 0.

Let W be a neighborhood of e in K 

where e is the number appearing in ( II ). By ( 11 ) this neighborhood is reduced to the

neutral element e, thus K is discrete. As it is compact, it follows immediately that

it is a finite set.

In particular, K (x ) is a finite set, as well as G (x ) n U in ( 10) is finite,
and using the equicontinuity of the group, it is easy to find a topological disc D ( x )

having the properties formulated in the theorem, whose proof is thus complete.

THEOREM 16. If G is a zero-dimensional rigid group acting on the plane ( G C H +),
then R * = R/G is a surface, i. e. a connected, separable metric space, which is a C°

two-manifold without boundary. The set of points E of centers of topological rotations

of G (see ( 5 )) is discrete in R, and its image E * is a discrete sub-space of R/ G .

PROOF. Let x * E E * be given, and be x E x * ( s ee ( 4 )) ; let D ( x ) be the disc whose

existence is established in Theorem 15. Two points of D ( x ) are equivalent
under G, if and only if x 2 = where g is the generator of G . By Theorem 15 ,
D ( x ) * is homeomorphic to a disc( although, f I D ( x ) is not a homeomorphism). In parti-

cular, any two points of D ( x ) * have disjoint neighborhoods.
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Let 3C* ~ E * be given. Then by Theorem 15, the disc D ( x ) is mapped by f ~ ( Dfx)

homeomorphically onto and /~Df~)* is a family of pairwise disjoint topo-

logical discs. This proves that R * is a Hausdorff space, a metric manifold, and that E *

is discrete in R *. The proof of Theorem 6 is thus complete.

3. As E is a discrete sub-space of R, it is countable, ~e choose a countable

family such that ~7. fx = 1, 2 ,... ) be a topological disc of the type D ( x ) of Theo-

rem 15. Then there is a homeomorphism

r~2) ~..’~,-.B (B = ~(~i, ~2 ), ~i + ~2 ~ I)
such th at

(13) 

is a Euclidean rotation of angle 277/7M,, where g is the generator of Gx, x E E. The

map ~. defines a Euclidean metric in in which g is a rotation. Let us call the

Riemannian metric in

U = u Ui
whose restriction to U= is the Euclidean metric mentioned above (see fJ2~,f~3~/

g E Gx is a rotation in this metric).
By the choice of U (see Theorem 15 ), ~ U = U * is the union of disjoint discs.

Let V* be an open set containing the closure of R*- U *, and such that, if we set

V = f-1 V *
then ~.~V be the set !  ~i + ~2 ~ I in the coordinate system used in ( I2 ) . ~e

choose a C~ Riemannian metric in V *, and we denote by the arc element obtained

Let u, v be a C°° partition of the unity, belonging to the covering U, V of R :

( 1 4 ) ~f~~O.~~~0, u, v C°’° in R

f~; u(x) + v ( x ) = ~

(I6) ~)F=0. ~)~=0.
It is easy to see that ~ can be chosen such that

( 17) 
’ 

u ( gx ) = u ( x ) (for every 

It is enough to average u in some L7. by a finite group G , and define it coherently~ 
o

in the other discs Uj = g Ui. By ( 1 5 ) , we also have

v ( gx ) = v( x ) .
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VIe define now a Riemannian metric ds 2 in R by

( 18) ds 2 +vds2 .
Then ds 2 is invariant under all transformations g E G . Of course, we do not claim, that

the curvature of this metric is constant.

4. The plane R, given the metric ( 18 ) , can be mapped conformally either onto

the whole complex plane C by a

or onto the open unit disc D = { ~ E C,  2 } by
j;

In the first case

is a group of conformal maps of C onto itself, in the second case 
’

G" = y; G y;-1
is a group of conformal transformations of D onto itself (see [ 2 ] ).

In the first case the Hermitian metric of C is invariant under G’, in the second

case the Boyai metric of D is invariant under G" (Poincaré model, see [ 2 ] ).. Trans-

porting the appropriate Riemannian metric onto R , we have represented G as a group of

isometries of a Riemannian metric of constant curvature.

