
S E M I N A I R E

Equations aux
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ON BERNOULLI DECOMPOSITION OF RANDOM VARIABLES
AND RECENT VARIOUS APPLICATIONS

FRANÇOIS GERMINET

Abstract. In this review, we first recall a recent Bernoulli decomposition of
any given non trivial real random variable. While our main motivation is a
proof of universal occurence of Anderson localization in continuum random
Schrödinger operators, we review other applications like Sperner theory of
antichains, anticoncentration bounds of some functions of random variables,
as well as singularity of random matrices.
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1. Bernoulli decomposition

Let X be a real random variable that is non degenerate (i.e. non constant).
Throughout this review, we shall make use of the following property (that clearly
implies that X is non degenerate)

(H) There exists ρ ∈]0, 1
2 [ such that P(X < x−) > ρ and P(X > x+) > ρ for

some real numbers x− < x+ .
To fix notations we say that ε is a Bernoulli random variable with parameter

p ∈]0, 1[, if P(ε = 0) = 1 − p and P(ε = 1) = p. The first result asserts that from
any non degenerate real random variable one can extract a Bernoulli part. Roughly
this comes from the following observation: one can cut the support of the variable
in two pieces of positive probabilities 1 − p and p, parametrize these two pieces,
and use a Bernoulli variable to decide in which piece falls a given realization.

Definition 1.1. Let X be a real random variable. Let f, δ be measurable functions,
such that f :]0, 1[→ R is monotone increasing and δ :]0, 1[→ [0,+∞[. Let p ∈]0, 1[.
We say that (f, δ, p) is a Bernoulli decomposition of X if (in law)

X = f(t) + δ(t)ε, (1.1)
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where t and ε are two independent random variables, such that t has the uniform
distribution in ]0, 1[; and ε is a Bernoulli with parameter p.

Theorem 1.2 ([AGKW]). Let X be a real non degenerate random variable.
1. For any p ∈]0, 1[ there exists a Bernoulli decomposition (f, δ, p) of X.
2. There exists p ∈]0, 1[ so that X admits a Bernoulli decomposition (f, δ, p) with
inft∈]0,1[ δ(t) > 0.
3. Assume Property (H). There exists p ∈]ρ, 1 − ρ[ so that X admits a Bernoulli
decomposition (f, δ, p) with inft∈]0,1[ δ(t) > 0.
4. Assume Property (H). Then the Bernoulli decomposition (f, δ, p = 1

2 ) satisfies
Pt(δ(t) > x+ − x−) ≥ 2ρ.

Remark 1.3. Property (H) is convenient in order to get a control on the Bernoulli
parameter p. Such a control turns out to be crucial when considering families of
independent but not necessarily identical random variables.

As mentioned in [AGKW], the presence of a Bernoulli component in any random
variable was noted implicitly in the work of A. N. Kolmogorov [Ko] where it was
put to use in an improvement of the earlier concentration bounds of W. Doeblin and
P. Lévy [DoL, Do] on linear functions of independent random variables. Initially,
Kolmogorov did not extract the maximal benefit from the method by not connecting
it with Sperner theory, and in particular the concentration bound in [Ko] includes
an unnecessary logarithmic factor; the corresponding improvement was made by
B. A. Rogozin [R1]. The bounds were further improved in a series of works, in
particular [Es, Ke, R2] where use was also made of other methods.

For random variables with values in Z, a representation similar to the one of
Theorem 1.2, but with δ taking values 0, 1 (so not necessarily positive), has been
derived by D. McDonald, and used in the analysis of local limit theorems for in-
teger random variables ([McD]). An application of McDonald’s decomposition to
statistical mechanics can be found in [I].

For the reader’s convenience, we sketch the proof of Theorem 1.2. Points 1
and 2 correspond to [AGKW, Theorem 2.1] and Point 4 comes from [AGKW,
Theorem 2.2]. Point 3 can be found in [BrG].

