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1. Introduction,

In a recent .paper A.G. WALKER [3] introduced a nsw derivation associated with
an almost complex structur6 which he called torsional derivation. This derivation

is determined by tha almost complexe structure, which itself is defined by a

t6nsor field h of such that h 2 =-1 . Th6 derivation is a mapping of
t6nsor fields of type (p , q) into tensor fields of type (p , q + 2 ) , and
has the property of annihilating all tensor fields when th6 almost complex struc-

ture has ZGro torsion. When applied to the torsion t6nsor itsGlf, the d6rivation

giv6s a non-trivial tensor of type (1’,4) which appears as a new differential
invariant associated with an almost complex structure.

A formula for the torsion H of an almost comp16x structure was given, for

6xample., by ECKMANN [1] , and it was subsequently shown by NIJENHUIS [2] that by
slightly modifying this formula it was possible to establish th6 tensoriel na-
turo of H without using the relation h2 = - 1 , i.e. the tensor H defined

for an arbitrary tensor h becam6 th6 torsion tensor of the almost complex
structure when h ==-l.In[4] WALKER raised the interesting question wh6ther
it was possible to modify similarly his formulae defining new tensors (6.g. th6
new tensor of type (1~4)) in such a way that its tonsorial nature could be 6sta-
blished without using th6 relation h 2 == - 1 . NIJENHUIS has conjectur6d that H isu 

, g " 

,.".

theonly essentially new tensor field which can., b6 constructed from an arbitrary
tensor field h . Walker’s rcsults show that this conjecture is false provided
that h satisfies th6 additional restriction h = - 1 . If Walker’s operation
of torsional derivation could be generalized by relaxing the requirem6nt
h 2 = - 1 , then the conjecture of Nijenhuis would bG disproved. 

, 

In this paper

we make som6 contribution towards obtaining a g6neralized torsional derivation.



17-02

2. Walker’s operation.

In t6rms of th6 tensor h, the components of torsion tensor H are defined by

and the tensorial character of (2.1) is easily established without using the
relation = -J~ . Following WALKER [4] we define the torsional derivative with
respect to the almost complex structure h of a tensor field with components

T*" to be the tensor with components 1""*). , where

and where the right hand member contains a term like + hi . corresponding... pre 
’ °

to each contravariant suffix of and a term like - Ti...p... 
S correspon-... 1 p... Jr ..

ding to each covariant suffix, and where the symbols h are defined byprs *

It is readily v6rified by expressing the partial derivatives in (2.2) and (2.3)
in terms of covariant derivatives with respect to some arbitrary symmetric connexion
that defined by (2 02 ) are in fact the components of a tensor, but toestablish ... this r result use has to be made of the relation -.h. 2 = -1 .
Torsional derivation defined by (232), (2.3) has the usual properties of a

derivation relative to addition;, multiplication and contraction of tensors.
Moreover, it is easily v6rified that

problem is to obtain an operator analogous to Walker’s operator without
makin the restriction h2 = - 1o h ~~ 

,
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3. Extension of operators.

In what follows we shall assume that the differentiable manifold under conside-

ration is of class ~ , and that all tensor fields, vector fields, etc. intro-
duaed are also of class oo .

The opsrator (Ø of torsional derivation defined in paragraph 2 has ths following
proporties :

i. it is linear over the real numbers if 11 ’:!2 are two tensor fields
and a , b arbitrary real numbers (constants) , than

it satisfies ths usual product law, i.e.

iii, since (03B4ij) = 0 ,  commutes with the operation of contraction, s.g.

In particular, when restricted to contravariant vector fields v and

scalars f the operator satisfies

Conversely, suppose that th6 operator had bean defined only for contravariant

vector fields and scalar fields such that (a) and (b) were satisfied. Then the
domain of the operator ad can bs extended in a unique manner to include tensor

fie.lds of arbitrary type (p , q) so that conditions (i)~ (ii ) and (iii) are
satisfied. This follows from precisely the same argumcnts which allow ordinary
oavariant differentiation defined first for contravariant vector fields and

scalars to be sxt6nded to general tensor fields. More generally, any differential

op6rator which is defined for contravariant vector fields scalars so that

conditions (a) and (b) are satisfied may be extended in a unique manner to
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operate on arbitrary tensor fields so that conditions (i) ~ and (iii) are
satisfied. It follows that it is sufficient to define a generalized torsional
d6rivation ovcr vector fi61ds and scalar fi61ds provided that condition (a) and
(b) are satisfied.