This completes the proof of the Main Theorem, and of Theorem 1, in the special
case of zero-dimensional groups G . Also, Theorem 3 is proved, when M = R and

V. Proof of the Main Theorem for Positive-Dimensional Groups.

1. In the case of positive dimensional groups acting on the plane, we have to

use a method which is very different from the one used in Section 4 for zero-dimensional

groups. We will use presently the continuous map

( U F : G - R , Fg = gxo ("0 fixed in R )

and its properties. The main fact is again the result of Theorem 10, Section III.3, which

implies presently that F is a « proper » map, that is to say

( 2 ) if C is compact in R, then C is compact.

PROOF OF (2). == {g hence by the first statement of Theorem 10,

Section III.3, this set is precompact thus, by continuity of F, compact. The quotient
space R / G will not be so important as in the previous Section. Also, in Section 4, the
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deep results used were Kerékjárto’s and Brouwer’s theorem on cyclic group. In the

present case

(3) dim G &#x3E; I

Hilbert’s theorem (Section 1.6) will be the most important. Not only the final form of

Hilbert’s result as stated in Section 1.6 will be used, but some other results of[9] will

be formulated and used.

2. Let us formulate first a theorem of [9], using hypotheses as stated in the

original form. We use here the following notations : P stands for the full rotation group,

i.e. th e group of transformations ( 4 ) in Section 1.3 with a = /3 = 0 and unrestricted B .

THEOREM 17 . L et group acting on the p lan e R, and such that

( 4 ) G is three-rigid

( 5 ) for every x( ~ a), G a( x) is infinite .

Then the sub-group Ga of G is conjugate in H to the full group of rotations of the

Euclidean metric, i. e.

f6) 

holds true for an appropriate h E H .

The essential part of Hilbert’s proof of this theorem is, of course, the analysis
of the homogeneous space G~(x), and its (cposition» in the plane. Then the family of
all the curves G a( x) must be analysed.

F. Riesz showed in [17] how Hilbert’s method of proving that G ~( x ) is a

Jordan curve can be used to prove Sch’oenfliesz t theorem stated below.

THEOREM 18. Let j be a compact set in R, whose complement contains two compo-
nents U, V with the following properties. Let a E U, b ~ V be chosen. For every x E J,
there is a Jordan arc from a to b intersecting J in the given point x only. Under these

conditions, j is a jordan curve, i. e, homeomorphic to a circle, its complement being U~V.

The so called Jordan curve theorem, complemented with the statement on the

~accessibility of points of a Jordan curves, states that every Jordan curve has the

properties formulated as hypotheses of Theorem 18.

Although Theorem 17 does not imply Theorem 16 immediately, its use simplifies
Hilbert’s proof. (This does not contradicts to the fact, that Hilbert’s method gives the

simplest known proof of Theorem 17). Using these classical results, let us prove a

stronger form of Theorem 7 .

THEOREM 19. Let G be a rigid group acting on the plane (G C H +) , and such that

G~( x ) be infinite for some x. Then ( ~ ) holds true.
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PROOF. Let us show that a G a satisfying the conditions of Theorem 19 has property
( 5 ) ; as to condition ( 4 ) , we have the results of ’Section 111.4.

Let us suppose that, contrary to our claim, there is a point" 0 =1= a, such that
G a ( = g~ xQ ,..., finite set. Then for every g in Ga there is a g j ,
such that gxo = t hence g-igt has two fixed points a and xo. By Kerékjártó’s
theorem this implies = e, thus Ga = {g~ ,..., g~ ~ , Then is also finite

contrary to hypothesis. Hence, Theorem 17 implies Theorem 19, whose proof is thus com-

plete.

THEOREM 20. Let G be a rigid group, G C H+, such that

( 7 ) dim G &#x3E; I

for a sub-group of isotropy. Then ( 6 ) holds true.

PROOF. Let us take in the definition of F in f2 ). By Kerekjarto’s theorem F
is a homeomorphism (F is continuous and ( 2 ) holds true). Thus dim G fx ) ~. 1, hence

not finite. Hence the conditions of Theorem 19 are satisfied, and the con-
clusion follows.

3. The results above concern the action of the compact one-dimensional sub-

groups of G. We need similar results concerning the non compact one-dimensional

sub-groups. We have first a classical result due to Brouwer.

THEOREM 21. Let the additive group R 1 of real numbers act effectively on R. Then
this trans formation group is conjugate in H to the one parameter sub-group of GE given
by

(8) ~’ = ~ + a, 7?’ = 7~ (a 

in Cartesian coordinates. 
’

With this statement at hand, we can easily prove the following result.