Proof. 1. We denote by µ the law of X and by F its distribution function: F (u) =
µ(]−∞, u]). We set, for any t ∈]0, 1[,

G(t) := inf{u, F (u) ≥ t}. (1.2)

Note that
G(t) ≤ u ⇐⇒ F (u) ≥ t, (1.3)

so that X and G(t) have the same law (G(t) can be seen as a parametrization of X).
For p ∈]0, 1[ given, following [AGKW, Proof of Theorem 2.1], we set for t ∈]0, 1[:

Y1(t) := G ((1− p)t)
Y2(t) := G (1− p + pt) . (1.4)

We then let

f(t) := Y1(t), (1.5)
δ(t) := Y2(t)− Y1(t), (1.6)
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so that, if ε is a Bernoulli variable with probabilities (1 − p, p) and t a random
variable with uniform distribution in ]0, 1[, we have (in law)

X = f(t) + δ(t)ε. (1.7)

2. That inf ]0,1[ δ(t) > 0 is immediate if Y2(0)−Y1(1) = G(1−p+0)−G(1−p) > 0,
which turns out to be the case if X is a Bernoulli itself (choosing p to be its Bernoulli
parameter). If X takes at least 3 values, then it is enough to note in full generality
that there exists (at least one) p ∈]0, 1[ so that T1 > T2 where

T1 = inf{t ∈]0, 1[ : Y1(t) = G(p−)} (arrival time of Y1),
T2 = sup{t ∈]0, 1[ : Y2(t) = G(1− p + 0)} (departure time of Y2).

The latter implies that δ(t) > 0 for all t.
3. Assume now that X satisfies the estimates of Property (H), with points x− < x+.
We set p− = µ(]−∞, x−[), p+ = µ(]x+,+∞[). We show that p = 1−p− is a possible
choice. Thanks to (H), p ≥ p+ > ρ, and 1− p = p− > ρ, so that p ∈]ρ, 1− ρ[.

We always have G(1 − p) ≤ x− ≤ G(1 − p + 0). If G(1 − p) < x− then δ(t) ≥
x−−G(1− p) > 0. Suppose G(p−) = x−. We claim that T1 = 1 > T2. It is easy to
see that T2 ≤ (p−p+)/p < 1. It remains to show that T1 = 1. Suppose T1 < 1. For
any t ∈]T1, 1[ and for any u < x−, one has x− = G(p−t) > u. Then (1.3) implies
that F (u) < p−t, and thus we get the following contradiction

p− = µ(]−∞, x−[) = sup
u<x−

F (u) ≤ p−t < p−. (1.8)

4. We set Y1(t) = G( 1
2 t) and Y2(t) = G(1 − 1

2 t) and proceed as above. Because
of Property (H), we have Y1(2ρ) ≤ x− while Y2(2ρ) > x+, so that for any t ≤ 2ρ,
δ(t) > x+ − x−. �

2. Antichains and Sperner Theory

A possible motivation for looking into Sperner theory is the following quite nat-
ural question arising in arithmetics, see e.g. [An] and references therein. Consider
distinct prime numbers p1, · · · , pN and the integer M = pk1

1 · · · pkN

N , with ki ≥ 1,
i = 1, · · · , N . Let D '

⊗N
i=1{0, 1, · · · , ki} be the set of divisors of M . We endow

this set with a (discrete) probabilistic structure by considering P =
⊗N

i=1 µi where
for any i, µi is a discrete probability measure on {0, 1, · · · , ki}.

Let A ⊂ D be so that for any r, r′ in A, neither r|r′ nor r′|r. Two such elements
are said to be “non comparable”, and a family of non comparable elements is called
an antichain. The question is: what is the maximal size of such a set A? Recasted
in probabilistic terms, we would like to provide a bound on P(A). We first recall
some basics from Sperner theory and then give an answer to the question.

