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Année 1957/1958

GENERALIZED TORSIONAL DERIVATION

by TeJ. WILLMORE

1. Introductions

In a recent paper A.G. WALKER [ 3] introduced a new derivation associated with
an almost complex structure which he called torsional derivation. This derivation
is determined by the almost complexs structure, which itself is defined by a
tensor field h of type (1 1) such that h2 =1 The dérivation is a mapping of
tensor fields of type (p , q) into tensor ficlds of type (p, q +2) , and
has the property of annihilating all tensor fislds when the almost complex struc-
ture has zero torsione When applied to the torsion tensor itsclf, the derivation
gives a non-trivial tensor of type (l',4) which appears as a new differential
invariant associated with an almost complex structurc.

A formula for the torsion ”Ii of an almost complex structure was given, for
example, by ECKMANN [1], and it was subscquently shown by NIJENHUIS [2] that by
slightly modifying this formula it was possible to establish the tensoriel na—
ture of H without using the relation h2 = - l , 1.6. the tensor H defined
for an arbltrary tensor h became the torsmn tensor of the almost complex
structure when Mltf = - 1 o In [47] WAIKER raised the mtcrestlng question whether
it was possible to modify similarly his formulae defining new tensors (cege the
new tensor of type (1 s4)) in such a way that its tensorial nature could be esta-
blished without using the rclation 32 = - ,..%\ « NIJENHUIS has conjectured that MIE is
theonly essentially new tensor £ield which can be constructed from an arbitrary
tensor field ng\ e Walker's rcsults show that thig conjecture is false provided
that «I«l\ satisfies the additional restriction ~1& = -‘}A « If Walker's operation
of torsional derivation could be generalized by relaxing the requirement
h2 = = 1 , then the conjecture of Nijenhuis would be disproved. In this paper

M
we make some contribution towards obtaining a generalized torsional derivation.
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2. Walker's operation.

In terms of the tensor J& » the components of torsion tcnsor Jﬁ are defined by

1,4 i
(2.1) Hjy = 35 o BBy - bRy 3, Bpp)

and the tengorial character of (R.1) is easily established without using the
relation h™ = =1 « Following WALKER [4] we define the torsional derivative with

AN
respect to the almost complex structure h of a tensor fisld with conponents

Tj": to be the tensor with components T;"'llrs » Where

N XX = P ese see i - eee ' D -
(2.2) T;...llrs Hre ap T?... * Tgo.. hprs e T;... hjrs cet 2

and where the right hand member contains a term like + T?"' h%rs -corresponding
to each contravariant suffix of Tiz:: and a term likc = T;"‘ h?rs correapon—
ding to each covariant suffix, and where the symbols h;rs are defined by

i __1 1.i,9 P _ 4 P, yP 2 _ P q
(23) M =-730d H:Il_s+§-hp(hj 3y Hog = Hg O BE +HP 0 ni - #D o nd) .
it 1s readily verified by cxpressing the partial derivatives in (2.2) and (2.3)
in terms of covariant derivatives vith respect to some arbitrary syrmetric connexion
that Tj:"'llré defined by (2.2) are in fact the components of a tensor, but to
establish this result use has to be made of the relatiem h° = of .

AM A
Torsional derivation defined by (232), (2.3) has the usual properties of a

derivation relative to addition, multiplication and contraotion of tensors.

Moreover, it is easily verified that

( -1 -

\204) &j “rs = O 9
i -

(2u5) hj Hrs =0 .,

Otr problem is to obtain an opsrator analogous to Walker's operator without
making the restriction h2 =-1,
L3 ANA
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3. Extension of operatorse.

In whot follows we shall assume that the differentiablec manifold under conside=
ration is of class o , and that all tensor fields, vector fields, etc. intro-
duced are also of class @

The operator (0 of torsional derivation defined in paragraph 2 has the following
properties ¢

i. 1t is linear over the real numbers i.c. if E.l ’ 32 are two tensor fields
end a, b arbitrary real mumbers (constants) , then

@(gﬁl + %):a@%) +b @gz) 3
ii. 1t satisfles the usual product law, i.e,

O eB) = (®F) oL+ 5 ¢ @)

oo

113, simce [0 ( 8;’)‘ =0, (d conmutes with the operation of contraction, eeg.