THEOREM 2 2. Suppose that the rigid group G C H +, has th e following properties :

( 9 ) G~ = i ?} for every a E R

( 10 ) 

Under these conditions.

( l l ) G~ component of the neutral element e e: G

is conjugate in H to the trans formation group ( 8 ). For G itself, we have either G = Ge,
or G is conjugate in H to the transformation group given by

( I2 ) ~’ = ~ + a, ~j’ _ ~j + m integer)
in Cartesian coordinates.
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PROOF, ~Oe suppose first that G is connected, thus G =G~. ~e choose arbitrarily

x~ ~ R, fix it, and consider the map F in ( I ) . ~e will prove :

( I3 ) _ F : G -~ Gf x~ ) is a homeomorphism.

By condition (9 ), F is one-to-one. If we restrict F to a compact neighborhood of a g EG,
the image will be compact, hence the conclusion follows by ( 2 ), ( 9 ) (see [ 10 ] ).

We want to show now that G is isomorphic to the additive group R 1 of reals,
and apply Theorem 21. The first, and most difficult step is to show, proving the condi-

tions of Theorem 18 ,that

( I4) F ( G ) ucd

is a Jordan curve on the sphere 5 ~ = the structure of G is then easy to deter-

mine.

By ( I3 ) and hypothesis G ~ = (7, G ( x~ ) is a connected sub-space of R.

Because of ( IO ), every sufficiently small open neighborhood of e in G has a non-

empty boundary, thus there is a sequence l of maps in G, gl , t, conver-

ging to e. In particular

( 15 ) lim gn(xo) = xo.
For n fixed, we have

r 16 ) lim gp(xo) = 6j

on the sphere S2, as every g E G is a topological translation by hypothesis ( 9 ).

Equi-continuity of G, and show that for every ~&#x3E; c~ , there is a sequence of

points

~ I7 ) "- "0 ~ "0~0 ~ gn xo ’" ’ °

clustering at ~ only on the sphere.
Let us prove the following statement. Given x ~(~f~ ) and there

is a Jordan arc J with endpoints x, y, and such that

under these conditions we say that ~ the point x is accessible from y ~ . The

proof is as follows. Clearly,

G ( x ) x ).

Let [ a, b ] be a segment connecting the points a E G ( x ) , b E G ( y ), and such that

be the pair of points a, b . (Connect any point of G ( x ) to any

point of G( y ) , and take appropriate sub-segment of this segment. Such a sub-segment

will exist as both G( x ) and G ( y ) are closed and disjoint). Now there is a map g E G
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such that ga = xo ; gb is on G ( y ) which is connected and does not intersect G ( " ) "

hence g( ( a, b ~ ) completed with an appropriate arc gives a J having the stated proper-
ties.

We consider the set ( 14), and will prove that ú) is accessible from every point

y 

If in ( I7 ) we choose an n large enough, is so near to y that the circle

, 
passing through gn y and centered to y does not intersect Then, by a cons-

truction of Terasaka (see [ 18 is on a translation arc ~ such that
’ 

f 28; A~= U{ g~: p = 0, J ,... ; }

does not intersect G ( xo ) , As gn is a topological translation, the set A ~03C9 is a Jordan
arc. This proves accessibility of ú) on G (" 0) 

We want to prove now that the complement of ( I4 ) on S 2 has two components

at least. Let us consider a translation arc for g in ( 17 ) connecting x and 

Then

( 1 9 ) A =L.{ g~B: ~ = 0, ± 2. ± 2,... !
is such that  ~ 03C9 is a Jordan curve on the sphere S 2 ; for n large the diameter of

is  3. 9s both G ( x ) and A are invariant under g~ , it is easy to construct a

pair of points a, b separated by 
B We have thus established all hypotheses of Theorem 18 ; the conclusion is that

6* f~r ) u cv is a J ordan curve on the sphere S 2 . 6’f.?c ), thus by ( I3 ) , the space o f G
itself is homeomorphic to R1. As the real line has but one topological group structure,
the conditions of Theorem 21 are satisfied and the is : G is conjugate in H

to the group ( 8 ) .

In the case G ~ Ge, we have these conclusions for Ge. Then there is an h E G,

h ~ Ge. For all such h s , we construct the set 
.

(20) hGe(xo) (h E G e ) .