We start with the simplest case, that is ki = 1 for all i. The configuration space is
{0, 1}N , and we consider a collection of Bernoulli random variables η = {η1, ..., ηN}.
The set of configurations is partially ordered by the relation:

η ≺ η′ ⇐⇒ for all i ∈ {1, ..., N} : ηi ≤ η′i . (2.1)

A set A ⊂ {0, 1}N is said to be an antichain if it does not contain any pair of
configurations which are comparable in the sense of “≺”. The original Sperner’s
Lemma [Sp] states that for any such set: |A| ≤

(
N

[ N
2 ]

)
. An immediate computation

using Stirling formula shows that the latter is bounded by C2N/
√

N , with e.g.
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C = 2/
√

π. As a consequence, if η is a collection of identical Bernoulli variables
with even weigths ( 1

2 , 1
2 ), we get as an answer to the problem stated above: P(A) ≤

C/
√

N in this particular case. As we shall see, this 1/
√

N behaviour is fairly
general.

The next step is to extend the previous bound to non even Bernoulli variables
(but still identical). We need a more general result, called the LYM inequality, for
antichains (e.g. [An]): ∑

η∈A

1(
N
|η|

) ≤ 1 , (2.2)

where |η| =
∑

ηj . The LYM inequality has the following probabilistic implication.
If {ηj} are independent copies of a Bernoulli random variable η with probabilities
(1− p, p), then for any antichain A ⊂ {0, 1}N :

P ({η ∈ A}) ≤ 2
√

2
ση

√
N

, (2.3)

where η = (η1, . . . , ηN ), ση =
√

pq is the standard deviation of η. The same
bound extends to antichains on larger alphabet: {0, 1, · · · , k}N with 1 ≤ k < ∞ for
equidistributed weights [An] as well as for general weights [En1, En2] (more than
an upper bound, an asymptotics as N goes to ∞ is proven in those cases).

The following result extends those bounds to non identical measure with (pos-
sibly) infinite support. This seems to be a new result in Sperner Theory, which
is mentioned in [AGKW, Remark 3.1]. In particular it provides an answer to the
problem described as an introduction to this section.

Theorem 2.1. Set D = ZN and let µi, i = 1, · · · , N , be discrete probability
measures on Z. Set P =

⊗N
i=1 µi. Assume there is ρ ∈]0, 1

2 [ such that for any
i = 1, · · · , N , there exists mi ∈ Z s.t.

µi(]−∞,mi]) > ρ and µi([mi + 1,∞[) > ρ. (2.4)

Then there exists C < ∞ (independent of N), such that for any antichain A ⊂ D,

P(A) ≤ C√
ρN

. (2.5)

Remark 2.2. If the µi’s are Bernoulli measures with support {0, 1}, then we re-
cover the extension of (2.3) to independent Bernoulli variables, but not necessarily
identically distributed, that is proven in [AGKW, Lemma 3.2]; except for the de-
pendency in ρ of the constant, which behaves like ρ−1 in [AGKW, Lemma 3.2].

As an illustration of the Bernoulli decomposition of Section 1, we sketch the
proof of Theorem 2.1.

Proof. Let (X1, · · · , Xn) be independent integer valued random variables with dis-
tribution µ1, · · · , µN , respectively. Hypothesis (H) of Section 1 is satisfied, and we
can decompose Xi as fi(ti) + δi(ti)ηi according to Theorem 1.2 Point 4. Since for
all i = 1, · · · , N , Pti(δ(ti) ≥ 1) ≥ 2ρ, by a large deviation argument, it is enough
to estimate P(A; |Jt| ≥ ρN), where Jt = {i = 1, · · · , N, s.t. δ(ti) ≥ 1}. Now

P(A; |Jt| ≥ ρN) = PtP(ηi)i6∈Jt

(
P(ηi)i∈Jt

(A; |Jt| ≥ ρN)
)

. (2.6)

Let t ∈ {|Jt| ≥ ρN} and (ηi)i 6∈Jt
be given. We have δi(ti) > 0 for all i ∈ Jt, so

that two elements (fi(ti) + δi(ti)ηi)i∈Jt and (fi(ti) + δi(ti)η′i)i∈Jt are comparable
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if and only if (ηi)i∈Jt and (η′i)i∈Jt are comparable. Thus, t ∈ {|Jt| ≥ ρN} and
(ηi)i 6∈Jt being given, the set of (ηi)i∈Jt so that (fi(ti)+ δi(ti)ηi)i∈{1,··· ,N} ∈ A is an
antichain. By Sperner’s bound

