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1. - In this lecture I shall consider two types of problems. The first type con-
C6rns the existence of certain affine connexions which are specially r61ated to
th6 distributions* The s6cond type concerns th6 existence of distributions on

homogeneous spaces which arc compatible with the homogeneity of the spacer

2. - Th6 problems of the first type can be solved by means of the theory of fibre-

bundles, as developed for example by Professor The solutions that I

wish to talk about this afternoon were obtained by AG. WALKER using classical
tensor calculus~ and they have one advantage in that an explicit formula is obtained
in each case for the connexion coefficients.

Let M b6 an n-dimensional differentiable manifold of class oo which admits

à C ’-distribution of r-planes D’ . Let D" be a complementary distribution
of (n-r)-planes so that..at each point P of M the plan6S of D’ and D"

span the tangent spac6 to Fl at P. L6t a" be projection tensors associa-
tad with D’ .and D" , i.e. a(x) , a"(x) are mixed tensor fields defined

globally oV6r M such that

A contravariant vector u at P can b6 projected into its components u’ , uti

in D’ , D" respectively so that

where

In tems of components we shall write
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il covariant vector v with compon6nts Vi is projected into v’ and v" where

A tensor with components can be projected completely or partially into
invariant sub-spac6s associated with the projection tensors a’ . a" . For
example~

Qhe advantage of this notatioh is that the summation convcntion can be used

regardless of primed 

This follows because = U = 0 .
The notation can be used in conjunction with covariant differentiation with

respect to an affine connexion provided that by

WE&#x3E; mean uk . and NOT differentiate first and the

multiply by the projection tensor.

3. Identities satisfied by a’ , a" and their covariant derivatives.

It is easy to prove the identities

where I denotes covariant differentiation with respect to some affine connexion
L . It will be convenient to change the notation slightly and write a instead

-

of at .
-

Then the above identities become
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and thes6 imply

Whsn differentiation is token with respect to a symmetric connexion it will bs

convenient to replace aij |k by a 

"’

4. Properties of D’ , D" ia terms of D.’ , c,n .

Condition of integrability of D’

Condition of integrability of D"

Condition of parallelism of D’

Condition of parallelism of D~

Condition of parallelism of both D’ and D"

5. PROBLEM 1. - To find an affine connexion (Lijk) with the property that D’

is parallel with respect to L and is symmetric when D’ is integrable.

Write = ,..i 
jk 

+ Xi where ijk is symmetric. Then L is symmetric if

and only if X is symmetric in j and k . We have
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The condition for parallelism of D’ giv6n by (4.3) is satisfied if

This is satisfied by X = T where

Condition (4*1) shows that T is symmetric when D’ is integrable.
’

PROBIEM 2. - To find an affine connexion with the prop6rty that D’ , D"
are both parallel with respect to L , and L is symmetric when D’ , D" are

integrable.

It is easily verified that a similar analysis leads to a suitable connexion
L where

PROBLEM 3. - Given two suppl6nentary distributions D’ ; D~’ ~ to find a 
tiv6 definite Riemannian metric with respect to which D’ and D" are ortho-

gonal.

The condition of orthogonality is

If hij is any positiv6 definite 
. 

metric defined globally over M 
n 

Th6n g.. obviously has the required properties.
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PROBLEM 4. - For any complementary distributions D . ! D" , orthogonal with
respect to a m6tric tensor to find a global connexion L such that D’ ,
D" ar6 parallel with respect to L , and also k ~ 0 .
Write L = r+ X wh6re r is now the Christoffel connexion associated with

the metric tensor Then it is easily verified that

satisfies the required conditions.

Note that the solutions given to prob16ns 1 , 2, 3, 4 are by no means unique,
and in particular further geometric conditions bo inposed in’ the case of

problem 4. However, wa cannot impose thG condition that L must be

symmetric, for this would imply L = r and hence X = 0 , and thus

It is easy to prove that

If a compact M admits a distribution D’ vf r-dimensions,

parallel with respect to a positive definite Riemannian metric, then necessarily
0 ., where br is the r-th Betti number. 