These sets are pairwise disjoint; completed by 6J, each is a Jordan curve on S 2..

’Supposing that there is a sequence hn such that lim = xo, the

equi-continuity of G would imply that the union of the sets ( ZO ) is everywhere dense

in the plane. As ( I ) is a homeomorphism (by the hypothesis ( 10 )~, this set is locally

compact, thus identical to the plane.. This is, however, in contradiction with ( 1 0) .

This shows the impossibility of our hypothesis, hence we have

(21) there is an such that 

separate - G ( xo ) from all sets ( 20 ) ..



27

This implies then

(22) 1 h G ~  X ~ &#x3E; h ~h~G(x~) : p = 0, i2 ,... ;.

Let us map now the closed I by k 1 onto the h 1 G(xoJ
in such a way that 7~ = 0 be mapped onto and that k 1 G ~ k ~ 1 be the restriction
of the group ( 8 ). Using maps /f ~, = ( ~, ~ + ~ ), ~ integer, this map can be
extended to the whole plane, and this proves the last conclusion of Theorem 22, whose

proof is complete.

4. In the previous sections we proved under various conditions that the group G

is locally Euclidean, i.e, has a neighborhood of e which is homeomorphic to a Eucli-

dean space. The theorem below describes the structure of two-dimensional, locally

Euclidean, simply connected groups. The theorem is due to Brouwer, and was the first

result toward the complete solution by Montgomery, Zippin and Gleason of Hilbert’s Vth

Problem. 
’

THEOREM 2 3. Let G be a separable, metric group, which is connected, simply con.

nected, and contains an open set homeomorphic to R ~ , i, e, the two-dimensional vector

space over the field R 1 of reals. If G is abel ian, it is isomorphic, as a topological

group, to the additive group of R 2 . I f it is non abelian, it is isomorphic to the group

( 23 ) T ( x ) = ax + b ( a, b reals; a &#x3E; 0 : x variable).

In both cases G carries a left invariant Riemannian metric of constant curvature  0,
hence an underlying conformal structure.

In ( 23 ) it is understood that the group operation is ( c, d ) ( a, b ) _ ( ca, cb + d ),

and the variable is used to express the group conveniently. This group acts on the

upper half-plane C + = {~ = x + iy, y &#x3E; 0 I as follows : T ( z ) = az + b . In particular,
T maps i into ai + b. It is thus clear that (23 ) is simply transitive on C+, whose

structure can be pulled back onto G.

THEOREM 24. Let us suppose that for a rigid group G C H+, we have

f 24 ~ dimG=2.

Then G is locally Euclidean. G~ does not contain rotations, is simply transitive on R,

and it is conjugate in H to a sub-group of GE or to a sub-group of G B. The plane R
carries a Riemannian metric of constant curvature ~ 0 I preserved by all transformations

g E G.

PROOF. Let us suppose dim G ( x~ ~  I . By a known result in dimension theory (see
[8 ] , p. 102) dim for some a E R. By Theorem 21, G~ is conjugate to the full

rotation group. dim dim G implies that there is a g E G such that b 
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Gr hence isomorphic to the full rotation group. We have proved : for every
x 6 G ( a ) , Gx is conjugate to the full rotation group. We will prove that these conditions

imply :

f23; dim G &#x3E; 3

contrary to our hypotheses.
For every ( y ), we have g ~1 G p=G , where g and 

Now ’ if w is in the component of R-.G z (y ) containing j?, ’ then intersects

G( y ), hence G is the full rotation group. This proves in particular : FG (see ~2))
contains an open set such that, ’ if v is in this set, Gv is the full group of rotations.

By this property, F G is an open sub-space of R, as it is homogeneous. At the

same time, it is a closed sub-set by Theorem 10, Section III.3. Thus F ( G ) = R. Hence

the Theorem of Hilbert, Section 1.6 applies, implying (25 ) in particular, which is in

contradiction with ( 24 ) .

We have thus the following result : under the conditions of Theorem 24

(26) 

( 27 ) G ~ is finite for every a E R .