P(ηi)i∈Jt
(A; |Jt| ≥ ρN) ≤ 2√

π|Jt|
≤ 2√

πρN
. (2.7)

�

3. Singularity of random matrices

Let Mn = (aij)ij be a random n × n matrix, where the aij are independent
(non necessarily identically distributed) real random variables. We assume that
the random variables aij satisfy the non-degeneracy property (H) of Section 1 with
the same ρ, namely

(H’) There exists ρ ∈]0, 1
2 [ such that for any i, j = 1, · · · , n, P(aij > x+

ij) > ρ

and P(aij < x−ij) > ρ for some real numbers x−ij < x+
ij .

The note [BrG] provides an elementary proof of the following result.

Theorem 3.1. [BrG] Let Mn be an n×n matrix whose coefficients are independent
random variables satisfying (H’). Then P(Mn is singular) ≤ Cρ/

√
n, for some

Cρ < ∞.

The study of the singularity of random matrices goes back, at least, to Komlós
who showed in [Kom1] that P(Mn is singular) = o(1) for independent and identically
distributed (iid) Bernoulli entries, namely aij = 0, 1 with even probabilities (1

2 , 1
2 ).

Using Sperner’s Lemma, Komlós noticed that the probability was O(n−1/2) [B],
a result which has been further extended in [Sl] to the case of iid entries equally
distributed over a finite set. For iid Bernoulli entries, the conjecture is that P(Mn

is singular) = (c + o(1))n with c = 1
2 , which is the best possible since one clearly

has P(Mn is singular) ≥ 2−n. Such an exponential behaviour has been successively
obtained and improved in [KKoS, TV1, TV2] up to c = 3

4 . The value c = 1
2 still

seems to be out of reach.
If one turns to general entries, Komlós proved in [Kom2] that P(Mn is singular) =

o(1) for independent and identically distributed non degenerate random variables.
Furthermore, as pointed out by Tao and Vu in [TV1, Section 8], it follows from
their analysis that P(Mn is singular) = o(1) for independent non degenerate entries,
provided Property (H’) holds. Under the same hypothesis Theorem 3.1 asserts that
P(Mn is singular) = O(n−1/2).

In [BrG], Komlós’ argument as reproduced in [B] is extented to independent
random variables satisfying the condition (H) taking advantage of the Bernoulli
decomposition. The proof of Theorem 3.1 thus illustrates how the Bernoulli de-
composition may be used in order to extend results known for Bernoulli to the
general case of independent non degenerate random variables.

Sperner’s bounds enter the proof of such a result through the use of the Littlewood-
Offord Lemma [Er]: let η = (η1, · · · , ηN ) be a collection of independent Bernoulli
variables, then for any reals |αj | > 0, j = 1, · · · , N , β ∈ R, P(

∑N
j=1 αjηj = β) ≤

C/
√

N . Indeed different realizations of η can belong to the same hyperplane only
if they are non comparable, composing hence an antichain. It is then one ingre-
dient of the proof of Theorem 3.1 to notice that the Littlewood-Offord Lemma
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easily extends to general non degenerate random variables thanks to a Bernoulli
decomposition.

4. Concentration bounds

Let X be a real random variable and µ its distribution. Its (Levy) concentration
function QX(s) (or equivalently the modulus of continuity of its measure µ), is
defined as

QX(s) = sup
x∈R

P(X ∈ [x, x + s]) = sup
x∈R

µ([x, x + s]). (4.1)

Bounds on probability of antichains as in Theorem 2.1 find their natural gener-
alization in the following theorem, that deals with some functions of arbitrary non
degenerate random variables.