1.4 3
M1’ )-53@(1'

o 511 1,93, iy

) .

In particular, when restricted to contravariant vector fields 2, v and
scalars f the operator satisfies

ae @(ag-!-bx):a@xi-b@‘x ,
be GB(fg)=f©£+®fa~1& .

Conversely, suppose that the operator (0 had been defined only for contravariant
vector fields and scaler fields such that (2) and (b) were satisfied. Then the
domain of the operator (O can be extended in a unique manner to include tensor
fislds of arbitrary type (p , q) so that conditions (1), (ii) and (iii) are
gatisfied. This follows from precisely the same arguments which allow ordinary
covariant differentiation defined first for contravariant vector fields and
scalars to be extended to general tensor ficlds. More generally, any differential
opsrator which is defined for contravariant vector fields and scalars so that
conditions (a) and (b) are satisfied may be extended in a unique mamnmer to
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operate on arbitrary tensor ficlds so that conditions (i) , (ii) and (1ii) are
satisfied. It follows that it is sufficient to define a gencralized torsional
derivation over vector fields and scalar fields provided that condition (a) and
(b) are setisficde.

3+ The Lie derivativee

This differential operator & v deternined by a given contravariant vector
field Y, maps tensor ficlds of type (p , q) into tensor ficlds of the same
typee The effect of QJV on a contravariant vector field with components ui is
defined by

(4.1) (ﬁ.v u)i = v aj ut - ol aj w ,

while the effect on a scalar f is given by

(4.2) L, t=v 3 f

It is readily verified that the opsrator ?"v satisfies conditions (a) , (b)
of paragraph 3, and it can therefore be extended uniquely to operatc cn arbitrary
tensor fields of type (p , q) so that conditions (1) , (ii) , (iii) of para=-
graph 3 are satisfied. For a detailed study of Lie derivatives the readesr is
referred to the recent book by K. YANO [4] . However, except for the definition
of the Iie derivative of a tensor field of type (p , q) , the only part of
the theory required here concerns the invariant nature of the operation of
Lie derivation. For the sake of complectenessws give an alternative approach to
-the Lie derivative, dus to A.G. WALKER, which does not secm to be included in
the standard texts on the subject. For reasons of brevity we shall obtain a fore
mule for the Lie derivative of a tensor field of type (1 , 2) , but the method
can be used with a tensor field of gemeral type (p , q)

i i

Let T 1k be the components of a tensor field of type (1,2). Let L ol ?
r"8 g be the components of two arbitrary syrmetric affine connexions L , U then the
symbols Xis p defined by '

i _ .1 ri
(403) . XSQ—LSL- SL
are components of a symmetric tensor of type (1 , 2) « The covariabt derivatives
with respsct to L , will be denoted by a comma and a bar respectively.
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Then we have

(4.4) T:;kb %Ti”‘i %~ ;]5?, sk LkaT;s ’

i - i =8
(405) Tjklf. = D( Ti;'k + FSQ T?'].k 32 Sk r T-:]']-S .

Subtracting (4.5) from (4.4) and using (4.3) we get
(4.6) T;k, |0 = Xy T jk = ij - Xgq T}a .

