SÉMINAIRE DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE

T. J. Willmore

Global theorems on manifolds which admit distributions

Séminaire de topologie et géométrie différentielle, tome 1 (1957-1958), exp. no 18, p. 1-7
http://www.numdam.org/item?id=SE_1957-1958__1__A7_0
© Séminaire de topologie et géométrie différentielle
(Secrétariat mathématique, Paris), 1957-1958, tous droits réservés.
L'accès aux archives de la collection « Séminaire de topologie et géométrie différentielle » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Séminaire de TOPOLOGIE

GLOBAL THEOREMS ON MANIFOLDS WHICH hDMIT DISTRIBUTIONS

by T.J. WILLMORE

1. - In this lecture I shall consider two types of problens. The first type concerns the existence of certain affine connexions which are specially related to the distributions. The second type concerns the existence of distributions on homogencous spaces which are compatible with the honogeneity of the spoce.
2. - The problems of the first type can be solved by means of the theory of flbrebundles, as developed for example by Profossor EHRESMANN. The solutions that I wish to talk about this afternoon were obtained by A.G. WaLKER using classical tensor calculus, and they have one advantage in that an explicit formula is obtained in each case for the connexion coefficients.

Let M be an n-dinensional differentiable manifold of class ∞ which admits à C^{∞}-distribution of r-planes D^{\prime}. Let $D^{\prime \prime}$ be a complenentary distribution of (n-r)-planes so thet at each point P of M the planes of D^{\prime} and $D^{\prime \prime}$ span the tangent space to M at P. Let a^{\prime}, $a^{\prime \prime}$ be projection tensors associated with D^{\prime} and $D^{\prime \prime}$, i.e. $a^{a^{\prime}(x)},_{a^{\prime \prime}}(x)^{m}$ are mixed tensor fields defined globally over M such that

$$
a^{\prime} \cdot a^{\prime}=a^{\prime} ; a^{\prime \prime \prime} \cdot a^{\prime \prime}=a^{\prime \prime} ; a^{\prime} \cdot a^{\prime \prime}=a^{\prime \prime} \cdot a^{\prime}=0 ; a_{m}^{\prime}+a_{m}^{\prime \prime}=I \quad .
$$

A contraveriant vector $\underset{m}{u}$ at P can be projected into its components $\mathrm{m}^{\prime \prime}$, $\mathrm{m}^{\prime \prime}$ in $D^{\prime}, D^{\prime \prime}$ respectively so that

$$
\underset{m}{u}=u_{m}^{\prime}+u_{m}^{\prime \prime}
$$

where

In terms of components we shall write

$$
u^{i^{\prime}}=a^{i^{i}} j^{j}, u^{i^{\prime \prime}}=a^{\prime \prime^{i}} j^{u^{j}}, u^{i}=u^{i^{\prime}}+u^{i^{\prime \prime}}
$$

A covariant vector $\underset{\sim}{v}$ with components v_{i} is projected into v^{\prime} and ${\underset{m}{n}}^{v}$ where

$$
v_{i},=a^{\prime j} v_{j}, v_{i \prime}=a^{\prime \prime}{ }_{i} v_{j}, v_{i}=v_{i \prime}+v_{i \prime \prime} .
$$

A tensor with components $\mathrm{T}^{\mathbf{i}}{ }_{j k}$ can be projected completely or partially into invariant subspaces associated with the projection tensors a', an . For example,

$$
T_{j " k}^{i^{\prime}}=a_{n}^{i^{\prime}} a_{j "^{n}}^{T^{m}}
$$

One advantage of this notation is that the sumption convention can be used regardless of primes eng.

$$
v_{i}, u^{i}=v_{i} u^{i^{\prime}}=v_{i}, u^{i^{\prime}}
$$

This follows because $v_{i} ; u^{i \prime \prime}=v_{i}{ }^{\prime \prime} u^{i \prime}=0$.
The notation can be used in conjunction with covariant differentiation with respect to an affine connexion provided that by

$$
u^{i^{\prime}} \mid j
$$

we mean $\left.a_{k}^{i} u_{j}^{k}\right|_{j}$ and NOT $\left.\left(a{ }_{k}^{i} u^{k}\right)\right|_{j}$, i.E. we differentiate first and the multiply by the projection tensor.
3. Identities satisfied by a^{\prime}, $\mathrm{a}^{\prime \prime}$ and their covariant derivatives.

It is easy to prove the identities

$$
a^{\prime i} j^{\prime \prime}\left|k=a^{i^{\prime \prime}} j\right| k, a_{j \mid h}^{\prime i}=a^{\prime \prime} j \mid h \quad,
$$

where | denotes covariant differentiation with respect to sone affine connexion L. It will be convenient to change the notation slightly and write a instead of a^{\prime}.

