SÉMINAIRE DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE

T. J. Willmore

Generalized torsional derivation

Séminaire de topologie et géométrie différentielle, tome 1 (1957-1958), exp. no 17, p. 1-12
http://www.numdam.org/item?id=SE_1957-1958__1_A6_0
© Séminaire de topologie et géométrie différentielle
(Secrétariat mathématique, Paris), 1957-1958, tous droits réservés.
L'accès aux archives de la collection « Séminaire de topologie et géométrie différentielle » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Séminaire de TOPOLOGIE 22 mai 1958
єt de GÉONETRTE DIFFERENTIELIE (C. EHRESMANN)

Année 1957/1958
-:-:-:-

GENERALIZED TORSIONAL DERIVATION

by T.J. WILIMORE

1. Introduction.

In a recent paper A.G. WALKER [3] introduced a new derivation associated with an almost complex structure which he called torsional derivation. This derivation is determined by the almost complexg structure, which itself is defined by a tensor field h of type $(1,1)$ such that $h^{2}=-1$. The dérivation is a mapping of tensor fields of type (p, q) into tensor ficlds of type ($p, q+2$), and has the property of annihilating all tensor fields when the almost complex structure has zero torsion. When applied to the torsion tensor itsclf, the derivation gives a non-trivial tensor of type ($1 ; 4$) which appears as a new differential invariant associated with an almost complex structure.

A formula for the torsion H of an almost complex structure was given, for example; by ECKMANN [1]; and it was subsequently shown by NIJENHUIS [2] that by slightly modifying this formula it was possible to establish the tensoriel nature of H without using the relation $h^{2}=-\frac{1}{m}$, i. 6 . the tensor H defined for an arbitrary tensor $\underset{\text { a }}{h}$ became the torsion tensor of the alnost complex structure when $\mathrm{h}^{2}=-\frac{1}{m}$. In [4] WALKER raised the interesting question whether it was possible to modify similarly his formulas defining new tensors (6.g. the new tensor of type $(1,4)$) in such a way that its tensorial nature could be established without using the relation $h^{2}=-\frac{1}{m}$. NIJENHUIS has conjectured that m_{m} is theonly $6 s s \in n t i a l l y$ new tensor ficld which can bs constructed from an arbitrary tensor field h. Walker's results show that this conjecture is false provided that $\underset{m}{h}$ satisfics the additional restriction $h^{2}=-\frac{1}{m}$. If Walker's operation of torsional derivation could be generalized by relaxing the requirement $h_{m}^{2}=-1$, then the conjecture of Nijenhuis would bs disproved. In this papar we make some contribution towards obtaining a gencralized torsional derivation.

2. Walker's operation.

In terms of the tensor h, the components of torsion tensor H are defined by

$$
\begin{equation*}
H_{j k}^{i}=\frac{1}{4}\left(h_{p}^{i} \partial_{[j} h_{k]}^{p}-h_{[j}^{p} \partial|p| h_{k]}^{i}\right), \tag{2.1}
\end{equation*}
$$

and the tensorial character of (2.1) is easily established without using the relation $\mathrm{h}^{2}=-\frac{1}{\mathrm{~m}}$. Following WALKER [4] we define the torsional derivative with respect to the almost complex structure h of a tensor field with components $T_{j \ldots}^{i \ldots \ldots}$ to be the tensor with components $T_{j \ldots . . .}^{i} \|_{r s}$, where

$$
\begin{equation*}
T_{j \ldots| |_{r s}}^{i \ldots}=H_{r s}^{p} \partial_{p} T_{j \ldots}^{j} \ldots+T_{j \ldots .}^{p} \ldots h_{p r s}^{i}+\ldots-T_{p \ldots}^{i \ldots} h_{j r s}^{p}-\ldots, \tag{2,2}
\end{equation*}
$$