Now lst vi be the components of a given vector field Z. o Then we have
(4 07) vi - V I 2 = Xi
If we multiply (4.6) by vﬂf , We obtain, on using the symmetry of Xis L

| 1 i :
(4.8)  (Th 4 - T vt = 15 X v - T By v - Tiy Xy v

Using (4.7) this equation may be written

' {_ms A i _s
(4.9) T;'k’gv T.'Ik v 8 + Tsk v ) + Tjs v k

i 8
1 fi IR

_ L _ms 1 i _s
= Tikll,v T, v lB f TBk v

It follows that the value of left hand member of (4.9) is independent of the
particular symmetric connexion usede In particular, by choosing the symmetric
connexion whose components are all zero, the vovariant derivatives in (4.9) may
be replaced by partial derivatives. Thus we find that the mapping

2 -

Spt AT G legvaly

- i _ ./ i i 8 8
(4.10) (g,v T);]k"v S T‘}k jka v+ T ajv +T}‘S ak-v ,

is an invariant operation. In the more general case we obtain similarly the
formula '
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iloc-i iloo.i 512-.- 1 ilSi seel i
¢ T - 377P 3 v A,
()’JV“)Jlooojq v a-e leoooj Jljzooojq aS v ) jldzcooj asv M
(4.11)
i ...i i ...i
1 s 1
+ 332--.5 aj v o+ le jB'“J ajgrs + see

In the particular case when T is a contravariant vector u ora gcalar f ,
equation (4.11) reduces to (4.1) and (4.2) respectively. The operator defined
by (4.11) satisfics conditions (1) , (1i) and (141) of paragraph 3, and hence is
the extension to arbitrary tensor fields of the cperator Bv defined for
contravariant vectors and scalars by equations (4.1) , (4.2).

Instead of using the notation Sﬁ, T for the Lic derivatives of T with
respect to the vector field N :I.t w:lll bs nore convenient to use ths notation
[v ’ T] . Indecd, we shall fJ.nd it convenient to interpret [v T] as the result of
operating on a }_f_'}___xe_c_i_ tensor field E« by a veriable vector f:.eld AT rather than-
tho classical interprotation whon v, is fixed and "}‘“ is varisble tensor field.

5. The operator ) .

Let h, k be two tensor fislds of type (1,1), and let ¢ be a tensor ficld
of type (1,2). Define an operator (@ which maps fields of contravariant vectors
into tensor fields of type (1,2) according to the law

(5.1) @®v=ghliv,od+ kv, ol + Hok + k) [v 0] .

Suppose that (0 also maps fields of scalars into tensor fields of type (0,2)
according to the law

(5°2) (LQ f) :S aa £ .

We seek conditions on h , k and o> such that conditions 3(a) , 3(b) are
satisfied for all Y and f The operator (33 is linear over the real mmbers
so 3(a) is sat.isfied. Com.itn.on 3(b) 1leads to the equation

n n

a i i .m -1 i wh b i b i m n
2°°rs(%18;+kmhp+25p) {hn bsk +kn p+(hmkm*kihn)°i)s}

(543) : b

a (,1i B b n i i.n ny_
"és{hn x'bkp+1{21(“)1'lahp"'(h kn+knhn)°°rp}—o
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This relation between h , k and g2 is seen to be a necessary and sufficient
MA
condition that the mapping (9 can bc extended uniquely to tensor fields of
arbitrary order so that conditions 3(i) , (ii) , (iii) are satisfied.

In particulapr this condition is evidently fulfilled when each term vanishes,
and under these circumstances we obtain (when @ ] ‘9‘) equations which in matrix
form may be written

YY" mm M
(5.5) howk +kwh=2w ,
AMAMMA M M A

Condition (5.5) really represents two equations obtained by fixing in turn one
of the two covariant suffixes of « « However, when o is skew-syunetric or symme-
trioc in both covariant indices, then conditions (5.5) leads to a single equation.

In the particular case when ,,t,l. = ~l& y equation (5.4) reduces to

(5.6) ﬂrf ==l ,

So. the manifold admits an almost complex structure. In this case (5.5) reduces to
the condition

(547) hed+ coh=0
AMA M AM M .Y

Now it is easily verified that the torsion tensor H of the alnost complex
structure derived from h satisfies the condition (5.7), 80 we nmay teke
w=H . Equation (5.1) then becomes