The result ( 26 ) implies, by a theorem on dimension theory (see [8], p. 135)

that G ( x ) contains an open sub-set of R ; by homogeneity it is thus R (see previous
paragraph~. Hence ( 26 ) can be replaced by

(28) 

Furthermore, ( 27 ) can be improved as follows :

(29) (gb = a) .

for an appropriate g E G, hence all groups (r are cyclic of the same order.
Let us consider now the sub-group G  . ~e will show that there is a neighborhood

V of e in G~ such that F ) V is a homeomorphism of V onto an open set of R (see

f ~ will prove then that G is locally Euclidean..

Let a, b f~ 4= a ), be two fixed points in R .. Let us suppose that for every

integer n, there is a topological rotation rn such that

03C3(a,rn a)  1 n, and 

We will arrive at a contradiction. By ( 29 ) the order of every rn divides the same integer
m . Hence, for n large enough we can construct two disjoint Jordan domains, each inva-

riant under rn, Each of these domains should contain a fixed point of rn which is in

contradiction with the fact that r~ is a topological rotation 4= e . We have thus the
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following result : there is an e &#x3E; 0 such that, if g ~G ’ s erf a, ~~~ ~ and

Eo, then g is a topological translation.

Set V =~g e~/3 ,o-f ~, ~;  e~/3;. If 

with g 2 in V , then satisfies the previous conditions, and has a fixed point

x~ . Thus g 2 
= 

g 1. We see thus; F ~ ] V is one-to-one. By ( 2 ) t F 1 V is then a homeo-

morphism. Now F ( V ) contains inner points, hence G ~ is locally Euclidean. Thus

Theorem 23 applies, and the conclusion of Theorem 24 follows easily.

5. The last partial result needed before the complete proof of our Main Theorem
’ 

is the following.

THEOREM 2 5. Let G be a rigid group in H +, such that

( 29 ) dim G &#x3E; 3 .

Then G is conjugate in H to GE or hence R carries a Riemannian metric of
constant curvature  0, in which G is a group of isometries.

PROOF. For every map F in ( I ) , dim F G _ 2, thus dim I for some y. As in a

previous proof this implies the hypotheses of Hilbert’s theorem (Section 1.6), thus the

statement of the theorem.

6. PROOF OF THE MAIN THEOREM. We consider a G satisfying the conditions

of the Main Theorem. By Section 111.4, we may suppose that G is rigid. We have the

following possibilities :

(30) dim G = 0

(31) dim G = 1

( 32 ) dim G = 2

(33) 

In case of ( 3 0 ), G has the properties stated in the Main Theorem in virtue of Section IV.4.

If ( 32 ) holds true, Theorem 24 states the conclusions; in case ( 33 ), Theorem

25 is valid. The only case not covered completely by previous results is when ( 31 ) holds

true.

Let then G be a one-dimensional rigid group. If Gx = G for some x E R, we

have Theorem 21. If we have two points x, y (y I x) such that both G 
x 

and Gy are
infinite, the proof of Theorem 24 shows that G has the properties stated in the Main

Theorem. Thus we may suppose presently

( 34 ) G~ is finite, for every x E R .

By the proof of Theorem 24, G~ has a neighborhood V of the neutral element e
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such that every g ~V i s a topological translation. Theorem 22 applies to G ~ and

shows that G e = R 1, and its transformations are given by ( 8 ) in appropriate coordinates

~, 7~ to be used from now on.

As G e is a normal sub-group of G, we have hg xo = hg h -1hxo = g’ thus

.

for any h E G. Now L = is the straight line 77 = const. in the plane. Thus,
if hL 4 L, h is a topological translation. Let us suppose now that we have a sequence

hn of topological translations such that 
’

(35) h n L =1= L
( 36 ) lim = x 0 ..

By Theorem 10, ’Section III.3 this implies, for an appropriate partial sequence,

( 37 ) lim hn = e. /

and this is a contradiction to ( 35 ) , because ( 37 ) means that, for n large, hn E G e..
Let L 

1 
be h 1 L such that there are no h L’s in the strip L, h 1 L . The sequence

of lines

(38) ..., °

contains all sets of the form h L . .. Hence G is generated by Ge, h l’ and all transfor- 
’

mations k for which

(39) kL=L. 
_

Clearly, the transformations k satisfying ( 39 ), if any, -e topological rotations of

angle 7T.

With these data, it is easy to introduce new coordinates and a Euclidean metric

such that G be a groupof isometriesin the metric of question. This completes the proof
of the Main Theorem.