Theorem 4.1. [AGKW] Let X = (X1, . . . , XN ) be a collection of independent
random variables whose distributions satisfy, for all j ∈ {1, ..., N}:

P ({Xj < x−}) > ρ and P ({Xj > x+}) > ρ (4.2)

for some ρ > 0 and x− < x+, and Φ : RN 7→ R be a function such that for some
ε > 0

Φ(u + vej)− Φ(u) > ε (4.3)

for all v > x+ − x−, all u ∈ RN , and j = 1, . . . , N , with ej the unit vector in
the j-direction. Then, the random variable Z, defined by Z = Φ(X), obeys the
concentration bound

QZ(ε) ≤ C√
ρN

, (4.4)

for some C < ∞ (independent of N).

Remark 4.2. We ask for a uniform (H) property in the sense that x± are inde-
pendent of the random variable. Compare to Theorem 2.1 and Theorem 3.1.

If the random variables are identical Bernoulli variables then the link between
Theorem 4.1 and Sperner’s theory of antichains is quite obvious. Indeed, let η,η′

be two comparable realizations of (X1, · · · , Xn), say ηj ≤ η′j for all j = 1, · · · , N .
Then by (4.3), Φ(η) and Φ(η′) cannot both belong to a given interval of length ε.
In other words, for any given x ∈ R, realizations of Z = Φ(X1, · · · , Xn) that fall
into [x, x + ε[ belong to an antichain; (2.3) above then yields (4.4).

It remains to extend such a reasonning to arbitrary non degenerate random
variables. This is achieved by taking advantage of the Bernoulli decomposition, in
the spirit of the proof of Theorem 2.1.

Remark 4.3. 1. The use of combinatorial estimates for concentration bounds first
appeared in the context of Bernoulli variables in P. Erdös’ variant of the Littlewood-
Offord Lemma [Er]; that is for linear combinations of Bernoulli variables, improving
on W. Doeblin, P. Lévy [DoL, Do]. Further developments for linear functions Φ
can be found in A. N. Kolmogorov [Ko], B. A. Rogozin [R1], H. Kesten [Ke] and
C. G. Esseen [Es] (see e.g. [R3]).
2. We stress that in Theorem 4.1, the function Φ needs not to be linear. This is of
importance for the application to random Schrödinger operators, where Φ will be an
eigenvalue of finite reduction of the Hamiltonians depending on random variables.
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5. Application to random Schrödinger operators

In this application, we consider random Schrödinger operators on L2(Rd) of the
type

Hω = Hω := −∆ + Vω, (5.1)

where ∆ is the d-dimensional Laplacian operator, and Vω is an Anderson-type
random potential,

Vω(x) :=
∑
ζ∈Zd

ωζ u(x− ζ), (5.2)

where
(I) the single site potential u is a nonnegative bounded measurable function on

Rd with compact support, uniformly bounded away from zero in a neigh-
borhood of the origin, more precisely,

u−χΛδ− (0) ≤ u ≤ u+χΛδ+ (0) for some constants u±, δ± ∈]0,∞[; (5.3)

(II) ω = {ωζ}ζ∈Zd is a family of independent identically distributed random
variables, whose common probability distribution µ is non-degenerate with
bounded support, and satisfies

{0, 1} ∈ suppµ ⊂ [0, 1]. (5.4)

To fix notations, the set of realizations of the random variables {ωζ}ζ∈Zd is
denoted by Ω = [0, 1]Z

d

; F denotes the σ-algebra generated by the coordinate
functions, and P = ⊗ζ∈Zd µ is the product measure of the common probability
distribution µ of the random variables ω = {ωζ}ζ∈Zd . In other words, we work
with the probability space (Ω,F , P) =

⊗
ζ∈Zd

(
[0, 1],B[0,1], µ

)
, where B[0,1] is the

Borel σ-algebra on [0, 1]. A set E ∈ F will be called an event.
Hω is a Zd-ergodic family of random self-adjoint operators. It follows from

standard results (cf. [KiMa, Sto2]) that there exists fixed subsets Σ, Σpp, Σac and
Σsc of R so that the spectrum σ(Hω) of Hω, as well as its pure point, absolutely
continuous, and singular continuous components, are equal to these fixed sets with
probability one.