Then the above identities become

$$
\begin{equation*}
a_{j " \mid k}^{i}=a_{j \mid k}^{i^{\prime \prime}}, \quad a_{j \prime \mid h}^{i}=a_{j \mid h}^{i^{\prime}} \tag{3.1}
\end{equation*}
$$

and these imply

$$
\begin{equation*}
a_{j \prime \mid k}^{i^{\prime}}=0, \quad a_{j \prime \mid k}^{i \prime \prime}=0 . \tag{3.2}
\end{equation*}
$$

When differentiation is taken with respect to a symetric connexion it will be convenient to replace $a_{j \mid k}^{i}$ by $a_{j k}^{i}$.
4. Propertigs of $D^{\prime}, D^{\prime \prime}$ in terms of a^{\prime}, $\mathrm{an}^{\prime \prime} \cdot$

Condition of int ggrability of D^{\prime}
(4.1)

$$
a_{j^{\prime} k^{\prime}}^{i}=a_{k^{\prime} j^{\prime}}^{i}
$$

Conditicn of integrability of $\mathrm{D}^{\prime \prime}$
(4.2)

$$
a_{j^{\prime \prime} k^{\prime \prime}}=a_{k^{\prime \prime} j^{\prime \prime}}^{i}
$$

Condition of parallelism of D^{\prime}
(4.3)

$$
a_{j \prime \mid k}^{i}=0
$$

Condition of parall6lism of $\mathrm{D}^{\prime \prime}$
(4.4) $\quad a^{i}{ }_{j 1} \mid k=0$

Condition of parallelism of both D^{\prime} and $\mathrm{D}^{\prime \prime}$

$$
\begin{equation*}
a_{j \mid k}^{i}=0 \tag{4.5}
\end{equation*}
$$

5. PROBLEM 1. - To find an affine connexion ($\mathrm{I}_{\mathrm{jk}}^{\mathrm{i}}$) with the property that D is parallel with respect to L and is symmetric when D^{\prime} is integrable. Write $L_{j k}^{i}=r_{j k}^{i}+X_{j k}^{i}$ where $r_{j k}^{i}$ is symnetric. Then L is symetric if and only if X is symmetric in j and k. We have

$$
a_{j \mid k}^{i}=a_{j k}^{i}+X_{j k}^{i}-X_{j k}^{i \prime}
$$

The condition for parallelism of D^{\prime} given by (4.3) is satisfied if

$$
x_{j^{\prime} k}^{i^{\prime \prime}}=-a_{j^{\prime} k}^{i} .
$$

This is satisfied by $X=T$ where

$$
\begin{equation*}
T_{j k}^{i}=-a_{j^{\prime} k}^{i}-a_{k^{\prime} j}^{i}+a_{k^{\prime} j^{\prime}}^{i} \tag{5.1}
\end{equation*}
$$

Condition (4.1) shows that T is symetric when D^{\prime} is integrable.
PROBLEM 2. - To find an affine connexion ($\mathrm{I}^{\mathbf{i}} \mathrm{jk}^{\mathrm{l}}$) with the property that D^{\prime}, $\mathrm{D}^{\prime \prime}$ are both parallel with respect to L, and L is symetric when D^{\prime}, $D^{\prime \prime}$ ars integrable.

It is casily vérified that a similar analysis leads to a suitable connexion L where

$$
L=\Gamma+S
$$

and

$$
S_{j k}^{i}=-a_{j \prime k}^{i}-a_{k^{\prime} j \prime \prime}^{i}+a_{j^{\prime \prime k}}^{i}+a_{k^{\prime \prime} j}^{i}
$$

PROBLEM 3. - Given two supplementary distributions D^{\prime}, $D^{\prime \prime}$, to find a positive definite Rigmannian metric with respect to which. D^{\prime} and $\mathrm{D}^{\prime \prime}$ ars orthogonal.

The condition of orthogonality is

$$
g_{1 j} u^{i^{\prime}} v^{j \prime \prime}=0 \text { for all } u^{i^{\prime}} \text { and } v^{j \prime \prime} \text {, }
$$

i.6.

$$
g_{i^{\prime}} j^{\prime \prime}=0
$$

If $h_{i j}$ is any positive definite metric defined globally over M_{n}, write

$$
g_{i j}=h_{i \prime j \prime}+h_{i " j "}
$$

Then $g_{i j}$ obviously has the required properties.

PROBLEM 4. - For any complementary distributions D^{\prime}, $D^{\prime \prime}$, orthogonol with respect to a metric tensor $g_{i j}$, to find a global connexion L such that D^{\prime}, $D^{\prime \prime}$ are prrallel with respect to L, and also $\left.g_{i j}\right|_{k}=0$.

Write $L=r+X$ where r is now the Christoffel connexion associated with the metric tensor $g_{i j}$. Then it is easily verified that

$$
X=W=a_{j " k}^{i}-a_{j ' k}^{i}
$$

satisfies the required conditions.
Note that the solutions given to problems 1, 2, 3, 4 are by no means unique, and in particuiar further geonetric conditions nay be inposed in the case of problem 4. However, we cennot impose the aditional condition that L must be symetric, for this would imply $L=r$ and hence $X=0$, and thus

$$
a_{j k}^{i}=0 .
$$

It is easy to prove that
If a compact orientable M_{n} admits a distribution D^{\prime} of r-dinensions, parallel with respect to a positive definite Ricmannian metric, then necessarily $\mathrm{b}_{\mathrm{r}}>0$, where b_{r} is the r th Betti number.