and where the right hand member contains a term like $+\mathrm{T}_{\mathrm{j}}^{\mathrm{p}} \ldots \mathrm{h}_{\mathrm{prs}}^{\mathrm{i}}$ corresponding to each contravariant suffix of $T_{j}^{i} \ldots$ and a term like $-T_{p}^{i} \ldots h_{j r s}^{p}$ corrsaponding to each covariant suffix, and where the symbols $h_{p r s}^{i}$ ars defined by (2.3) $\quad h_{j r s}^{i}=-\frac{1}{2} \partial_{j} H_{r s}^{i}+\frac{1}{2} h_{p}^{i}\left(h_{j}^{q} \partial_{q} H_{r s}^{p}-H_{r s}^{q} \partial_{q} h_{j}^{p}+H_{q s}^{p} \partial_{r} h_{j}^{2}-H_{q r}^{p} \partial_{s} h_{j}^{q}\right)$.

It is readily verified by expressing the partial derivatives in (2.2) and (2.3) in terms of covariant derivatives inth respect to some arbitrary symmetric connexion that $T_{j \ldots}^{i} \ldots \|_{r s}$ defined by (2.2) are in fact the components of a tensor, but to establish this result use has to be made of the relatien $\mathrm{h}^{2}=-\frac{1}{\mathrm{~m}}$.

Torsional derivation defined by (232), (2.3) has the usual properties of a derivation relative to addition; multiplication and contraotion of tensors. Moreover, it is casily verificd that

$$
\begin{align*}
& \delta_{j}^{i} \|_{r s}=0 \tag{2.4}\\
& h_{j}^{i} \|_{r s}=0 \tag{2.5}
\end{align*}
$$

On problem is to obtain an operator analogous to Walker's operator without making the restriction $\frac{h^{2}}{m^{2}}=-1$.
3. Extension of operators.

In what follows we shall assums that the differentiable manifold under consideration is of class ∞, and that all tensor fields, vector ficlds, 6 tc. introduced are also of class ∞.

The operator Θ of torsional dexivation defined in paragraph 2 has the following proporties:
i. It is linear over the real numbers i.g. if T_{1}, T_{2} are two tensor ficlds and a, b arbitrary real numbers (constants), then

$$
\circlearrowleft\left(\operatorname{ar}_{1}+\mathrm{bT}_{2}\right)=a \mathbb{N}\left(T_{1}\right)+b \Omega\left(T_{2}\right) ;
$$

ii. it satisfics the usual product law, i.e.

$$
\Theta\left(T_{1} \otimes T_{2}\right)=\left(\Theta T_{11}\right) \bullet T_{2}+T_{1} \cdot\left(\circlearrowleft T_{2}\right) ;
$$

iii. since $(1)\left(\delta_{j}^{i}\right)=0,0$ comutes with the operation of contraction, $6 \cdot g$.

$$
\omega\left(\delta_{i_{1}}^{j_{3}} T_{j_{1} j_{2} j_{3}}^{i_{1} i_{2}}\right)=\delta_{i_{1}}^{j_{3}} \otimes\left(T_{j_{1} j_{2} j_{3}}^{i_{1} i_{2}}\right)
$$

In particular, when restricted to contravariant vector ficlds $\underset{\sim}{u}, \underset{\sim}{v}$ and scalars f the operator satisfies

$$
\begin{aligned}
& \text { a. } \theta(a \underset{m}{u}+b \underset{m}{v})=a \sigma_{m} \underset{m}{ }+b(G \underset{m}{v},
\end{aligned}
$$

Conversely, suppose that the operator (G) had been defined only for contravariant vector fields and scaler fields such that (a) and (b) were satisficd. Then the domain of the operator \mathbb{T} can bs extended in a unique manner to include tensor ficlds of arbitrary type (p, q) so that conditions (i), (ii) and (iii) ars satisfied. This follows from precisely the same arguments which allow ordinary oovariant differentiation defined first for contravarisnt vector ficlds and scalars to be extended to general tensor fields. More generally, any differentiel operator which is defined for contravariant vector ficlds ant scalars so that conditions (a) and (b) are satisfied may be extended in a unique manner to
operate on arbitrary tensor fields so that conditions (i), (ii) and (iii) ars satisfied. It follows that it is sufficient to definc a gencralized torsional derivation over vector fields and scalar fields provided that condition (a) and (b) are satisficd.