,

It follows that 33 ’ which certainly admits D’ in the form of a vector

field, cannot admit a positive definite metric with respect to which D’ is paral-
lel. For this would 0 , whereas for S 3 we hav6 0 . Moreover,
corresponding to S f one can construct. for any n a manifold M which

admits a distribution of r-p1an6s but which cannot be given a Riemannian

metric with respect to which the distribution is parallel. This raises the follo-

wing.

PROBIEM 5 . - To find a SGt of necessary and sufficient conditions in order

that a manifold M 
n 

which admits a distribution D’ can be given a riemannian

structure with respect to which D’ is parallel.

This appears to be an open problen, so we proceed with problens of type 2.

6. Gr~ oup 
Let M be the underlying manifold of a Lie group G ~ whose Lie algebra is fi .

Then evidently any linear subspace V of tangent spaces T identity
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nay b6 carried by left translations over the whole of 101 to give a distribu-

tion De . Similarly by right translations V gives rise to another distribution

DR . Then have

THEOREM 6.1.- De , D- coincide if and only if V is an id6al in A.

This follows from the condition d l V = dr x V , i.6. = V , 
.

V is invariant under the infinitesimal adjoint group. If ~ ~ A , 03BE ~ V ,
this condition gives ~  03BE ~ V for all ~ ~ A so that V is an id6al.

The following r6sults are well known.

THEOREM 6.2. - D ~ integrable ~~V is a subalgebra of A .

THEOREM 6.3.- D~ 

THEOREM 6.4. - D0 integrable int6grab16.

THEOREM 6.5.... Do parallel with respect to the 0-connexion ~V ideal
’

7. Homogeneous

14~ is a manifold on which a Li6 group G acts as a topological transformation

group. If H is the isotropy subgroup of G , 1.G. the subgroup of G which

sands the fixed point 0 into itself, we may identify with the coset-

space G/H.

Th6 distribution D is homogeneous over M if it is compatiple with the
homogeneous structure of M ~ i.6. if D -9 D under all transformations of

G . The following result is easily proved :

THEOREM 7.1. - If D is a subspace of th6 tang6nt spac6 to 14 at 0 , th6n

D 
0 

generates a homogeneous distribution over M if and only if Do is invariant

the linear isotropy group at 0 .

THEOREM 7.2. - No sphere 3D admits a distribution homogeneous with respect to

S0(n) . Write Sn = S0(n + 1 )/SO(n) . Then if 0 is any point of the

isotropy group will rotate a given vector at 0 into any prescribed
direction in the tangent space at 0 . It follows that the only invariant spaC6

under the isotropy group is the whole tangent Spac6 at 0 , so no spher6 admits

a non-trivial homogeneous distribution.
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It is not difficult to cxpr6ss th6 conditions of theorem 7.1 in terms of the Lie

Algebra of G and H . We find

THEOREM 7.3. - If V is a linear subspace of fi , disjoint from H, then V

generates a homogeneous distribution over M if and only if

Suppose that V is a linear subspace of A which is not disjoint from H ~
and suppose that this condition is satisfied. Then if we define V’ CV by
H + V’ = + V , V’ n H = ø wo see that V’ generates a smaller distribution

over 1&#x3E;1 .

THEOREM 7.4. - The homogeneous distribution generated by V is integrable if

and only if H + V is a subalgebra of A .

Incid6nta.lly, if V is an ideal in then we have

This, together with H x H c H , implies that H + V is a subalgebra, and

hence the distribution generated’ by V is integrablE,. It follows that in

order to find integrable distribution over bI it is merely necessary to

f ind a subalgobra of A which contains H . If H is such a w~

can write

and the subspace V thus determined will generate an integrable homogeneous

distribution.

In conclusion, I to acknowledge with gratitude the assitance I have

received from Professor ii.G. WALKER during nany conversations about these topics.


