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HOMOMORPHISMS OF HOMOTOPY STRUCTURES

I. BERSTEIN and P. J. HILTON

TOPOLOGIE ET GEOMETRIE DIFFERENTIELLE

S~minaire dirigé par C. EHRESMANN

AVRIL 1963 *

1. Introduction.

It is part of the classical material of homotopy theory that if a space X admits
a continuous multiplication (that is if X is furnished with an H - space structure) then

that multiplication is transferred to the terms of the Postnikov decomposition of X {see

e.g., [ 9,13] ) . We may express this fact precisely as follows. Let  be the n term

of the Postnikov decomposition of X and let ~n : X -~ X (n) be the fibre projection. Then
if X is furnished with an H - structure map 03A6 : X X X ~ X, we can define an H - structure

map $ : X X( ) -+ such that Pis an H-map (03A6n(pn  pn) ~pn03A6); moreover

$ i s then uniquely determined up to homotopy.
The dual problem has recently been considered by Curj el [5] : given a comulti-

plication ( H’ - structure) on the simply-connected space X, then it is possible to define

a comultiplication on each homology section of X in such a way that the inclusion map

x .’X ~ X is an H’ - map.
The present paper consists in a very broad sense of a generalized treatmentof

of this type of problem. There are many other structures that have appeared in homotopy

theory in recent years and Peterson has proposed in [ 15] a systematic treatment of such

structures. Moreover various notions not evidently falling within the scope of such a

unified theory in fact turn out to be susceptible of treatment (for example, the Borsuk-

Svarc notion of genus [ 16], and the associativity problem for H or H’ - structures, which

may be translated into a uniqueness problem for related structures). Thus the first step
in the generalization is to define the notion of a structure system and of a structure on an

object X of a given category C relative to the given structure system. These systems
divide themselves naturally into two mutually dual classes, which we call left and right

The first-named author was partially supported by an N. S.F, grant during the preparation of this
paper.
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2 I. BERSTEIN et P.J. HILTON

structure systems, whose associated structures generalize H - structures and H’-structures

respectively. Similary we introduce a general notion of structure-preserving maps, or

homomorphisms of structured objects, generalizing the notion of H - maps and H’ - maps.
The generality of our approach here enables us to consider maps which are homomorphims
with respect to a given transformation of structure system; thus we may study questions,
of fairly frequent occurrence in homotopy theory, when one wishes to know whether an

object X admitting a given structure in fact admits an even sharper structure. For exam-

ple, the Sugawara theorem giving sufficient conditions for a space with commutative loop-

space to be an H - space may be formulated (and proved ! ) within the framework of the

general theory here elaborated.

Now be two (right) structure systems over a given category C and
be a transformation of systems. We thus have a notion of an ?-homo-

morphism f of structured objects X and Y in C (Definition 2.7r). Suppose indeed that

f ; X -~ Y is a map in C. Then we may ask the question : if Y structured may we

3{ 1- structure X so that f is an J - homomorphism, and if so, is the R 1- structure on X

unique ? Similary we could suppose X ~ 1- structured and raise the similar question about
Y . Thus, if we also study left structure systems we get in all four types of questions;
and all problems of transfer of structure hitherto considered in the literature may be

subsumed under one or other of these four heads.

Fortunately it turns out that this generalization not only provides a common formu-

lation of apparently little related problems; it also suggests a general procedure for their

solution. All four types of question prove to be susceptible of study by the standard

techniques of obstruction theory. The obstruction arguments may appear in the context of

extension, cross-section or compression problems. However, this does not affect the

essential unity of the treatment 1, and we are led to a study of cohomology groups (of

certain maps depending on the structure systems involved) with coefficients in homotopy

groups (of certain maps depending on the structure systems involved). Insofar as this

paper is concerned we are content to describe conditions under which the groups, and

therefore the obstructions, vanish. This turns out to be adequate to deal with questions
of the sort referred to in the first two paragraphs, and to provide substantial generali-
zations of them; but we hope to take up in a later paper the problem of computing at least

the first obstruction in concrete cases.

Each of the four types of problem involves an existence and a uniqueness question.
The technique we adopt of replacing the problem by a standard obstruction problem leads

us to a fairly comprehensive answer to the existence question; but it is considerebly less

satisfactory for tackling the uniqueness question. For the technique requires us to replace
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a structure by what we call a strong structure. Every structure may be associated with a

strong structure but the correspondence fails in general to be one-one. Thus while a solu-

tion of the existence problem for compatible strong structures implies a solution of the

problem for structures, a solution of the uniqueness problem (which we provide) does not

in general imply a solution of the uniqueness problem for arbitrary structures.Fortunately,
we are able to pick out a subclass of the class of structures which is large enough to

include H - structures and H’ - structures and for which the correspondence referred to

above is in fact one-one.

The plan of the paper is as follows. In section 2 we give the basic definitions

and discuss several examples in some detail. We concentrate attention on right structure

systems partly for the sake of definiteness and partly because the new results which we

obtain in very explicit applications do refer to right systems. We lay particular stress on

the notion of the fibre of a structure system ~ ; our results stem from a careful study of
the homotopy structure of this fibre (which is a covariant functor N from the category

C to the category J of reasonable (based) spaces, together with a natural transformation

of N into a functor T appearing in the description of the structure system ~ ) . We are

particularly interested in the structure system § , the n - genus structure system. Here
the category C is the category ~2 of ’pairs’ drawn from the category ~; this is the cate-

gory ~ (5) of [ 7 ] . By specialization we obtain from ~n the structure system ~n over~,
the n - cat structure system over J, and K2n over J2 , the n - cat structure system over J2 .

In section 3 we set out the general theory and formulate the solutions to the four

types of problem in terms of the vanishing of cohomology groups containing potential
obstruction elements. In section 4 we concentrate attention on the systems § (and the
related systems K ,K ). We compute the connectivity of N (1» in terms of the connec-

tivities of cI&#x3E;, f 1, /2 for a given map C : : f 1-~ f ~ in where N is the fibre of ~~
(Theorem 4.3) and are thus able to generalize Curjel’s result and to produce other con-

crete results in this direction. For example we prove that if is the m-skeleton of X

the n-cat X~m~  cat X provided X is not contractible2 .

In section 5 we take up the uniqueness question under the hypothesis which

allows our technique to be applicable. We show in particular how our general theorems

permit an attack on the problem of the commutativity and associativity of transferred H and

H’- structures. As a particular result we show that if X is 1- connected3 then 

admits a unique (up to homotopy) H’ - structure compatible with a given H’ - structure on X

and that this structure is commutative (associative) provided the structure on X is com-

mutative (associative).

For clarity we explain here than an H - structure (H’ - structure) on X is a conti-



4 1. BERSTEIN et P.J. HILTON

nuous multiplication (comultiplication) on X with two-sided homotopy unit. Also we have,
as elsewhere, renormalized cat, reducing its value by one unit compared with the clas-

sical convention adopted, for example, in [8] , so that here cat X = 0 means that X is

contractible.

2. Definition and examples.

Let e be an arbitrary category and let J be the category of based topological

spaces (of the based homotopy type of countable CW - complexe) and based maps.