4. The Lis derivative.

This differential operator \mathcal{L}_{V}, detemined by a given contravariant vector field ∇, maps tensor ficlds of type (p, q) into tensor ficlds of the same type. The effect of $S v$ on a contravariant vector field with components u^{i} is defined by

$$
\begin{equation*}
\left(\delta_{\nabla} u\right)^{i}=v^{i} \partial_{j} u^{i}-u^{j} \partial_{j} v^{i} \tag{4.1}
\end{equation*}
$$

while the effect on a scalar f is given by

$$
\begin{equation*}
\mathcal{L}_{v} f=v^{j} \partial_{j} f \tag{4.2}
\end{equation*}
$$

It is readily verified that the operator \mathcal{S}_{v} satisfies conditions (a), (b) of paragraph 3, and it can therefore be extended uniquely to operate en arbitrary tensor ficlds of type (p, q) so that conditions (i), (ii), (iii) of paragraph 3 are satisficd. For a detailed study of lie derivatjives the reader is referred to the recent book by K. YANO [4]. However, except for the definition of the Lie derivative of a tensor field of type (p, q), the only part of the theory required here concerns the invariant nature of the operation of Lie derivation. For the sake of completenesw give an alternative approach to the Lie derivative, due to A.G. WALKER, which does not s6em to be included in the standard texts on the subject. For reasons of brevity we shall obtain a formula for the lie derivative of a tensor field of type (1, 2), but the method can be used with a tensor field of general type (p, q).

Let $\mathrm{T}^{\mathbf{i}}{ }_{j k}$ be the components of a tensor field of type (1,2). Let $\mathrm{L}_{\mathrm{i}}^{\mathrm{i}} \mathrm{l}$, $r_{s \ell}{ }_{s}$ be the components of two arbitrary symmetric affine connexions L, r; then the symbols $X_{s \ell}^{i}$ defined by

$$
\begin{equation*}
x_{s l}^{i}=L_{s \ell}^{i}-r_{s l}^{i} \tag{4.3}
\end{equation*}
$$

are components of a symmetric tensor of type $(1,2)$. The covariabt derivatives with respect to L, Γ will be denoted by a coma and a bar respectively.

Then we have
(4.4) $T_{j k, l}^{i}=\partial_{l} T_{j k}^{i}+L_{s l}^{i} T_{j k}^{s}-L_{j l}^{s} T_{s k}^{i}-L_{k \ell}^{s} T_{j s}^{i}$,

$$
\begin{equation*}
T_{j k \mid \ell}^{i}=\partial_{\ell} T_{j k}^{i}+r_{s \ell}^{i} T_{j k}^{i}-r_{j \ell}^{s} T_{s k}^{i}-r_{k \ell}^{s} T_{j s}^{i} . \tag{4.5}
\end{equation*}
$$

Subtracting (4.5) from (4.4) and using (4.3) we get

$$
\begin{equation*}
T_{j k, \ell}^{i}-T_{j k}^{i} / \ell=X_{s \ell}^{i} T_{j k}^{s}-X_{j \ell}^{s} T_{s k}^{i}-X_{k \ell}^{s} T_{j s}^{i} \tag{4.6}
\end{equation*}
$$

Now let v^{i} be the components of a given vector field in Then we have (4.7)

$$
v^{i}, l^{-v^{i}} \mid \ell=x_{s}{ }^{i} v^{s}
$$

If we multiply (4.6) by ∇^{ℓ}, we obtain, on using the symmetry of $\mathrm{X}_{\mathrm{s} \ell}^{\mathrm{i}}$,

$$
\text { (4.8) } \quad\left(T_{j k, \ell}^{i}-T_{j k \mid \ell}^{i}\right)^{\ell}=T_{j k}^{s} X_{\ell s}^{i} v^{\ell}-T_{s k}^{i} X_{\ell j}^{s} \nabla^{\ell}-T_{j s}^{i} X_{l k}^{s} v^{\ell}
$$