(5.8) @v:%h[hv , H]-%[v ,‘H]
and (5.2) becomes
(509) ' @f = Hars a&. f °

Now it is easily verified that equations (5.8) , (5.9) are precisely the same
equations as those obtained by applying Walksr's operation of torsional derivatiom
It follows that Walker's operator is obtained from our operator G0 by taking

the special solutions of (5e4) 5 (5.5) given by h =k, w=H . Our operator

(9 1is thus seen to be a natural generalization of Walker's operator.
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6« More gensral solutionse

It is evident that equations (5.4) , (5.5) have many solutions besides the
perticular one which yields Walker's operator. I an grateful to Dr. Graham HIGMAN
for pointing out to me that these aquations assume a more natural form in terms
of Jordan algebra. If we changs the sign of ~1§ s the cquations becone

(641) hk+kh=2 ,
MA o A A

(6.2) : h wk+k coh==2cw.
M A M M MAMA MA

If we introduce the Jordan multiplication

%ab} = %(ab +ba) ,

equation (6.1) impliss that h and k are Jordan inverses. Moreover, the left
hand side of (6.2) can bs written as t.hs ‘Jordan polynomial

2 Uil &+ fux) 2] -fetai}

80} using (6.1) again, (642) can be written

Yord &)+ a3 8

Thus the problem of solving squations (6.1) s (642) is eguivalent to determining
the (finite dimensional) special representations of the (infinite dimensional)
Jordan algebra which has an identity, and is generated by W , H , K subject
to the relations

(6.3) - HK =1 ,

(6.4) ' (WH)K + WK)H =0 .
Corresponding to sach such representat.ion there will be determined an operation
which generalizes torsional derivation ( )e

Returning now to equations (5.4) , (5.5) , 1lst us assume now that b 1s non-
Ssingular, and writé

(1) This was already known to A. NIJENHUIS,
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(605) k=—h-1+x *
MA AN

Then equation (5e4) becomes
(6.6) hx +xh =0 ,

A MA
and (5.5) becomes
(6 7) 1 -1 "1

. h(oh™ +h ) +h (wh +ha) =howx +xh
N M MA A Y s AMUMA MR AN N MA JYIVIY
Write
=l -]l
(6.8) y=wh +h ¢
MAMA M A

gso that
(6.9) hyh = wh +h oo

A A MAMA AN A

" Equations (5¢4) , (5e5) thus become

(6.6) hx +xh =0 ,

MA NN
(6.10) hy +yh =hwx +xwh

MA A A PN AMAMNA

An obvious solution of (6.6) is x = 0 , and an obvious solution of (6.10) is
then y = 0 « Equation (649) then gives

(6.11) coh+he=0 .,

oA A MA AV

Thus, provided h is non-singular, any skew-symnetric tensor field . which
N A
satisfies (6.11) will give rise to a suitablc operator & .

7+ The Nijenhuis tensor.

An elternative procedurs is to define ¢ to be the Niaenhuis tensor N (h , k)
associated with h and k, where

1 .t P__ P i 4 i
(7.1) BN:;k =h Ky g % 3 P17 BEs Olp) %) l{:l °lo| hk]. |

Let us denote by (5.3)* equation (5.3) where o9 1s replaced by the Nijenhuis
tensor N(h , k) « Then any pair of tensor fields b, k which satisfy (5:3)!
will give.rise to a generalized torsional derivation. When h‘Z = =1 , Walker's

MA
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operator appearsas the particular solution k = h of equation (5.3)' .
AA A

It is natural to ask how the opsration (® is modified by choosing for w a
tensor of type (1,p) where p #2 , but retaining the laws of operation (5.1) ’
(5:2) « Evidently (5.3) would be replaced by a similar cquation with p negatives
terms instesd of the 2 negative terms in (5.3). This equation would certainly be
satisfied vhen conditions (5.4) , (5.5) are satisfied, but equation (5.5) would
represent p conditions. In the particular case when w is a vectorial p=forn,
the skew symmetry of the covariant suffixes would reduce (5.5) to a singls con-
dition. :

8. Connexions associated with tensor fislds.

The method which we have used to obtain generalized torsional derivatives nay
also be used to obtain connexions associated with given tensor ficlds. Suppose
h, k, ‘& are three mixed tensor fields of class o defined over a

A MA .
C Cemanifold M o Consider the mapping © which sends vector fields into tensor
fields of type (1.1) according to the law

ov = xﬁ%v,lj+f5~1£[}iv,£]+(\‘£~1§+ %k h) [v, 2]

where « , £, ¥, % arc real numbers, at present unspecified. Let us assume also
that © maps scalar fields into their gradient vector fields, i.c.