DEFINITION 2.1 r. A right structure system  over e. is a triple of covariant functors

R, P, T : e - 1 together with a pair of natural transformations d : R -~ P, j : T -~ P. An

object X is said to structured if i~t is f urnished with a R X -~ T X such

that

Tbe map 03A6 is called an ?- structure map for X and its homotopy } an 3B-

structure f or X.

Let R = ( R , P, T ; d, j ) be a right structure system. Then j determines in the

standard way a functor T’ ; ~ -~ ~ and natural transformations
~ ~ . -. 7~ _

such that j’r = j, sr = I , 1, and j’ is a natural fibration. Let fR* = ( R, P,T’; d, j’ ).

Then if $ is an ~- structure map for X, r(X) is an structure map for X andwe

set up in this way a ( 1-1) correspondence between ~- structures on X and’ - structures

on X. Thus there is no real loss of generality, in developing the general theory, in

supposing that j is a natural fibration 4.

If j : .’ T - P is a natural fibration let N be the fibre of j . We call the functor N,

together with the natural inclusion x : N - T the fibre of fR; by abuse we may refer to N
itself as the fibre of !R; and if j is not a natural fibration then we define the fibre of R

to be the fibre of the associated system 

Now let j be a natural fibration. Then, pulling j back by means of the transfor-

mation d J we obtain the commutative diagram

where p is a natural fibration. We call the structure system R = ( R, R, M; 1, p) the strong
system associated with 9l. An I- structure (map) for X will be called a strong jB-

structure (map).
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PROPOSITION 2.3 r. The function {03C3} ~ {t(X) o Cr) is a surjection of the strong 

structures for X onto the structures for X.

PROOF. A strong !R- structure map for X is a map R X -~ M X such that p (X) o I .

Then j (X ) o t (X ) o d (X ) o p(X) o d(X) , so that t (X ) o 03C3 is an R- structure m ap.
Now let $ : R X -~ T X be an ~- structure map. Since j (X) is a fibration we may

assume that in fact j (X) o 03A6 = d(X) . Then the map RX ~ MX, given by ff(x) =(x, 03A6 x )

is a strong ~- structure map such that t (X) 0 cr = 4Y .

Notice that a strong ~- structure for X is just the homotopy class of a cross-

section for p(X). We call the structure for X associated with the strongR-
structure { cr} .

DEFINITION.2.4 r. Let be two right structure systems for e. A map ~ : :R 1 -+ ~ 2 is
a triple o f natural transformations p : R 1 -+ R 2 ’. 7T : P 1-~ P 2 , T : T 1-~ T ~ such that

d 2 p = T= 7Tj 1 .

REMARKS 2.5 r. (i) If p= 1 and tP is an fR - structure map for X, then is an

:R 2 - structure map for X. We write {rfX) o03A6} = J*{03A6} and call this structure the J-

image of {03A6’}.

( ii ) Let /~ : M 1 -+ M 2 be obtained by restricting p x T to M 1. Then y =

( p , p , is a ~ 2 . If is a strong ~ 1- structure and p = I , then

( iii ) We t) : R ~ 5{ as the canonical map from R to R.

Then JS = $5i for any J : R1 ~ R2. The S- image of a strong R-structure t 03C3} for X

is just the ~- structure associated with (Compare (2.6r)) .

(iv) A induces a natural transformation of fibres v : N1-~
N2. °

DEFINITION 2,7 r. Let X. be Ri-structured by .’ z = 1,2, and let

? .’ ~1 4 2 be a map. A map f : X 14 called an -homomorphism if the

diagram

is homotopy-commutative.

REMARKS 2.8 r. (i) The most important cases of this notion seem to be (a) when ~ = 1 !

and (b) when f = 1 .
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(ii) The horizontal maps of the diagram may just as well be written

respectively.
Let X. be strongly structured by 03C3i : R . ( Xi) ~ M .( X .) and 

be a map. Then we omit the proof of th e following proposition.

PROPOSITION 2.9 r. If / .’ Xl -+ X 2 is an J-homomorphism with respect to the strong
structures I it is homomorphism with respect to the associated struc-

tures.

Given any category C, let ~~ designate the category o f pairs derived from ~;
thus, an object of C is a map f of e and a map in e 2 from f to f’ is a pair of maps

(u, v ) in C such that f’u = vf. We describe now a procedure for inducing a right struc-

ture system ~ 2 over ~ 2 from a right structure system ~ over ~ . Precisely, given ~ _
(R, P, T’; d, j) we define ~ 2 = (R 2 , P 2, T 2; d ~, j 2 ) as follows. For any map f : .- X - Y in

we set R 2 ( f ) = R (X), R 2 (u, v) = R (u), P a ( f) = P (Y), P 2 (u, v) = P(v), T ~ ( f) = T (Y),
T 2(u,v) = T(v), d2 (f) = P(f) o d(X) == d(Y) o (f) = j(Y). We call the struc-

ture system over C2 induced by R. It is plain how a map J : R1 ~ R2 induces a map
~ 2’ : :R î -+ ~ 2 ; it is also clear that if N 2 is the fibre then

On the other hand fR~ 4= ~2 ; we. will, where no ambiguity is to be feared, say that f is

fR- structured if it structured.

PROPOSITION 2. 11 r . f f either X or Y is R-structured then / .’ X ~ Y may 
tured.

PROOF. If X is structured by c~ : TX we may structure f by Tf o 4Y . If Y is

structured by t~ : R Y - T’Y we may structure f by ~o R f .
It is plain how a covariant functor F : ~ -~ ~ induces a transformation F* of right

structure systems over C into right structure systems over D. In particular let F1 : C ~ C2
be the functor F~X = For this functor F we have evidently

It is also plain that a functor D :fi- 5 induces a transformation D of right

structure systems (over a given category C). ..
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We now turn briefly to left structure systems. We will be content to give the defi-

nition and leave to the reader the propositions and auxiliary definitions corresponding to

(2.2 r) - (2.12r) .

DEFINITION 2.1 1 . A left structure system ~ over e is a triple of covariant functors

L, W, S : .’ e ~ y together with a pair of natural transformations d : W -~ L , j . W -~ S. An

object X E d is said to be  - structured if it is furnished with a SX -~ LX such

that

The map 03A6 is called an structure map for X and its homotopy class {03A6} an 

ture for X.

We now give a number of examples of the concepts thus far introduced.

EXAMPLE 2.13. Let f : Y - X be a map in 3", and let Cf be the (based) mapping cylin-
, 

der of f . Then there are maps

where i is an inclusion cofibration and k is a homotopy equivalence with inverse B. We

may use i and B. to embed Y and X in C~. Set R(f) = X, P(f) = xn, d( f) = diagonal

map; let T(f) be the subspace of C~ consisting of n - triples (z 1, ... , z~ ) where at

least one Z E Y, and let j (f) : .- T ( f) -~ X n be the restriction of kn to T ( f) . The right
structure system ~n = (R, P, T; f, j ) over 52 is called the n - genus structure system.

A ~n- structure for f is then an n - genus structure for f and we say that genus f  n if f
admits an n - genus structure..