Using (4.7) this equation may be written

$$
\begin{aligned}
& \text { (4.9) } T_{j k, l}^{i} V^{l}-T_{j k}^{s} v_{, s}^{i}+T_{s k}^{i} \nabla^{s}, j+T_{j s}^{i} \nabla^{s}, k \\
& =T_{j k}^{i}\left|\ell V^{\ell}-T_{j k}^{s} v^{i}\right|_{s}+\left.T_{s k}^{i} v^{s}\right|_{j}+T_{j s}^{i} v^{s} \mid k
\end{aligned}
$$

It follows that the value of left hend member of (4.9) is independent of the particular symmetric connexion used. In particular, by choosing the symmetric connexion whose components are all zero, the covariant derivatives in (4.9) may be replaced by partial derivatives. Thus we find that the mapping $\mathcal{L}_{V}: \underset{m}{T} \rightarrow \mathbb{L}_{V m}^{T}$ given by

$$
\begin{equation*}
\left(\mathcal{L}_{v} T\right)_{j k}^{i}=v^{\ell} \partial_{\ell} T_{j k}^{i}-T_{j k}^{s} \partial_{s} v^{i}+T_{s k}^{i} \partial_{j} v^{s}+T_{j s}^{i} \partial_{k} \cdot v^{s} \tag{4.10}
\end{equation*}
$$

is an invariant operation. In the more general case we obtain similarly the formula
(4.11)

$$
\left(\hat{\delta}_{v M}^{T}\right)_{j_{1} \cdots j_{q}}^{i_{1} \cdots i_{p}}=v{ }^{l} \partial_{l} T_{j_{1} \cdots j_{q}}^{i_{1} \cdots i_{p}}-T_{j_{1} j_{2} \cdots j_{q}}^{j_{q}} \partial_{s} v^{i_{1}}-T_{j_{1} j_{2} \cdots j_{q}}^{i_{1} s i_{3} \cdots i_{p}} \partial_{s} v^{i_{2}} \cdots
$$

$$
+T_{s j_{2} \cdots j_{q}}^{i_{1} \cdots i_{p}} \partial_{j_{1}} v^{s}+T_{j_{1} s j_{3} \cdots j_{q}}^{i_{1} \cdots i_{j}} \partial_{2}^{s}+\cdots
$$

In the particular case when T is a contravariant vector u or a scalar f, equation (4.11) reduces to (4.1) and (4.2) respectively. The operator defined by (4.11) satisfies conditions (i), (ii) and (iii) of paragraph 3, and hence is the extension to arbitrary tensor fields of the operator \mathbb{L}_{v} defined for contravariant vectors and scalars by squations (4.1), (4.2).

Instead of using the notation $\mathcal{S}_{v} T$ for the Lic derivatives of $T \mathrm{~m}$ with respect to the vector field $\underset{\sim}{v}$, it will be nore convenient to use the notation $[\mathrm{m}, \mathrm{T}]$. Indecd, we shall find it convenient to interpret $[\mathrm{V}, \mathrm{T}]$ as the result of operating on a fixed tensor field T by a variable vector field $\underset{\sim}{v}$, rather than tho classical interprotation when $\underset{\mathrm{m}}{\mathrm{m}}$ is fixed and $\underset{\mathrm{m}}{T}$ is variable tensor field. 5. The operator 90 .

Let $\frac{h}{m}$, k be two tensor fields of type ($1, \downarrow$), and lat ${ }_{\mathrm{m}}^{\mathrm{m}}$ be a tensor field of typs (1,2). Define an operator $(\sigma$ which maps ficlds of contravariant vectors into tensor fields of type (1,2) according to the law

$$
\begin{equation*}
(\infty) v=\frac{1}{4} h[k v, \omega]+\frac{1}{4} k[h v, \omega]+\frac{1}{4}(h k+k h)[v, \omega] . \tag{5.1}
\end{equation*}
$$

Suppose that $\$ 0$ also maps ficlds of scalars into tensor ficlds of type (0,2) according to the law

$$
\begin{equation*}
(\omega f)_{r s}=\omega_{r s}^{Q} \partial_{a} f \tag{5.2}
\end{equation*}
$$