4. The Lie derivative.

This diff6rential operator ~ ~ deternined by a given contravariant v6ctor
field v ~ mapa tensor fields of type (p , q) into t6nsor fields of the sanG

The effect on a contravariant vector field with components u is

defined by .

while the 6ffect on a scalar f is given by

It is readily verified that the operator Lv satisfies conditions (a) , (b )
of paragraph 3, and it can therefore be ext6nded uniquely to operate on arbitrary
tensor fields of typ6 (p ~ q ) so that conditions (i ) ~ (iii ) of para-
graph 3 are satisfi6d. For a dstailGd study of Lie derivatives the r6ad6r is
referred to the rec6nt book by K. YANO [4]. However, except for the definition
of ths Lie derivativ6 of a tensor field of type g ) ~ the only part of
the theory required here concerns the invariant nature of th6 operation of
Lie derivation. For the sake o f completeness WG give an alt6rnative approach to
the Lie derivative, due to A.G, WALKER, which does not s6Gm to be included in
thô standard texts on the subject. For reasons of brevity we shall obtain a for-
mula for the Lie derivative of a tensor field of type (1 ~ Z ) i but the method
can be used with a tensor field of general type (p ~ q) 

Let b6 the components of a tensor field of type (1, 2) . Let 
b6 the components of two arbitrary symmetric affine connexions L ! ; then the

symbols 3T’ defined by 
.

ars components of a symmetric t6nsor of type (1 ~2) . Th6 covariabt derivatives
with respect to L , r will be denoted by a comma and a bar respectively.
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Then W6 have

Subtracting (4.5) from (4.4) and using (4.3) we get

Now let v be the components of a given vector field v ~ Then we have

If we multiply (4.6 ) by vI.., , we obtain, on using the symmetry of 

(4.8) (_i T_’. )vQ = sit 4.8 v = Tjk v - sk X fj v - TjS Xslk v .

Using (4.7) this equation may be written

It follows that the value of left hand member of (4.9 ) is independent of th6

particular symmetric connexion used. In particular, by choosing thG symmetric
connexion whose components are all zero, ths oovariant derivatives in (4.9) may
be replaced by partial derivatives . Thus WG find that the mapping

t T - z T given byv~ ..

is an invariant operation. In the more g6neral case we obtain similarly the

formula



In the particular case when T is a contravariant vector u or a scalar f ~
~ ~A

equation (4.11) reduces to (4.1) and (4.2) respectively. The operator defined
by (4.11) satisfies conditions (i) ~ (ii) and (iii) of paragraph 3~ and hence is
the extension to arbitrary tensor fields of the operator ~ defined for

contravariant vectors and scalars by equations (4.1) , (4.2),

Instead of using the notation ~ T for the Lie derivatives of T with
v ~ ~

respect to the vector field v ~ it will be nore convenient to use the notation
- 

~

TJ . Indeed~ we shall find it convenient to interpret fv$ T] as the result of
~~ ~M~ * "~ ’ ~"’

operating on a fixed tensor field T by a variable vector field v , rather than .

the classical interpretation when v is fixed and T is variable tensor field.

5. The operator 
Let h ~ k be two tensor fields of type (l~)y .and let  be a tensor field

of type (1~2), Define an operator (~ which naps fields of contravariant vectors
into tensor fields of type (1~2) according to the law

Suppose that also maps fields of scalars into tensor fields of type (0,2)
according to the law 

’

We se6k conditions on h , k and v3 such that conditions 3(a) , 3(b) are

satisfied for all v and f. The operator is linear over the real numbers
so 3 (a) is satisfied. Condition 3(b) loads to th6 equation
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This relation between h , k and M is seen to be a necessary and sufficient

condition that the mapping ÚJ can bG extended uniquely to tensor fields of

arbitrary ord6r so that conditions 3(i) , (ii) , (iii) are satisfied.

In particular this condition is evidently fulfilled when each term vanishes,
and under these circumstances we obtain (when C».J. 0) equations which in natrix
form may be written 

.

Condition (5.5) really represents two equations obtained by fixing in turn ons
of th6 two oovariant suffixes However, wh6n is skew-symmetric or symme-
trio in both covariant indices, then conditions (5.5) laads to a single equation

In the particular case when h = k , equation (5.4) reduces to

so th6 manifold admits an almost complex structure. In this case ~5.5 ~ redoes to
the condition

Now it is easily verified that the torsion tensor H of the almost complex
1M

structure derived from h satisfies the condition (5.7), ao wa may teks
. 

4WB

CA.8 = H. Equation (5.1) then becomes
~~ .,.

and (5 .2 ) becomes .

Now it is easily verified that equations (5.8) , (5.9) are precisely ths same

6quations as those obtain6d by applying Walker’s operation of torsional derivation.

It follows that Walker’s operator is obtained from our operator by taking .
thE spacial s o luti ons of (5.4), (5.5) given by h = k , G-.1= H .. Our operator
@ is thus seen to b6 a natural generalization of Walker’s operator.
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6. general solutions.