The notion of genus (originally due to Borsuk who applied it only to covering

maps ~ ) was defined for arbitrary fibre maps by A.S. Svarc [ 16] and later, but indepen-
dently, for principal fibre bundles by M. Ginsberg [ 11] . It is not hard to show that our

definition coincides with theirs if f is a fibre map 6 , except that we lower the value of
the genus by I,so that, with our convention~genus f = 0 if and only if f is a domination.

Let F : 5 -+ 52 be the functor which associates with X the map *~ X. Vie set

Kn == F* ({ê&#x3E; ) and call K the n - cat structure system over 5 and write cat X  n if X

admits an n - cat structure. This notion coincides (except for the shift of 1) with that of

Lusternik-Schnirelmann category.

We may now introduce the structure system over ? which we call the n-cat

structure system over j"2 and write cat f  n if f admits an n-cat structure. Notice that

"

To justify the notation genus f  n we should show that if f admits an n-genus
structure it admits an (n + 1 ) - genus structure. This is best done by exhibiting a map
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j= = (p~ ,"7"): with p == ~ . In fact, for / .- Y -~ X. we set

We study the fibre of the structure system §~. o Let K be the fibre of k and F the fibre
of f . Thus we have a fibration

z.

since k Y = f. If k is replaced by the equivalent fibre map k : X and f by the

equivalent fibre map f : Y - X then Y c C and k ) Y = f . Thus ( K , F ) is strictly the

fibre of k :((;1’ Y ) -~ (X ’ X). ° Now ( Cn, T’( f ) ) is just the nth Cartesian power of the

pair 7 ( C , Y ) ,

It is easy to verify, using superscript bars as above for equivalent fibre spaces and

equivalent fibre maps, that K" = and f ("’?)" = Y )n . Thus = j ( f )
and we may raise (2. 14) to the M power to obtain the fibration

It follows that N ( f ) is given by

Notice that K is contractible since k ; C~-~ X is a homotopy equivalence.
EXAMPLE 2.17 . Let R be an arbitrary right structure system over C. Then, as descri-

bed by P eterson in [15] we may obtain from ~ the so-called associated weak structure

system Rw; this is a natural generalization of the definition of weak cat in [4] . Preci-
sely, let fl = ( R, P, T; d, j ) . Let q ; P - Q be the cofibre of j and let. jw : T w-+ P be
the fibre of q. Then = (R, P, T ; w d, j w. ). Moreover there is evidently a natural trans-
formation T: T - T such that jw ~*= 7. Thus (1,1, T) is a so that if X

may be ~- structured it may be weakly g{- structured. The converse is, in general false

(see [4]) but has been proved to hold under certain connectivity conditions if 

(see [ 3] ) . Notice that

The suspension function £ : 3 - 5" transforms every right homotopy system ~ into
a right homotopy system It has been proved (see [ 3, 10]) that the conilpotency of

X is less than n, conil X  n, if and only if X admits a 2. K - structure. It is not
difficult to describe conilpotency in terms of structures so that this result expresses, in

some sense, the equivalence of two structures.

EXAMPLE 2.19. We give here an example of a left structure system. Let C let

L (X) = X , W(X)=XvX, S (X) = X X X; is the folding map and
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j(X) : X V X ~ X X X is the inclusion. Then K = (L, W, S ; d, j) is a left structure system

and an K- structure map for X is just an H - space multiplication on X.The cofibre of K,
U, is given by U (X) = X #X. If X. I is furnished with the H- structure {03A6i}, i = 1, 2,

then a homomorphism f : X 1 ~ X 2 (with ? = 1 " J{ ~ K) is just an H - map. Now the fibre

of j is the «flat» product X b X, embedded by i : X 4hX - X V X and X admits a weak

K- structure if and only if 0 : X -~ X . It is proved in [ 10] that X admits a weak

K- structure if and only if nil X ~ 1, i.e., if and only if HX is homotopy-commutative.It
is not difficult to describe nilpotency in terms of (left) structures, so this result may

also be viewed as expressing the equivalence of two structures 8 .

3. The genera theory.
be two (right) structure systems over 2 and be a

map. Let f : X 1 ~ X 2 in C. Then the two questions we here consider are

(i) given structure ~ ~ 2 ~ I on X 2 , can we furnish X 1 with structure

{ ~ 11 such that f is homomorphism ; and

(ii) given an R1 - structure { tP 1} { on Xl’ can we furnish X 2 with an R2 -structure
{ tP2 J such that f is an ?-homomorphism ?

We are also interested in the possible uniqueness of {cI&#x3E; 1 J and I but we lay

less stress on that aspect in this section.

We first state and prove a basic lemma.

LEMMA 3.1 r. Let

be a commutative diagram in which the horizontal rows are fibre sequences and let

t : B 1 ~ E 2 such that ~ 2 t = b. ° T’hen

(i) if f is 0-connected the obstructions to constructing a cross-section s 1: B 1 ~ E 1
with es 

1 
^~ t belong to the groups ~ 1 : ~k(f)), k = 1, 2,... ,.

(ii) if F 2 is 0-connected the obstructions to constructing a cross-section s 2 : B 2
E 

2 belong to the Hk + 2 )), k = 1, 2,.... °

PROOF. ° (i) Let F 2 fl Z ~ B 1 be the fibration over B 1 induced by b from the fibration

F2i~p 2 2 en t etermines a cross-section u: B 1 ~ Z. Now consider the

diagram 
,... 

j 1 1 r-.
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The problem then is to pull u back into E 1; that is, to construct s : B 1-~ E ~ with
ms ̂ ~ u. For then, if n : Z -~ E 2 is the map induced by .e, so that nm = e, nu = t, we

have es = nms ~ nu = t and p1s = qms ~ qu = I , so that s is homotopic to a cross-

section s 1 of p i such that t. Now the problem of pulling back, or compressing,
u into E 1 is a standard obstruction problem 10 and the obstructions all lie in the groups

o so that( see[ 7]) fz ~,/3)~ : 
and (i) is proved. To prove (ii) we consider the simple diagram

The problem now is that of extending a cross-section over B 1 to B~ , for ~ 2 t = b.
This is a standard obstruction problem 11 and the obstructions all lie in the groups

Hk + t(b ~ ~k(F ~ )).
REMARK 3. 2 r. It is convenient to have «relative» forms of the two parts of this lemma in

which we suppose that s 1 (s 2 ) is already given on some subcomplex A i(A 2) of B 1(B 2 ) .
In case (i), the case we shall be applying in the next section, the obstruction groups are

simply relativized as Hk (B 1, A ~; ~k ( f )) . In case (ii) we have to replace b by the «union»
of b and the inclusion map A 2 -~ B 2 ; we will not make an explicit statement.

REMARK 3. 3 r . We observe that precisely the same type of reasoning shows that if s 1,

s’1 are two cross-sections of p1 such that then the obstructions to a homo-

topy between s 1 and s’1 lie A similar statement holds for case (ii).