We segk conditions on $\underset{m}{h}, k$ and $\underset{m}{w}$ such that conditions $3(a), 3(b)$ ars satisfied for all $\underset{\mathrm{m}}{\boldsymbol{m}}$ and f . The operator (3 is lingar over the real mumbers so $3(\mathrm{a})$ is satisficd. Condition 3 (b) leads to the equation

$$
2 \omega_{r s}^{a}\left(h_{m}^{i} k_{p}^{m}+k_{m}^{i} h_{p}^{m}+2 \delta_{p}^{i}\right)-\delta_{r}^{q}\left\{h_{n}^{i} \omega_{b s}^{n} k_{p}^{b}+k_{n}^{i} \omega_{b s}^{n} h_{p}^{b}+\left(h_{m}^{i} k_{n}^{m}+k_{m}^{i} h_{n}^{m}\right) \omega_{p s}^{n}\right\}
$$

$$
\begin{equation*}
-\delta_{s}^{a}\left\{h_{n}^{i} \omega_{r b}^{n} k_{p}^{b}+k_{n}^{i} \omega_{r b}^{n} h_{p}^{b}+\left(h_{m}^{i} k_{n}^{m}+k_{r}^{i} h_{n}^{m}\right) \omega_{r p}^{n}\right\}=0 \tag{5.3}
\end{equation*}
$$

This relation between h, k and m is seen to be a necessary and sufficient condition that the mapping (G) can be extended uniquely to tensor fields of arbitrary order so that conditions 3 (i), (ii), (iii) are satisficd.

In particular this condition is evidently fulfilled when each tern vanishes, and under these circunstances we obtain (when $\mathrm{m}_{\mathrm{m}}^{\mathrm{m}} \neq 0$) equations which in matrix form may be written

$$
\begin{equation*}
\underset{\min }{\mathbf{k}}+\underset{\operatorname{mm}}{\mathbf{h}}=-2, \tag{5.4}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{mam}_{m}^{\mathrm{h}} \omega_{m}^{k}+\underset{m}{k} \omega \omega_{m}^{\omega} . \tag{5.5}
\end{equation*}
$$

Condition (5.5) really represents two equations obtained by fixing in trirn one of the two covariant suffixes of ω. However, when ω is skew-syninctric or symmetric in both covariant indices, then conditions (5.5) loads to a single gquation.

In the particular case when $h=\frac{k}{m}$, equation (5.4) reduces to

$$
\begin{equation*}
h^{2}=-1, \tag{5.6}
\end{equation*}
$$

so the manifold admits an almost complex structure. In this case (5.5) refuces to the condition

$$
\begin{equation*}
\min _{m}^{\omega}+\underset{m m}{\omega}=0 \tag{5.7}
\end{equation*}
$$

Now it is easily verified that the torsion tensor H of the alnost complex structure derived from h satisfiss the condition (5.7), so we may take $\omega_{m}=H$. Equation (5.1) then becomes

$$
\begin{equation*}
\circledast v=\frac{i}{2} h[h v, H]-\frac{1}{2}[\mathrm{~V}, \mathrm{H}], \tag{5.8}
\end{equation*}
$$

and (5.2) becomes

$$
\begin{equation*}
\circlearrowleft \partial f=H_{r s}^{a} \partial_{a} f \tag{5.9}
\end{equation*}
$$

Now it is easily verified that equations (5.8), (5.9) are precisely the same equations as those obtained by applying Walker's operation of torsional derivation. It follows that Walker's operator is obtained from our operator 30 by taking the special solutions of (5.4), (5.5) given by $h=k, \omega=H$. Our operator (30) is thus se6n to be a natural generalization of Walker's operator.