(842) (o f)i = ai £ .

If we denots by v; j the components of the tensor Ov » then direct computation
glves

. C - [¢] aa Oa c
(8:3) oy Th Ay T By W ey, P,
where

(8.4) A=-(0\+3)3‘§-(p+%)~1§£ ,
(8:5) Bwplk+ektheyhkfeokhe

C _a bkl k®a1®0 plo g2 by -
(8.6) Ly = by (K - 3, ko + k3 0, £3 = 4793, k)

ol a_ ,a i_ .0 i c.a i c,a i
+ﬁ£}i§£aaj-£p_+£p_a£ﬁ Ly O b)) ¥ kO £y +8k7 h o0& -



17-11
The operator © 1is evidently linear over the real numbers. We now seck conditions

satisfied by h , k , 4 in order that

(8.7) o(fv) = ro(v) +of & v .
We have

(£v°) =fv;j+(A; L?-&B;J';)vpaaf ,

#]

so (8.7) leads to the requirement

J
to be satisfied by all scelar fields f and all vector flclds v

c _ (aC 98 . nC
v d f..(Ap £3+Bp5§')vpaag ,

This lsads to the condition

G (& _ ,c & C c&a
(8.8) gp gj_Ap Lj+Bp SJ

corresponding to (5.3) of paragraph 5.

It follovs that when the three vector fislds h, k , £ satisfy (8.8) , then
the operator © can be extended uniquely to arbitrary tensor fields in such a
way that conditions (1) , (ii) (iii) of paragraph 3 are satisifed. In this case
® maps tensor fields of type (p , q) into tensor fields of type (p, q +1),
and in particular © maps a scalar field into its gradlent.

Equations (8.3) , (8.8) now give

6 _(cC (8 _no (& o c
ij--(sp 33 Bp &J)aavp+Bpajvp+ijvp ’

i.e.

c _ c ¢
(8.9) . v#j—ajb +ijvp R

It follows that the coefficients Lc"‘j 4 can be interpreted as connexion coeffi-
cients and the operation © may then be regarded as covariant differentiation
with respect to this connexion. Corresponding to any set of tensor fields
b,k X& related by (8.8) thers is canonically associated a connexion whose
coefficients are given explicitly by (8.6).
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One obvious solution of (8.8) is obtained by taking

(8.10 =0, B°= 8¢ ,

) p ' p P
This first condition can be satisfied by taking oc+Y =0, f+¥Y=0, and
the second condition then becomes

(8.11) xh(l k-k £) +pr(fh-hy)=1

AN M N AN AN A MW MDA M AN
Provided that (f k-kf) is a non-singular matrix, this equation can be satisfied
by taking & =1, p=C, h={lk-k)™ .

fon MO MA A

Equation (8.6) ‘then becomes

c ¢yl a a i a i i a
. = a. a - a -
(8.12) : : Lp:i 31”& pr"fp nr& '&J af'p Eaap'gal)

M

Returning to the general case (8.8), the torsion tensor of the corresponding
connexion given by (8.6) is found to be

13) 1°, = 518, =18 ) = a® 1 c e :
(8:13) Ty =510, = 10) = 43 &, A5+ 8 <55 05 (L, 1) + 8 kS WL (£, B)
For the particulai' connexion given by (8.12) , Az =0, a=1, p=0 8o that

(8.14) T = N:;p('& ) )

Thus the torsion tensor is not equal to the Nijenhuis tensor (as might have been
expected) but is the inner product of this tensor with the tensor (fk =k &)-1
LY ) ]
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