Now let J=(03C1,03C0,) : R1 ~ R2 be a map from the (right) structure system R1 to
the structure system Then (2. 5r(iv)) ? induces a natural transformation V : N 1-+ N 2
of fibres, and a map ? =(~,/3,~) : fR.-~R of the associated strong structure systems.
Let f : X - X 2 be a map in d ; consider the commutative diagram

Recall that a strong structure for X. is a homotopy class { cr.} : 
containing a cross-section to p . , i = 1, 2; and that if X. is strongly Ri-

structured by then f : X 2 is an y-homomorphism if

We thus infer from Lemma 3.1r(i), ’ taking o po ° 
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THEOREM 3. 5 r. Let V o N 1 ( f ) be 0 - conn ect ed, and let X 2 be strongly ~ 2 - structured,
Then the obstructions_ to a strong ~ 1- structure for X i such that f is an  - homomor-

phism lie in I( f ))). °

COROLLARY 3.6r. Suppose in addition that V o N 1( f ) is and that

dim R1(X1)~Q-1. Then if X2 is strongly R2-structured by cr we may give 
strong R1-structure cr, such that f is an J-homomorphism. Moreover if dim R 1 (X 1) ::. Q- 2
then uniquely determined.

The last statement here follows from Remark 3.3 r. From Corollary 3.6 r and

Propositions 2.3 r, 2.9 r we infer

TH EOREM 3. 7 r. Suppose that v o N 1 (f) is ( Q - 1 ) - connected, Q &#x3E; 1 and that

dim R 1 (X 1) 2. Then if X 2 is R2 - structured we may give X 1 an R 1-

structure 1 such that f is homomorphism.

REMARK 3.8 r. We may invoke Remark 3. 2r in the following way. Let Xo~ X1 and

suppose Xo already R1-structured in such a way that is an J- homomorphism.
Then if is (Q-I) connected and  we may

extend the strong 5{ 1- structure to the whole of X 1 in such a way that f is an ~-homo-

morphism. There is a corresponding uniqueness statement if 

REMARK 3.9 r. In 3.6 r - 3.8r we may replace the dimension condition by an appropriate

cohomology dimension condition.

EXAMPLE 3.10 r. Take f = I : X -~ X’ ~1 - ~n’ ~2 Then if PX = Xn, TXCXn
is the «fat wedge » 

12 
and Q X = P X / TX, we may identify N (Kn) with the space

E (P ; T, * ) of paths on P originating in T and NfK ;== f~(). Moreover v : N ( ~n ) ~
N (K nw ) is the map induced by pinching T..We may nw ))
with the «excision» homomorphism 7Tk + 1 (P, T ) -~ 77, ~ ~6~. It then follows from the

Blakers-Massey theorem that if X is (q-1 )- connected then v is ((n + I ) q --2 )-connec-

ted. Thus we infer the Berstein-Ganea theorem [3] that if X is (q- I ) - connected and

dim X  (n + I ) q- 2 then w cat X  n T cat X  n.

Taking t = ~. o M 1 (f) o in (3.4 r) and invoking Lemma 3.1 r (ii) we infer

THEOREM 3 .11 r . Let N2(X2) be 0 - connected and let X I be strongly R1-structured,
Then the obstructions to a strong ~ 2 - structure for X 2 such that f is an  - homomor-

phism lie in the groups 1( po R1(f); 03C0k(N2 (X 2 )).

COROLLARY 3. 12 r . Suppose in addition that N 2 (X 2 ) is (Q - I ) - connected and cohom.

dim po R 1( f )  ~ , ° Then i f X 1 is 1 - structured by 0-1 we 2a strong
structure such that f is an  - homomorphism. Moreover i f
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cohom. dim po R .f/~ i. Q 2014 ~ then uniquely determined.

Of course cohom. dim g relates to the vanishing of certain cohomology groups
of g. We now apply Propositions 2. 3r, 2.9r to infer

T H EOREM 3. 13 r. Suppose that N 2 (X ) is Q &#x3E; 1, and that cohom.

dim po R 1(f) ~ Q. Then if X 1 is R1-structured by 03A61 we may give X2 an R2 -struc-
ture 03A62 such that f is an J - homomorphism.

We conclude this sections by stating without proof the counterparts of Theorems

3.5 r, 3.11 r for left structure systems.

Let Li = (jL -,W., i = 1, 2 be two left structure systems over 2 and let

(03BB,03C9,~):L 1 ~ L 2 
be a map. Let (7. 1 be the cofibre of fi 1 so that ? induces

~ : L/~ -~ (7 Let f : X 1 -+ X 2 be a map in C. °

THEOREM 3.5 1. Let ( f ) o À be 0 - connected, and let X 2 be strongly ~ 2 -structured.
Then the obstructions to a strong ~ 1- structure for X i such that f is an ~- homomor-

lie in the 
2 ( f ) o ~.)). °

THEOREM 3.11 1. Let L 1 (X 1) be 0 - connected, and let X 1 be strongly ~ 1- structured.
Then the obstructions to a strong ~ 2 - structure for X 2 such that f is an  - homomor-

lie in the groups ~k(L 2 (X 2 ))’ °

EXAMPLE 3.14 1. Let X E ~ and let X (m,..., n) be obtained from X by killing its

homotopy groups in dimensions  7/7 and &#x3E; n. Th.en there is a fibration

Suppose that X is an H - space. Then we may apply Theorem 3.51 to show that X(n,...,oo )

is an H - space and Theorem 3.11 1 to show that X (1,... , n- I ) is an H - space. It thus

follows that X (m, ..., n) is an H- space for aliI  "We return to this example
in section 5.

There are of course statements on the obstructions to the uniqueness of strong

î 1- (î 2 -) structures for X 1 (X 2) compatible with given strong ~ 2 - (î 1- ) structures for
X 2 (X 1)’ analogous to those for right structure systems. We leave the details to the

reader 13 . .

4. The n - genus structure.

In this section we apply the main results of section 3 to the structure system

g~. have already computed the fibre N of §~ in ( 2.15 , 16). We will take :R 1 = :R 2 =
Gn, J = I throughout this section and will refer to J-homomorphims, J-homomorphims
as bomomorphims, strong homomorphims respectively. Thus to apply Theorems 3.7r,

3.13 r we must compute for a given map f : X 1-~ X in ~, the connectivities of N ( f ),
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N (X 2 ). The computation is rendered simple by the following lemma.

LEMMA 4. l. Let y = (Y, B, A) be a triple 14 in J, A Ç. B Ç. Y. Let A be (r- I )- con-

nected, (B, A) (s-1)-connected and (Y, B) (t-1)-connected. Then y is homotopically

equivalent to a CW - triple y= (Y, B, A ) in which A-*, B-A , Y-B has no cells o f
dimension  k, where k = r, s, t respectively.

P ROOF. Let S (X ) be the singular complex of X, for any X ~ 3’. Then 

S (Y ). Choose a minimal complex M (A ) for A in S (A) . Then choose a minimal exten-

sion M (B) of M (A) in S (B) which is homotopically equivalen’t to S (B) . Finally choose

a minimal extension M(Y) of M (B) in S (Y) which is homotopically equivalent to

S(Y). Plainly the Milnor geometric realization of (M(Y), M(B), M(A)) yields the requi-
red triple Y.