6. More gensral solutions.

It is evident that equations (5.4), (5.5) have many solutions besides the particular one which yields Walker's operator. I an grateful to Dr. Grahom HIGMAN for pointing out to de that these equations assume a more natural form in terms of Jordan algebra. If we change the sign of $\frac{k}{\mathrm{k}}$, the equations become

$$
\begin{equation*}
\underset{\operatorname{man}}{\mathbf{k}}+\mathbf{k} \mathbf{h}=2, \tag{6.1}
\end{equation*}
$$

$$
\begin{equation*}
h \omega_{m} \omega_{m}+k \underset{\sim m}{c} \omega_{m} h=-2 \omega_{\mathrm{m}} . \tag{6.2}
\end{equation*}
$$

If we introduce the Jordan multiplication

$$
\{a b\}=\frac{1}{2}(a b+b a)
$$

equation (6.1) implies that h and k are Jordan inverses. Moreover, the left hand side of (6.2) can be written as the Jordan polynomial
so) using (6.1) again, (6.2) can bs written

$$
\left\{\{\omega \mathrm{h}\} \frac{k}{m}\right\}+\left\{\left\{\omega_{m}\right\} \underset{m}{h}\right\}=0 ;
$$

Thus the problem of solving equations (6.1), (6.2) is equivalent to determining the (finite dimensional) special representations of the (infinite dimensional) Jordan algebra which has an identity, and is generated by $\mathrm{W}, \mathrm{H}, \mathrm{K}$ subject to the relations

$$
\begin{align*}
& \mathrm{HK}=1 \tag{6.3}\\
& (\mathrm{WH}) \mathrm{K}+(\mathrm{WK}) \mathrm{H}=0
\end{align*}
$$

Corresponding to each such representation there will be determined an operation which generalizes torsional derivation (${ }^{1}$).

Returning now to squations (5.4), (5.5), let us assume now that h : is nonsingular, and write

[^0]\[

$$
\begin{equation*}
\underset{m}{k}=-\frac{h}{n}^{-1}+x \tag{6.5}
\end{equation*}
$$

\]

Then squation (5.4) becomes

$$
\begin{equation*}
h x+x h=0, \tag{6.6}
\end{equation*}
$$

and (5.5) bscomss

$$
\begin{equation*}
h\left(\omega h^{-1}+h_{m}^{-1} \omega\right)+h_{m}^{-1}\left(\omega h+h h_{m} \omega\right)=h \min _{m}^{\omega} x+x \operatorname{man}_{\mathrm{m}}^{\omega} . \tag{6.7}
\end{equation*}
$$

Writs
(6.8)

$$
y=\omega h^{-1}+h^{-1} \omega,
$$

so that
(6.9)

$$
\operatorname{myh}_{\mathrm{m}}=\omega \mathrm{h}+\mathrm{h} \underset{\mathrm{~m}}{\mathrm{~m}} \cdot
$$

Equations (5.4), (5.5) thus become

$$
\begin{equation*}
h x+x h=0, \tag{6.6}
\end{equation*}
$$

(6.10)

An obvious solution of (6.6) is $x=0$, and an obvious solution of (6.10) is then $y=0$. Equation (6.9) then gives

$$
\begin{equation*}
\omega_{m m}^{h}+h \underset{m}{\omega}=0 . \tag{6.11}
\end{equation*}
$$

Thus, provided h is non-singular, any skew-symmetric tensor field a which satisfies (6.11) will give rise to a suitable operator 60 .

7. The Nijenhuis tensor.

An alternative procedure is to define w to be the Nijenhuis tensor $N(h, k)$ associated with h and k, where

$$
\begin{equation*}
8 N_{j k}^{i}=h_{p}^{i} \partial\left[j k_{k]}^{p}+k_{p}^{i} \partial\left[j h_{k]}^{p}-h_{[j}^{p} \partial|p| k_{k]}^{i}-k_{[j}^{p} \partial|p| h_{k]}^{i}\right.\right. \tag{7.1}
\end{equation*}
$$