It is evident that equations (5.4) , (5.5) have many solutions besides the
particular one which yi61ds Walksr’s operator. I an grateful to Dr. Graham HIGMAN
for pointing out to ne that thes6 equations assume a more natural form in terms
of Jordan algebra. If we chang6 the sign of k , the equations become

If w introduce the Jordan multiplication

equation (6.1 ) implies that h and k are Jordan inverses. Moreover, the l6ft
hand aids of (6~2) can b6 written as the.Jordan polynomial

eo) using (6.1 ) again~ (6~2) can be written

Thus the problem of solving 6quations (6.1) , (6.2 ) is equivalent to determining
the (finite dimensional) spacial r6pr6sentations of th6 (infinite dimensional)
Jordan algobra which has an identity, and is generated by W , H , K subject
to the rGlations

Corresponding to each such representation there will b6 determined an op6ration
which generalizes torsional derivation (1).

Returming now to equations (5.4) , (5.5) ,1st us assume now that h : is non-

singular, and write

(1) This was already known to A. NIJENHUIS .
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Then equation (5-.~4 ) becomes

and (5.5) becomes

Write

so that

Equations (5.4) , (5.5) thus become

An obvious solution of (6 .6 ) is x = 0 , and an obvious solution of (6~10) is
then y = 0 . Equation (6.9) then gives

Thus, provided h ie non-singular, any skew-symmetric tensor fisld 03C9 which
satisfies (6.11) will give ris6 to a suitable operator ad.

7. The Nijenhuis tensor.

An alternative procedure is to define 03C9 to be the Nijenhuis tensor N (h , k)
associated with h and k, where

Let us denote by (5.3)’ equation (5 .3 ) where 03C9 is replaced by the Nijenhuis
tensor N~h ~ k) . Then any pair of t6nsor fislds h ~ k which satisfy (53)~
will give rise to a generalized torsional derivation. When h 
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operator appears as the particular solution k = h of equation (5.3)’ .

It is natural to ask how the operation 65 is modified by choosing for w a
t6nsor of type (l,p) where but retaining the laws of operation (5.1) ~
(5.2) . Evidently (5.3) would be replaced by ’ a similar equation with p negatives
terms instead of the 2 negative terms in (5.3 ) . This equation would certainly be
satisfied when conditions ~~ .~. ) , (5.5) are satisfied, but equation (5.5 ) would
represent p conditions. In the particular case wh6n w is a voctorial 

the skew symmetry of the covariant suffixes would reduce (5.5) to a single oon-
dition.

8. Connexions associatsd with tensor fislds..

The m6thod which we have ussd to obtain generalised torsional derivatives may
also be used to obtain connexions associated with given tensor fiGlds. Suppose

~/ ~ ~ JL are three mixed tensor fields of class oo defined over a

C 00 -manifold M . Consider the mapping e which sands vector fields into tensor
fields of type (1.1) according to the law

0v = 1] + (03B3 h k + 03B4k h) [v !]

are r6al numbers, at present unspecified. Let us assum6 also
that e maps scalar fields into their gradient vector fields, i.6.

If we denote by v# ~ the components of the tensor ev, then direot computation
gives

where
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The operator e is evidently linear ov6r the real numbers. W6 now seek conditions
satisfied by h , k , l in order that

We have

so (807) leads to the requirement

to b6 satisfied by all scalar fields f and all vector fields v .

This leads to the condition

corresponding to (5.3 ) of paragraph 5.

It follows that when the three vector fi61ds h ~ k ,.e satisfy (8.8) , then
«~A ~~ ~T~ 

’

the op6rator 8 can be extended uniquely to arbitrary tensor fields in such a

way that conditions (i) , (ii ) (iii ) of paragraph 3 are satisifed. In this case
0 maps tensor fields of type (p ~ q ) into tensor fields of type ( p ~ q + 1 )
and in particular e maps a scalar field into its gradient.

Equations (8.3) ~ (808) now give

It follows that the coefficients Lcpj can bG intarprst6d as connexion coeffi-
cients and the operation 0 may then be regarded as covariant differentiation

with respect to this connexion. Corresponding to any set of tensor fi6lds

h , k, $ 1., related by (8.8) there is canonically associated a connexion whose
A~1

coefficients are given explicitly by (8.6).
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One obvious solution of (8.8) is obtained by taking

This first condition can be satisfied by taking I)( -- ~ == 0 f + ’6 = 0 , and
the s6cond condition then becomes

Provided that is a non-singular matrix, this equation can b6 satisfied-- -- -1
by taking . R = 1, ’J = 0 ., h = ( I k - k ~ ) . 

,

... ÑA"" ~ ~ 
.

Equation (8.6 ) then becomes

Returning to the general case (8.8), the torsion tensor of the corresponding
connexion giv6D by (8.6) is found to be

For the particular connexion given by (8~12) ~ A~ = 0 ~ 0( = 1, &#x26;= 0 so that

Thus the torsion tensor is not 6qual to the Nijenhuis tensor (as might have been
expected) but is the inner product of this tensor with the tensor (~k - k .U-1

-- - -
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