PROPOSITION 4.2. (i) Let (K, F) be a (q-I )-connected pair in ~. Then (K, F)n is

(nq-1 ) - connected. (ii) L et b : F~ be a map of pairs. Suppose K t contrac-
tible, F1 ) (q- I ) - connected, i = 1, 2, and h (m-1)-connected, Then hn:

F 2)n is (m - 1 + (n-1 )q ) - connected.

PROOF. (i) By lemma 4.1 we may suppose that K- F has no cells of dimension  q.

Then if (K, F)n =(Kn,N), Kn - N has no cells of dimension  nq.
. (ii) We may replace h by an inclusion map and we may then suppose that K 1=

K 2 ( = K ) . o Thus we have a triple (K, F 2, F 1 ), where F i is (q--2 )- connected, (F 2, Fl) is
f77220142)- connected and (K, F ~ ) is (q- I) - connected. Moreover we may assume m &#x3E; ~
since if 772 ~. ~ the conclusion is a trivial consequence of (i). We now apply Lemma 4.1

so that we may assume (K, F 2, F 1) minimal in the sense that F 1-* has no cells of

dimension ~ q- 2, F 2 - F 1 has no cells of dimension  m-2 and K-F 2 has no cells
of dimension  q-1. Then K-* has no cells of dimension q-2 and all (q- 1)-cells of

K are in F 1. o Thus if (K, Fi)n -(Kn,Nt), N~ _ N 1 has no cells of dimension  m-2+

(n-J)q. It follows that hn|N1 : N1 ~ N 2 is (m-2 + (n- I)q)- connected whence the

result follows (since Kn is contractible).

We can now state ’the main theorem of this section.

THEOREM 4.3. Let .- Xt be (q-1) - connected maps in ~, i = l, Z, and let

~ ; ’’ ~1 ~ ~2 be an f77Z-~ connected ma~ in ~ 2 . Let N be the fibre o f the n - genus
structure Gn. Then N (f I ) is (nq- 2) - connected and N(03A6) is (m-2+(n-l)q)-con-
nected. Thus, i f also f 2 is Gn- structured and m-2+(n-1 )q, f 1 may be Gn-
structured in such way that 4Y is a homomorphism.

PROOF. If Fi is the fibre of /_ t then F, is (q-2) - connected. If 03A6 induces g : F1 ~ F
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then g is (m-2)- connected. Recall from (2.15, 16) that (K., F .)n = and 03A6

3 -~ K 2 ’ F 2 such F. 1= g. ° Theorem 4.3 now follows from

Proposition 4.2 and Theorem 3.7 r.

REMARK 4.4. Of course if f 2 is strongly § -structured then f i may be strongly Gn-
structured in such a way that $ is a strong homomorphism.

Taking the special case Yi = * , we obtain

COROLLARY 4.5. Let Xi be (q-1)-connected spaces, i = 1 , 2 and let f : X2 be

an f77Z- U- connected Then if X 2 is Kn-structured and dim Xl ~ (m--2) +(n-1)q,
X 

1 may be structured in way that f homomorphism.

Passing to the K - structure system and invoking Theorem 3.7 r, (2.10 r)

and the proof of Theorem 4.3 we infer

THEOREM 4. 6. Let f Z : X.  Y. be a map of X. into the (q- I) - connected space Y~,
i = 1, 2, and let 03A6 = (a, /3) : f1 ~ f 2 be a map such that f3 is (m- I; - connected. Then

i f f 2 is K~ structured and dim Xl  (m- 2) + (n- I )q, f i may be ~n - structured in such
a way that W is a homomorphism.

REMARK 4. 7. ( i) Corollary 4. 5 could, of course, in principle be deduced from Theorem

4.6. (ii) If,inCorollary 4. 5, we assume that X C X1 is already K - structured in such a
way that f ‘ X° is a homomorphism then we may extend the structure to X 1 in such a

way that f is a homomorphism provided ~~-2)+f~-~~ ( see Remark

3.8 r).

We draw some conclusions from Corollary 4.5 and Theorem 4.6.

THEOREM 4.8. Let X be a countable connected CW -complex with cat X  n, n &#x3E;_ 2.

Then for any section o f X, k &#x3E; I , cat X ~k~  n. Moreover i f X is structured

we may structure all the sections simultaneously in such a way that the inclusions

X f k + 1 ~, are homomorphism.

PROOF. Define = * and obtain a K - structure successively on each X (k). Thus

let us suppose a structure already defined on X (k), k ~ 0 , in such a way that X (k)~ X
is a homomorphism; we will extend this structure to X ~’~ + 1 ~. Now the inclusion map
X ~k + I ~ c X is (k + 1) - connected and X, X f k + t ~ are certainly 0 - connected.Thus :we

may apply Remark 4. 7 ( ii) with X~ = X 1 = X ~k + 1), m = k + 2, q = L Ve have
dim X1- X = ~-t- ~ i~+f72-~ . 2,

provided 72 ~_ 2 . This proves the theorem. Of course the case n ::: 1 is properly excluded

~ince the sections of a contractible space are not necessarily contractible.

REMARK 4. 9. Theorem 4. 8. is a special case of theorem on induced § - structures ( as
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well as of a theorem on induced K2n- structures) on the sections of a 0 - connected cellu-

lar map which the reader may readily enunciate.

Let X be a connected CW- complex. A pair consisting of a complex X~ and a

map ik : Xk -~ X is called a homology k - section of X if k &#x3E; 2, dim X k  k + 1, and

Notice that if X is I - connected then (4. 10 i) effectively just asserts that Xk is I -

connected. Moreover it is known [6, 14, 17] that such Xk always exist and that we may
take X 2 C ... C Xk C Xk + ~ C_ ..., ~ ; with h X ~ = ik if X is I-connected

THEOREM 4. 11. Let X be a countable connected CW- complex with cat X  n. Then(i)

if X is I - connected and n &#x3E; 2, cat Xk  n for any homology k - section. Moreover if X

is K - structured we may structure all the Xk o f a homology decomposition simulta-
’ 

neously so that Xk ~ Xk+1 and ik : Xk ~ X are homomorphisms. (ii) I f n &#x3E; 3 then

cat X ~  n for any homology k - section ; and X ~ may be structured so that i ~ is a homo-

morphism.

P ROO F . (i) As for Theorem 4.8, we proceed inductively and have to satisfy an inequa-

lity k + 2  k + (n- I)q with q = 2 to proceed from Xk to Xk + ~ . The non- relativized
form of Corollary 4. 5 deals with any homology k - section and thus witp assertion (ii)
since we then need fy22014 ~ ~. 2.

REMARK 4. 12. The case n = 2 of Theorem 4.11 (i) , asserting that cat Xk  2 if cat

X  2 has already been proved by Curjel [ 5 ] .
Let X be a CW - complex, let Y = X (I , ... , m ) and let p : X -~ Y be the proj ec-

tion (see Example 3.14 1). Then it was proved in [ 2] that

where catm is the m - dimensional category of Fox ~ $ ~ . Of course catm X ~ catX. We

prove

T H E O R E M 4. 14. 1 f X is a (q- I ) - connected countable CW - complex, q &#x3E; I , and i f

catm X  n, then cat X  n provided that dim X ~ m +(n- I)q. In particular, Calm X =

cat X if dim X  m + (catm X ~q.