Let us denote by (5.3)' equation (5.3) where cm_{M} is replaced by the Nijenhuis tonsor $N(h, k)$. Then any pair of tensor fields h, k which satisfy (5.3)' will give rise to a generalized torsional derivation. When $\mathrm{h}^{2}=-1$, Walker's
operator appears as the particular solution $k=h \quad$ of equation (5.3)'.
It is natural to ask how the operation Θ is modifisd by choosing for m_{m} a tensor of type ($1, \mathrm{p}$) where $p \neq 2$, but retaining the laws of operation (5.1), (5.2). Evidently (5.3) would be replaced by a similar equation with p negatives terms instead of the 2 negative terms in (5.3). This equation would certainly be satisfisd when conditions (5.4), (5.5) ars satisfisd, but equation (5.5) would represent p conditions. In the particular case when ω is a vectorial p-form, the skew symmetry of the covariant suffixes would reduce (5.5) to a single condition.
8. Connexions associated with tensor ficlds.

The method which we have used to obtain generalized torsional derivatives may also be used to obtain connexions associated with given tensor flelds. Suppose $\mathrm{han}_{\mathrm{h}}^{\mathrm{h}}, \underset{m}{\mathbf{k}}, \underset{m}{\ell}$ are three mixed tensor fields of class ∞ defined over a $C^{\infty}{ }^{\text {-manifold }}$ M. Consider the mapping θ which sends vector fields into tensor ficlds of type (1.1) according to the law

$$
\theta v=\alpha_{m}[k v, l]+\beta k[h v, l]+\left(\gamma \underset{m}{h} k+\delta_{m}^{k} h\right)[\dot{v}, l]
$$

where $\alpha, \beta, \gamma, \delta$ are real numbers, at present unspecified. Let us assume also that θ maps scalar ficlds into their gradient vector fields, i.e.

$$
\begin{equation*}
(\theta f)_{i}=\partial_{i} f \tag{8.2}
\end{equation*}
$$

If we denote by $\nabla_{\text {林 }}^{c}$, the componsnts of the tensor θv, then direct computation gives

$$
\begin{equation*}
\nabla_{\text {排 }}^{c}=A_{p}^{c} \ell_{i j}^{a} \partial_{a} v^{p}+B_{p}^{c} \partial_{j} v^{p}+L_{p j}^{c} v^{p}, \tag{8.3}
\end{equation*}
$$

where

$$
\begin{align*}
& A=-(\alpha+\gamma) \underset{\ln }{\mathbf{h}} \mathbf{k}-(\beta+\delta) \underset{\operatorname{mon}}{\mathbf{k}}, \tag{8.4}
\end{align*}
$$

The operator θ is evidently linear over the real numbers. We now seck conditions satisfied by $h, \mathrm{~m}_{\mathrm{m}}^{\mathrm{h}}, \mathrm{l}_{\mathrm{in}}$ in order that

$$
\begin{equation*}
\theta(f v)=f \theta(v)+\theta f \otimes{ }_{m} \tag{8.7}
\end{equation*}
$$

Ws have

$$
\left(f v^{c}\right)_{\# j}=f v_{\# j}^{c}+\left(A_{p}^{c} l_{j}^{a}+B_{p}^{c} \delta_{j}^{a}\right) v^{p} \partial_{a} f
$$

so (8.7) leads to the requirement

$$
v^{c} \partial_{j} f=\left(A_{p}^{c} l_{j}^{a}+B_{p}^{c} \delta_{j}^{a}\right) v^{p} \partial_{a} f
$$

to be satisficd by all scalar ficlds f and all vector flolds v.
This leads to the condition

$$
\begin{equation*}
\delta_{p}^{c} \delta_{j}^{a}=A_{p}^{c} l_{j}^{a}+B_{p}^{c} \delta_{j}^{a} \tag{8.8}
\end{equation*}
$$

corresponding to (5.3) of paragraph 5.
It follows that when the three vector fields $\underset{m}{\mathrm{~h}}, \underset{\sim}{\mathrm{k}}, \underset{\sim}{\ell}$ satisfy (8.8), then the operator θ can be extended uniquely to arbitrary tensor fields in such a way that conditions (i), (ii) (iii) of paragraph 3 are satisifed. In this case θ maps tensor fields of type (p, q) into tensor fields of type ($p, q+1$), and in particular θ maps a scalar ficld into its gradient.