VI. The Main Theorem for Groups Acting on Surfaces.

1. The Main Theorem can be formulated for surfaces (see Section IV.2, in parti-
cular Theorem 16, for the concept of surface). Let us give just one formulation of it.

THEOREM 26. Let M be an orientable surface, and G a group of orientation preserving

homeomorphisms of M onto M, I which is equi-continuous in a metric o- extending to the

one point compactification of M, in case M is not compact. Then M carries a conformal
structure for which every g é G is a conformal map.

In case M = S2, theorems by Brouwer and Kerékjártó give this result. We

suppose, in what follows that M is not homeomorphic to S 2 . Using the universal cove-
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ring surface R of M, and « liftings the maps g: M ~ M into maps g : R -+ R, it is easy
to see that the conditions of the Main Theorem are satisfied and that the conclusion

follows. This program is carried out in the next Section.

2. We will use [ 3 ] for references on covering spaces. Standard hypotheses are
the following :

( I ) X is a connected, locally connected Hausdorff space

(2) X is locally simply connected

( 3 ) p : X ~ X is a covering map.

LEMMA 5. Let us su ppose that X satis f ies ( 1 ), ( 2 ) , and ( 3 ) is the universal covering.
continuous map f : X ~ X, there are f : X -+ X such that

X ~X

p t . t ~
X 201420142014201420142014~ X

I
w A A w

be a commutative diagram. I f /, f2 are two such maps, y f 2 = f 1 holds true for suitable
A ’"

covering trans f ormation y : X -+ X.
« * ...

PROOF. Set P(ac, yjt = f~~,~y), then P : X X X -+ X X X is the map of a universal

covering space. We consider the sub-space

F = ~ X }
~

of X X X (graph of the map f ) ; x ~ fjy, is a homeomorphism of X onto F. Let F
be a connected component of P We claim that F 0 is the gr’aph of a map f : X -+ X
and has the properties formulated in the Lemma.

« «

Let us show that for every  ~ X there is an unique pair ( x, y) ~jF ; here we
will use the monodromy principle. Let us introduce then the map

f 6; ~-~ ~ { I
w ...

of X into the family of discrete sub-sets of X. Given y belonging to the set on the

right-hand side of ( 6 ) there is an evenly covered connected, open neighborhood W of p 
’ «

such that ~ ~ 1 Wa is a homeomorphism onto W, if W is the component of ~-1W contai-
ning ’9. Let V be a connected, evenly covered open neighborhood of p , such that

fV ~ W, and V the component of p-1 V containing x. Then, clearly, the right-hand
..

side of ( 6) is the set of values of a family of continuous functions defined on V when
..

o E Vo; the ranges of these functions are disjoint. Thus the conditions of the mono-
w

dromy principle are satisfied, and the principle shows that F is the graph of a function
to be denoted by



32

A ...

Given f and f2 as in the Lemma 5, let us consider a point acQ and an auto-
morphism y such that

A A

.

Now 1 x y acting on X X X maps a connected component of into another compo-

nent, and this proves the last statement of the Lemma.

THEOREME 27. Let M 

the universal covering, y : : R ~ R I the group o f covering trans f ormations .
A

L et a- metric on M, and G an equi-continuous grou p actzng on M. I f G denotes
the set of all maps g obtained by lifting in virtue of Lemma 5 all maps in G in all

... A A

possible ways, then G is, in a suitable metric 0- of X an equi-continuous group acting
w

on X, and containing 77 .

PROOF. Let us lift the function M X M -+ R1 into a function cr R X R ~ R1. It
A A

is easy to see that there is a metric cr which coincides with a’o for nearbv points (i.e.
defining the same uniform structure). In this metric, the equi-continuity modulus of G is

the same as the modulus of G; in particular, 77 is a group of isor tries of o-. A The
other statements of the Theorem are immediate.

3. PR 00 F 0 F THEOREM 2 6 . We use the notations of the Theorem; we suppose
that M is not S 2 , hence the universal covering is the plane R . We apply Theorem 27,
and we get a group G acting on R ; as G is equi-continuous in the metric ,it will be

, 

equi-continuous in the spherical metric o’ of R (see Section 111.1). By Theorem 3, R
carries a complex structure such that every g EGis an analytical map. As 77C G the

covering transformations y E 7T are complex analytical. Thus the quotient space R/77
carries an analytical structure preserved by all maps g E G. This completes the proof
of Theorem 26.
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