PROOF. Consider the map (I, ~ ) : 1 - p ,
1
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and apply Theorem 4.6. Then X and Yare. (q-:l) - connected and p is (m + I) - connec-

ted. Thus, if cat p  n, cat X  n provided dim X ~. 772+~72- ~~. The second assertion

follows by taking n = catm X + 1.

REMARK 4. l5(i). Taking q = 1, m = 1 , we recover the known result ([ 1] ) that if X

is connected and cat 1 X  n, dim X  n, then cat X  n. (ii) We may similary obtain

results relating genus to m- dimensional genus.
We close this section by giving one application of Theorem 3. 13 r just by way of

example. From that theorem, and part of Theorem 4. 3 we infer

THEOREM 4. 16. Let f.: be maps in J with f 2 (q-1)- connected. Let 03A6 =

(/3, a) : / -&#x3E; f 2 with cohom. dim a.  nq- 1. Then if f 1 is ~n - structured we may give
f 2 a n - structure such that ~ is a homomorphism.

COROLLARY 4. 17. Let X be a countable connected CW- complex and let q : X -~ Y

project X onto X modulo its k - section, Y = X / X(k). Then if X is Kn-structured,
n &#x3E; 2,we may structure Y so that q is a homomorphism.

COROLLARY 4,18. Let X be a countable connected CW - complex and let q : X -~ Z

project X onto X modulo a homology k - section, Z = X / i k X k. Then if X is Kn-
structured, n ~ 2, we may structure Z so that q is a homomorphism.

REMARK 4. 19. These corollaries, except for the case of 4.18 when n = 2 and X is

. 

not I - connected, follow from Theorems 4.8 and 4. 11 respectively by means of a dif-

ferent type of argument (see Theorem 3.2 r of [ 15] ).

5. Hand H’ - structures.

The results we have obtained in section 4 for special structure systems have

made no mention of the uniqueness of the structures obtained. The reason for this is, as

mentioned in the Introduction, that our uniqueness theorems in section 3 refer to strong
structures and we have no means in general of passing from the uniqueness of strong
structure to the uniqueness of structure. Howewer there is an important special case in

which this passage may be effected and we now proceed to describe this. For simplicity
we will confine attention to single structure systems so and J I: 1 .

Peterson has pointed in [ 15] to a very good feature of the structure systems that

have so far been discussed in the literature, namely that 03A9j is a domination 15 . ,Al-

though this is really too strong an assumption for the general theory, we are content to

make it here, and will describe :R as good if it has this property. Now consider a fibre

map v : .- Y -~ B and let g: .’ A ~ B be a map. Then g induces a fibre map u : .’ X -~ A and

we have the commutative diagram
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This diagram induces a dual Mayer- Vietoris sequence in homotopy (see [ 12])

Here a (x ) = ( u (x ) , h (x ) ) , A (a, y ) = g (a)v (y)-1, and we need not make y expli-
m * * m * * m

cit. Thus /31 in general fails to be a homomorphism. Although /3 : TI (D, A ) X TI (D, Y) -
,

TI(D, B) is not in general defined we have exactness at TI(D, A ) x TI(D, Y) in the sense

that (a, y) E afl (D, X) if and only if g (a) = v (y ) .
* *

If we consider in particular the .exact sequence (5. 1) associated with the diagram

(2. 2 r)

we see than an R- structure is essentially an element ( 1, (4Y)) ~03A0(RX, RX) 03A0(RX, TX)and

this element belongs to MX) because d (1) = j*{03A6}. Thus we choose an asso-
ciated strong structure by picking E MX) such that a( 03C3} = ( 1, {cI&#x3E;}). We

would thus certainly be interested in the case when a is injective. Reverting to the

general case (5. 1) we prove

PROPOSITION 5. 2. Suppose Dv has a cross-section and D is an H’ - space. Then

is injective.

PROOF. Since D is an H’- space it is a retract of Thus HfD, E) is a subset

of E ) and it thus suffices to prove the proposition when D is a suspension

space. But then a is a group-homomorphism so it suffices to show that the kernel of a

is the zero subgroup. This however follows at once by the exactness of (5.1) since f3 1
is surely surjective (indeed v : TI1(D, Y) -~ is surjective for any D).

We are thus led to the following theorem.

THEOREM 5. 3 r. Let R be a good (right) structure system over C. (i) I f RX is an H’ -

space then each R- structure for X is associated with a unique strong structure. f ii)l f

f : .’ X1 ~ X 2 is a homomorphism with respect to R- structures 03A6
1, tP 2’ and if RX1 is

an H’ - space then f is a strong homomorphism with respect to strong ~ - structures ~1,
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a 
2 

associated wit 03A6 l’ CP 2 .
FROOF. (i) is already proved. To prove (ii) we consider the diagrams

,.. _ .

where =~t, i = 1, 2. We are given that the first diagram is homotopy-commutative
and we want to prove the same property of the second. By Proposition 5. 2. it suffices to

prove that p 2 0 0"2 o o 0"1 and t 2 ~~ ~ ~ 2 
Now P 2 oCr2 oMf 
and °

Thus the theorem is proved. Notice that f is a strong homomorphism with respect to

any strong structure } associated with {I&#x3E; 2 }. Combining this with the uniqueness

part of Corollary 3. 6r we have

THEOREM 5. 4 r. Let  be a good (right) structure system over ~ with fibre N and let

f : X 1’-’ X 2 be a map in C. Suppose that N(f) is (Q- I ) - connected and is an

H’ - space such that dim R (X 1)  Q - 2. T’hen if X 2 structured by 03A62 there exists

a unique- structure ~ ~ 1 ~ { for X 1 such that f is a homomorphism.

PROOF. 
°_ 
Let {O" 2 } be any strong structure associated with ( 4Y }. Then there exists a

unique structure J for X such that f is a strong homomorphism. If now ~’1 J is

any R- structure with respect to which f is a homomorphism and if { J is the

unique strong structure associated with {cI&#x3E;’1 J then, by Theorem 5. 3r(ii), f is a

strong homomorphism with respect cr so that = { J and so is uni-

quely determined as t~~ 
REMARK 5. 5 r. There is no difficulty in extending Theorems 5. 3 r, 5.4 r to arbitrary J-

homomorphims.
We may apply Theorem 5. 4 r to the case ~ _ ~ 2 . Certainly Kn is a good struc-

ture system for all n &#x3E; 2 so we infer from Theorems 4.3, 5.4r

THEOREM 5. 5 r. Let XI be (q-I)- connected spaces, i = 1,2 and let f : f X 1’-’ X2 bean

(m-l) - connected map. Then if X 2 2 - structured and 1  m-.3 + q, X ~ may
be uniquely K 2 - structured in such a way that f is a homomorphism.
PROOF. By Corollary 4. 5, X 1 may be K - structured and so is an H’ - space. Now by
Theorem 4.3 N(I) is (m-2+q)- connected so the result follows from Theorem 5.4r.

structure is just a comultiplication. We thus infer from Theorems 4. 8 and

5. 5 r.
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THEOREM 5 . 6 . Let X be a countable connected CW- complex. Then if X admits a

comultiplication so do all its sections. Moreover if X is I - connected tben a given

comultiplication on X induces unique16 comultiplications on the sections of X.