For x ∈ Rd, we set ‖x‖ its sup norm, and ΛL(x) :=
{
y ∈ Rd; ‖y − x‖ < L

2

}
denotes the (open) box of side L centered at x ∈ Rd. By a box ΛL we mean a box
ΛL(x) for some x ∈ Rd. By χx we denote the characteristic function of the unit
box centered at x ∈ Rd, i.e., χx := χΛ1(x).

Localization is proved at the bottom of the spectrum for the Anderson Hamil-
tonian without any extra hypotheses. Spectral localization is proved in [AGKW]
based on an extension of [BoK] given in [GK4]:

Theorem 5.1. Let Hω be an Anderson Hamiltonian on L2(Rd) as above with
hypotheses (I), (II). Then there exists E0 = E0(d, u±, δ±, µ) > 0 such that Hω

exhibits spectral localization in the energy interval [0, E0]: with probability one,
σc(Hω) = ∅.

If one wants more detailed informations about the region of localization, the
following result holds, based on the concentration bound given in Theorem 4.1.

Theorem 5.2. [GK4] Let Hω be an Anderson Hamiltonian on L2(Rd) as above
with hypotheses (I), (II). Then there exists E0 = E0(d, u±, δ±, µ) > 0 such that

Exp. no IX— Bernoulli decomposition and applications
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Hω exhibits Anderson localization as well as dynamical localization in the energy
interval [0, E0]. More precisely:

• (Anderson localization) There exists m = m(d, Vper, u±, δ±) > 0 such that
the following holds with probability one:

– Hω has pure point spectrum in [0, E0].
– If φ is an eigenfunction of Hω with eigenvalue E ∈ [0, E0], then φ is

exponentially localized with rate of decay m, more precisely,

‖χxφ‖ ≤ Cω,φ e−m|x| for all x ∈ Rd. (5.5)

– The eigenvalues of Hω in [0, E0] have finite multiplicity.
• (Dynamical localization) For all s < 3

8d we have

E
{

sup
t∈R

∥∥∥〈x〉m
2 e−itHωχ[0,E0](Hω)χ0

∥∥∥ 2s
m

2

}
< ∞ for all m ≥ 1. (5.6)

Remark 5.3. For an extension to the non ergodic situation where impurities are
located on a given Delone set (instead of a regular lattice), see [G2].

Remark 5.4. The same conclusions have been proved to hold for Schrödinger op-
erators with a Poisson random potential [GHK1, GHK2, GHK3].

The full proof of Theorem 5.2 is presented in [GK4]. In particular it combines the
multiscale analysis of Bourgain and Kenig [BoK] together with the concentration
bound of [AGKW] (Theorem 4.1 above). This yields Anderson localization (using
[GK2] for finite multiplicity). To get dynamical localization, one builds on ideas that
are by now standard and that come from [A, DeRJLSi, GDB, G1, DSto, GK1, GK2].

In the one-dimensional case the continuous Anderson Hamiltonian has been long
known to exhibit spectral localization in the whole real line for any non-degenerate
µ, i.e. when the random potential is not constant [GoMP, KotSi, DSiSt].

In the multidimensional case, localization at the bottom of the spectrum is al-
ready known at great, but nevertheless not all-inclusive, generality; cf. [Sto2, K,
BoK] and references therein. First proofs of this result are due to Combes Hislop
[CH1] and Klopp [Kl2], assuming that the single site probability distribution µ is
absolutely continuous with bounded density. The result relies on a multiscale anal-
ysis argument “à la” Fröhlich Spencer [FrSp] and adapted from [DrK]’s discrete
version; it took more time and quite some efforts to carry the Aizenman Molchanov
approach of fractional moments [AM] over the continuum [AENSSt], still under the
regularity assumption on µ.

The absolute continuity condition of µ can be relaxed to Hölder continuity of
µ, both in the approach based on the multiscale analysis, and in the one based
on the fractional moment method. The basis in the former case is an improved
analysis of the Wegner estimate, which was first noticed by Stollmann in [Sto1].
Important improvements in Wegner estimates with (not too) singular continous
measures µ have then been successively obtained in [CHNa, CHKl1, CHKlR, GKS,
HuKiNaStoV] until the recent optimal form due to Combes, Hislop and Klopp
[CHKl2]; all theses improved forms provide in particular some continuity property
of the integrated density of states.