It follows that S_{3}, which certainly adnits D^{\prime} in the form of a vector ficld, cannot admit a positive definite metric with respect to which D^{\prime} is parallel. For this would inply $b_{1}>0$, whereas for S_{3} we have $b_{1}=0$. Moreover, corresponding to S_{3}, one can construct for any n a manifold M_{n} which admits a distribution of r-planes but which cannot be givon a Rignannian metric with respect to which the distribution is parallel. This raises the following.

PROBIEM 5. - To find a s6t of necessary and sufficient conditions in order that a manifold M_{n} which admits a distribution D^{\prime} can be given a riemannian structurs with respect to which D^{\prime} is parallel.

This appears to be an open problen, so we proceed with probleris of type 2.

6. Group Manifolds.

Let M be the underlying manifold of a Lie group G, whose lie ilgebra is A. Then evidently any linear subspace V of the tangent space. T_{c} at the identity
may be carried by left translations over the whole of M to give a distribution D_{ι}. Similarly by right translations V gives rise to anothor distribution D_{R}. Then we have

THEOREM 6.1. - D_{L}, D_{R} coincide if and only if V is an ideal in A.
This follows from the condition $d \ell_{x} V=d r_{x} V$, i.e. ($\left.d \ell_{x} \cdot d r_{x-1}\right) V=V$, i.6. V is invariant under the infinitesimal adjoint group. If $\eta \in \mathbb{A}, \xi \in V$, this condition gives $\eta \times \xi \in \mathrm{V}$ for all $\eta \in \mathrm{A}$ so that V is an ideal.

The following results are well known.
THEOREM 6.2. - D_{L} integrable $\Longleftrightarrow V$ is a subalgebra of A.
THEOREM 6.3. $-D_{R}$ integrable $\Longleftrightarrow V$ is a subalgebra of A.
THEOREM 6.4. - D_{C} integrable $\Longleftrightarrow D_{R}$ integrable.
THEOREM 6.5. - DL parallel with respect to the 0 -connexion $\Longleftrightarrow V$ ideal in A.

7. Homogencous spaces.

M_{n} is a manifold on which a Lis group G acts as a topological transformation group. If H is the isotropy subgroup of G, i. 6 . the subgroup of G which sends the fixed point 0 into itself, we may identify M_{n} with the cosetspace G / H.

The distribution D is homogeneous over M if it is compatible with the homogencous structurs of M, i. ϵ. if $D \rightarrow D$ under all transformations of G. The following result is easily proved :

THEOREM 7.1. - If D_{0} is a subspace of the tangent space to M at 0 , then D_{0} generates a homogeneous distribution over M if and only if D_{0} is invariant inder the linear isotropy group at 0 .

THEOREM 7.2. - No sphere S^{n} admits a distribution honogencous with respect to $\mathrm{SO}(\mathrm{n})$. Write $\mathrm{S}^{\mathrm{n}}=\mathrm{SO}(\mathrm{n}+1) / \mathrm{SO}(\mathrm{n})$. Then if 0 is any point of S^{n}, the isotropy group $S O(n)$ will rotate a given vector at 0 into any prescribed direction in the tangent space at 0 . It follows that the only invariant space under the isotropy group is the whole tangent space at 0 , so no sphere admite a non-trivial homogeneous distribution.

It is not difficult to express the conditions of theoren 7.1 in terms of the Lie Algebra of G and H. We find

THEOREM 7.3. - If V is a lingar subspace of Λ, disjoint fron H, then V generates a homogeneous distribution over M if and only if

$$
\mathrm{H} \times \mathrm{V} \mathrm{CH}+\mathrm{V} \text { - }
$$

Suppose that V is a linear subspace of A which is not disjoint fron H, and suppose that this condition is satisficd. Then if we define V C CV by $H+V^{\prime}=H+V, V^{\prime} \cap H=\varnothing$ we see that V^{\prime} generates a snaller distribution over M.

THEOREM 7.4. - The homogengous distribution generated by V is integrable if and only if $H+V$ is a subalgebra of A.

Incidentally, if V is an ideal in A, then we have

$$
(H+V) \times V C V .
$$

This, together with $H \times H \subset H$, implies that $H+V$ is a subalgebra, and hence the distribution generabed by V is integrable. It follows that in order to find en integrabls distribution over M it is merely necessary to find a subalggbra of A which contains H. If H^{\prime} is such a subalgebra, we can write

$$
H^{\prime}=H+V, H \cap V=\varnothing,
$$

and the subspace V thus deternined will generate an integrable homogengous distribution.

In conclusion, I wish to acknowledge with gratitude the assitance I have received from Professor A.G. WALKER during nany conversations about these topics.