COROLLARY 5. 7. If X is 1- connected and the comultiplication on X is commutative

so are tbe comultiplications on all the sections of X.

REMARK 5. 8. Theorem 5. 6 and Corollary 5.7 would be false if we did not require Xto

be 1- connected. For S 1 admits many comultiplications, not all commutative, but V ~

admits only one comultiplication !

Similary we deduce from Theorems 4. 11, 5.5 r

THEOREM 5. 9. Let X be a countable I - connected CW- complex. Then if X admits a

comultiplication so do all its homology sections. Moreover if X is 2- connected then a

given comultiplication on X induces unique 17 comultiplications on t.he homology sec-

tions of X.

CORO L L AR Y 5. 10. If X is 2 - connected and the comultip lication on X is commutative

so are the comultiplications on all the homology sections o f X.

We are also able to apply Theorem 5.4r to handle the question of the associa-

tivity of a comultiplication. Consider the right structure system a = (R, P, T; d, j) over
5 where RX = X, PX = X X X X X, TX = X v X v X, dX is the diagonal map and jX
is the inclusion. Plainly X admits an 8- structure if and only if it is an H’ - space.
Indeed if f: X ~ X v X VX is an 3- structure map we obtain a comultiplication by

composing ~ with any of the three projections X V X V X  X V X. Conversely if $ :

X ~ X V X is a comultiplication then V and (I v 4Y) are S- structure maps.
Let F be th e fibre We prove

LEMMA 5. 11. Let X 1, X 2 be (q-1)- connected and let f : X 1-+ X 2 be an (m- I ) - con-

nected map. Then (i) FX1 is (2q- 2) - connected, (ii) Ff is ((m-2)+ q) - connected.

P ROOF. FX = E(X X X X X; X V X V X, ~), the space of paths on X X X X X begin-

ning in XvXvX and ending at the base point. Thus X vX vX)=Q

if X is (q- t) - connected and r + 1  2q. This proves (i)..

Now FX is the subspace EX X Dx X 03A9X~ Hx X EX X 03A9X~03A9X X Dx X EX of
EX X EX X EX. Set Y~. = A . = i = 1, 2; then f induces

and b is (m- I) - connected, while (Y., A .) is (q- I) - connected. As in the proof of

Proposition 4. 2 we may suppose h an inclusion and Y 1 = Y 2 ( = Y) so that we have a

triple (Y, A 2 , A 1 ) . Again we assume m &#x3E; q~ since (ii) follows trivially from (i) if m  q
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and replace (Y, A 2 , A 1) by a minimal triple in the sense of Lemma 4. 1. Thus we take
(Y, A 2 , A I) to be a CW- triple in which A ~-~ has no cells of dimension  q-2, A 2-Ai
has no cells of dimension  m-2, and Y2014~ has no cells of dimension  ~2014 2 Again
as in Proposition 4. 2 we deduce that Y2014~ has no cells of dimension ~ q-2 and that all

(q-1) - cells of Y are in A 1. It follows that FX -FX has no cells of dimension 
m-.2 + q and the lemma follows.

Now 8 is plainly a good structure system. Thus from Theorem ~.4r and Lemma

5 ~ l I we infer

PROPOSITION 5. 12. Let Xi, X2 be(q-1)-conncted and let f : X1 ~ X2 be (m-1)-

connected. Then if X 2 is Q- structured and dim X1 ~ m-3 + q, we may give 

unique Q- structure such that f is a homomorphism.

COROLLARY 5. 13. Let X l’ X2 be (q-1)- connected and let f : .. X1 ~ X2 be (m-1)-

connected. Then i f X 2 is furnished with an associative comultiplication’ and dim X 1 
m- 3 + q, the unique comultiplication on X 1 with res pect to which f is a homomorphism

is associative.

PROOF. ° Let $ 
2 

be the comultiplication on X 2 and $ 
1 

the induced comultiplication

on XI (see Theorem 5. 5r). Set 9+ ==( $~ ~ ~ o ~t, i ~1 = (I v (D~.) o ~Z, &#x3E; i = 1, 2. Then

are (2- structure maps for Xi 1 and { ~~ ~ _ ~ ~2 ~ I since ~ 
2 

is associative. More-

over, f is a homomorphism both with respect to the structures { ~.}, { B~~ ! and with

respect to the structures ( 9~ ) , ~2 ~ . Thus by Proposition 5. 1 2 ~~! ={ ~1 I so that

$ 
1 

is associative. ’

We thus deduce

THEOREM 5. 14. Let X be a countable 1- connected CW- complex furnished with an

associative comultiplication. Then the induced comultiplications on the sections of X

are also associative.

THEOREM 5.15. Let X be a countable 2 - connected CW - complex f urnished witb an

associative comultiplication. Then tbe induced comultiplications on the homology sec-

tions of X are also associative.

REMARK 5. 16. (i) Theorem 5. 14 would be false without the requirement that X be I -

connected. That is, we could have an associative comultiplication on X compatible
with a non-associative multiplication on its 1- section. (ii) We could refine Corollary5.13

by replacing X X X X X in the argument by the «compatible produce of the 3 copies of

X, that is, the inverse limit of the system of projections of the 3 «coordinate planes&#x3E;&#x3E;
X X X, of X X X X X, onto their factors. If we did this we would deduce that if X~ is
furnished with a comultiplication 4$~ i and if I&#x3E; 2 is associative and dim X 1 ~ 77220144+2~
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then P 1 is associative. This would enable us to infer that the homology sections of a

1- connected complex furnished with an associative comultiplication admit an associa-

tive comultiplication. ’Since the details of the necessary connectivity computation corres-

ponding to Lemma 5.11 are involved, we have preferred to give the simpler argument.

(iii) Since a countable I - connected CW- complex with an associative comultiplication
is a cogroup, we infer from Theorem 5. 14 that a cogroup structure on such a space X

induces a cogroup structure on all its sections; and from Theorem 5.15 that if X is 2-

connected then a cogroup structure on X induces a cogroup structure on its homology
sections.

~e now turn rather briefly to the dual story. The basic theory at the beginning of

the section dualizes automatically. Thus L = (L, W, j) is good if Xlj is a domina-

tion and we have

THEOREM 5. 31 . . Let L be a good (left) structure system over C. (i) if LX is an H-

space then each L - structure for X is associated with a unique strong structure. (ii) I f

f : X 1-~ X 2 is a homomorphism with respect to  - structures ~ z, cI&#x3E; 2 and i f LX 2 is an

H - space then f is a strong homomorphism with respect to strong structures °~2
associated with ~ 1, ~ 2 °

We then deduce the following two theorems; the first is analogous to Theorem

5.4 r and the second goes in the opposite direction. Howewer we do not state these

theorems in the same form as Theorem 50 4r since, in our applications, we will have

nothing to do with dimensionality restrictions.