However, techniques relying on the regularity of µ seem to reach their limit with
log-Hölder continuity. In particular, until recently the Bernoulli random potential
had been beyond the reach of analysis in more than one dimension. For that
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extreme case, i.e., of Hω with µ {1} = µ {0} = 1
2 , localization at the bottom of the

spectrum was recently proven by Bourgain and Kenig [BoK].
In [BoK], the Wegner estimate is obtained along the lines of (an elaborated

version of) the multiscale analysis, scale by scale, through a combination of a quan-
titative unique continuation principle together with a lemma due to Sperner [Sp].
Although it defenitely requires some technical care, it is quite clear from the anal-
ysis of [BoK] that the result extends to any measure for which a Sperner’s type
argument is valid. See for an illustration of this point the note [GK3] where µ is
a uniform measure on some Cantor set (µ turns to be log log-Hölder continuous in
this example).

Localization was thus proved for the two extreme cases: µ regular enough and
µ Bernoulli, and with two different proofs, none of which applying directly to the
other case. Our motivation was then to find a single proof for any non degenerated
measure, and thus unifying these two extreme results. A key step, the concentration
bound extending the Sperner’s Lemma estimate used by Bourgain and Kenig, was
obtained in [AGKW]. The full technical details of the extension of the multiscale
analysis of [BoK] are provided in [GK4].

To fix notations, consider a scale L, HL,ω a suitable restriction of Hω to a cube
ΛL of side L with Dirichlet boundary condition, and RL,ω(z) its resolvent (that
is now a compact operator). The spectrum of HL,ω is thus discrete and given
E ∈ σ(Hω) = [0,+∞[ we want to investigate the size of ‖RL,ω(E)‖ and show it
is ≤ eL1−δ

, δ > 0, with probability at least 1 − L−p, for some p > 0 (note that
‖RL,ω(E)‖ may be infinite, namely when E ∈ σ(HL,ω), but typically, this should
happen for a set of ω’s of small measure. This amounts to analyse the probability
that dist(E, σ(HL,ω)) ≥ e−L1−δ

.
The strong form of the Wegner estimate reads as follows [CHKl2]: there exists

CW < ∞, such that for η small enough and L large enough, (recalling (4.1))

P(dist(E, σ(HL,ω)) < η) ≤ CW Qω0(2η)Ld. (5.7)

It is worth pointing out that (5.7) is an a priori estimate that is independent of
the existence of localized states. Applying (5.7) with η = e−L1−δ

obviously leads to
the needed estimate. A weaker version, corresponding to the approach of Bourgain
Kenig, reads as follows. Let S be a subset of D ∩ ΛL, and ωS = (ωζ)ζ∈S . There
exists CW < ∞ and δ0 > 0 s.t., for suitable events FL,ω,S ⊂ F coming from the
multiscale analysis, for L large enough, δ, ε > 0 small enough,

PS(dist(E, σ(HL,ω)) < e−L1−δ

;FL,ω,S) ≤ LεQZ(2e−L1−δ

), (5.8)

where PS =
⊗

ζ∈S µ is the restriction of P to S, Z = Φ(ωS) is a random variable
such that for any ωS , for any vζ ≥ δ0,

Φ(ωS + vζ)− Φ(ωS) > 2e−L1−δ

. (5.9)

In practice, Φ is an eigenvalue of the finite volume operator, and property (5.9)
follows from a quantitative unique continuation principle. Note that unlike what
happens in the strong form, it is a only collective effect of the random variables
ωζ , ζ ∈ S, that provides some decay. The best universal bound is the following
concentration bound coming from Theorem 4.1:

QZ(2e−L1−δ

) ≤ C|S|− 1
2 . (5.10)

In practice, |S| = L
3
4 d−, so that the probability in (5.8) amounts to L− 3

8 d+.
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