Equations (8.3) : (8.8) now give

$$
\nabla^{c}+j=\left(\delta_{p}^{c} \delta_{j}^{a}-B_{p}^{c} \delta_{j}^{a}\right) \partial_{a} v^{p}+B_{p}^{c} \partial_{j} v^{p}+L_{p j}^{c} v^{p}
$$

i.t.

$$
\begin{equation*}
v_{\neq j}^{c}=\partial_{j} \partial^{c}+L_{p j}^{c} v^{p} \tag{8.9}
\end{equation*}
$$

It follows that the coefficients $L_{p y}^{c}$ can be interpreted as connexion coefficients and the operation 0 may then be regarded as covariant differentiation with respect to this connexion. Corresponding to any set of tensor ficlds $\mathrm{hm}, \mathrm{k} . \mathrm{sm}_{\text {am }}^{\ell}$ related by (8.8) there is canonically associated a connaxion whose coefficients are given explicitly by (8.6).

Ont obvious solution of (8.8) is obtained by taking

$$
\begin{equation*}
A_{p}^{c}=0, \quad B_{p}^{c}=\delta_{p}^{c} \tag{8.10}
\end{equation*}
$$

This first condition can be satisficd by taking $\alpha+\gamma=0, \beta+\gamma=0$, and the second condition then becones

$$
\begin{equation*}
\alpha_{m} h(l k-k \underset{m}{k})+\beta_{m} k(\ell h-h l)=1 \tag{8.11}
\end{equation*}
$$

Provided that ($\ell k-k \ell)$ is a non-singular matrix, this gquation can be satisfied by taking $\alpha=1, \beta=0, \underset{m}{ }=(l k-k l)^{-1}$.
Equation (8.6) then becomes

$$
\begin{equation*}
L_{p j}^{c}=h_{i}^{c}\left(l_{a}^{i} \partial_{j} k_{a p}^{a}+k_{p p}^{a} \partial_{a} l_{j}^{i}-l_{j}^{a} \partial_{a} k_{p p}^{1}-k_{n}^{i} \partial_{p} l_{d,}^{a}\right) \tag{8.12}
\end{equation*}
$$

Returning to the general case (8.8), the torsion tensor of the corresponding connexion given by (8.6) is found to be
(8.13) $T_{p j}^{c}=\frac{1}{2}\left(L_{p j}^{c}-L_{j p}^{c}\right)=A_{i}^{c} \partial_{j} \ell_{m p}^{i}+8 \times h_{i}^{c} N_{c p}^{i}(\ell, \underset{m}{k})+8 \beta k_{m i}^{c} N_{j p}^{i}\left(\ell_{m}, h_{m}^{h}\right)$

For the particular connexion given by (8.12), $A_{i}^{c}=0, \alpha=1, \beta=0$ so that (8.14)

$$
T_{p j}^{c}=h_{i}^{c} N_{j p}^{i}(\ell, k)
$$

Thus the torsion tensor is not equal to the Nijenhuis tensor (as might have been expected) but is the inner product of this tensor with the tensor $(\ell k-k)^{-1}$

BIBLIOGRAPHIE

[1] ECKMANN (Beno). - Sur les structures complexes et presque complexes, Colloque international de Géométrie différenti6lle [Strasbourg. 1953]. - Paris, C.N.R.S., 1953 (Coll. intern. du C.N.R.S. n ${ }^{\circ}$ 52) ; p. 151-159.
[2] NIJENHUIS (Albert). - X_{n-1}-forming sets of oigenvectors, Kon. Ned. Akad. Wet., Proc. Sect. Sc., Series A, t. 54, 1951, p. 200-212.
[3] WALKER (A. G.). - Dérivation torsionnelle ϵt scconds torsion pour une structurs presque complexe, C. R. Acad. Sc. Paris, t. 245, 1957; p. 1231-1215.
[4] IANO (Kentaro). - The theory of Lie derivatives and its applications. - Amsterdam, North Holland. Publishing Co, 1956.

[^0]: (${ }^{1}$) This was already known to A. NIJENHUIS.