THEOREM 5. 17. Let  be a (le f t) structure system over ~ with cofibre U and let

f : X1 ~ X 2 be a map in e. Then if X 2 structured there exists an 

structure {cp 1} for X 1 such that f is a homomorphism provided all the groups Hk( U(X 1);
7Tk (L (f))) vanish’ If L is good and LX2 is an H - space, then {cI&#x3E; 1} is uniquely deter-

mined by {03A62} provided all the groups Hk’-1(U(X 1); 03C0k (L ( f) )) vanish.

THEOREM 5. 18. Let  be a (left) structure system over ~ with cofibre U and let

f : X 1 -+ X 2 be a map in e. Then if X 1 is L- structured J there exists an L-

structure {03A62} 1 for X 2 such that f is a homomorphism provided all the groups

H’k+1(U (f); 03C0k(LX2)) vanish. If L is good and LX2 is an H - space, then {03A62} l is

uniquely determined by I I&#x3E; 1 J provided all the groups ’ 7Tk(LX 2)) vanish. °

We apply these theorems to the structure system H of Example 2. 19. K is cer-

tainly good; and, of course, X admits an K- structure ( =H- structure = multiplication)
if and only if X is an H - space. The cofibre of K is given by U(X) = X ~X. We consi-

der the fibration of the connected space X,
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of Example 3 .14 1. Write this as FI X ~ B . Now U(F) is ( 2n-1)- connected and

~tk (i) _ ~ , k ? n. Thus we may apply Theorem 5.17 to show that an H - structure on

X induces a unique H - structure on each X (n ,..., ~ } . Again = 0, k &#x3E; n , and a

simple computation shows that U(p) is (n + q)- connected if X is (q- I)- connected.

Thus we may apply Theorem 5.18 to show that an H - structure on X induces a unique

H- structure on each X(I , ... , n-1 ). We may sum up in the following theorem 18.

THEOREM 5. ~ 9. Let’ X be a countable connected CW - complex and consider the dia-

gram

Then an H - structure on X induces a unique H - structure on each X ( m , ... , n ),

I .~.772 ~ ~ ~. oo , such that the maps of (5. 20) are homomorphisms. In particular if the

H - structure on X is commutative so is the H - structure on X(m ,..., n ).

We may handle the associativity question essentially just for H’ - structures.

Suppressing the details, we are content to record

ADDENDUM TO THEOREM 5. 19. If the H- structure on X is associative so are those

on each X (m, ..., n ) .
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Footnotes.

I. A unified obstruction theory will appear in a forthcoming paper by Eckmann and

Hilton.

2. I. e., provided cat X &#x3E; 0. Of course the inequality fails in general if cat X = 0.

3. If X is not 1- connected the conclusion is false.

4. Of course, this hypothesis is very rarely verified in practice ! i

5. A systematic study of the genus of covering maps was carried out by Ganea in [ 18] .
6. Such an argument is implicit in [ 16] .

7. (A, ~Ao x B).
8. Ganea gave in [19] i a definition of cocategorv which generalizes the notion of H -

space in the way in which cat generalizes the notion of H’ - space. lle has recently

succeeded in finding a structure for cocategory, in the present sense, so that it is

brought within the scope of the theory developed in this paper. See A. B1. S. Notices,
Vol. 10, N° 3, 1963, abstract 600-2.

9. If k  2, we have only cohomology sets.

10. It is of no importance that the map m is not necessarily an inclusion map.
It is of no importance that the map b is not necessarily an inclusion map.

12. I. e. , ( x ~ , e ..., x n ) E IX if and only if xi = ~ for at least one i, I  I  n.

13. Similar results were obtained by Ganea for cocategory in [ 19]. Ihese can presu-

mably now be obtained by the methods described here, using his characterization of

cocategory as a structure. 
.

14. V e could state the lemma for n - tuples but are content with the explicit case n = 3.

1 5. Ihus, if we take j to be a fibration, 03A9j has a cross-section.

1 61 Up to homotopy.
1 7. Up to homotopy.
18. This result is well-known (see, e. g., [9, 13] ); we are here concerned with

its relation to the general theory.



24 1. BERSTEIN et P.J. HILTON

References.

[1] I. BERSTEIN. Sur la catégorie de Lusternik- Schnirelmann, C.R. Acad. Sci.

(Paris), (1958), 362- 364.

[2] I. BERSTEIN and T. GANEA. The category of a map and of a cohomology class,

Fund. Math. 50 (1962), 265- 279.

[3] I. BERSTEIN and T. GANEA. On the homotopy commutativity of suspensions,

I11. J. Math., 6 (1962), 336- 340.

[4] I. BERSTEIN and P.J. HILTON. Category and generalized Hopf invariants, I11

J. Math., 4 (1960), 437-451.

[5] C. R. CURJEL. A note on spaces of category ~ 2, Math. Zeitschr. 80 (1963),

293-299.

[6] B. ECKMANN and P. J. HILTON. Décomposition homologique d’un polyèdre sim-

plement connexe, C. R. 248 (1959), 2054- 2056.

[7] B. ECKMANN and P. J. HILTON. Homotopy groups of maps and exact sequences,

Comm. Math. Helv. , 34 (1960), 271- 304.

[8] R. H. FOX. On the Lusternik-Schnirelmann category, Ann. of Math. 42 (1941),

333- 370.

[9] T. GANEA. Fibrations and cocategory, Comm. Math. Helv., 35 (1961), 15-24.

[10] T. GANEA, P. J. HILTON and F. P. PETERSON. On the homotopy commutativity

of loop- spaces and suspensions, Topology (1) (1962), 133-141.

[11] M. GINSBERG. Categorial invariants and fiber spaces, Colloquium on Algebraic

Topology, Aarhus (1962), 84- 88. 

[12] P.J. HILTON. Homotopy theory and duality, Lecture Notes, Cornell University

(1958/ 59).

[13] D. W. KAHN. Induced maps for Postnikov systems, Colloquium on Algebraic Topo-
logy, Aarhus (1962), 47- 51.

[14] J. C. MOORE. Exposé 22 (Appendice), Séminaire Henri Cartan, 1954/ 55.

[15] F. P. PETERSON. Numerical invariants of homotopy type, Colloquium on Algebraic

Topology, Aarhus (1962), 79-83. 

[16] A. S. SVARC. The genus of a fibre space, Trudy Moskovskogo Matematiceskogo

Obscestva 10 (1961), 216-272; 11 (1962), 99- 126.

[17] I. BERSTEIN and P. J. HILTON. On suspensions and comultiplications, Topolo-

gy (2) (1963), 73 - 82 .

[18] T. GANEA. Catégorie 1-dimensionelle et homomorphismes de groupes fondamen-

taux, C. R. Acad. Sci, Paris, 242 (1956), 1407- 1410.

[19] T. GANEA. Lusternik- Schnirelmann category and cocategory, Proc. Lond. Math.

Soc. 10 (1960), 623-639.


