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1 Introduction and motivations

Our aim here is an attempt to describe the dynamical properties of the

solutions of the Korteweg-de Vries (KdV) equation in the presence of a certain

type of random perturbations, depending on the space and time variables.
It is indeed well known that the KdV equation

O+ Ou+ 0, (u*) = 0 (1.1)

describes the motion of unidirectional weakly nonlinear waves at the surface
of water under some specific scaling conditions on the surface waves, relating
their wavelength, their amplitude, and the depth of the fluid. A rigorous
derivation of this asymptotic equation starting from the free surface Euler
equations for the fluid can be found in [8]. In this physical context, there are
essentially two kinds of situations that could asymptotically lead to a KdV
equation with noise, even though, up to know, there is no rigorous derivation
of such an asymptotic model starting from the full water wave problem. The
first situation is the case in which the pressure field at the surface of the water
is non homogeneous, and modeled by a stationary space-time process with
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small correlation length compared to the wavelength of the surface waves.
In this case, one could expect to get an asymptotic model of the form of a
KdV equation with a random forcing term, white in time and possibly also in
space. The second situation is the case where the bottom topography is non
homogeneous, and again modeled with the use of a stationary random process
in the space variable. Among the large literature dealing with modeling of
the water wave problem with non constant bottom topography, the case when
the bottom is modeled by a stationary ergodic process with small correlation
length (compared to the surface waves) has been studied in [2], [10] and [14].
It essentially leads to a KdV equation with an additional term of the form
(Oyu)n(w, t), where 7 is a white noise in time that does not have any spatial
dependence. In this case, the solution of the perturbed equation may be
simply written in terms of the solution of the deterministic equation, in a
frame moving with velocity 7, that is it has the simple form u(t,x — n(t)),
with u a solution of (1.1).

The existence of solutions to equation (1.1) perturbed with a stochastic
forcing, close to space-time white noise is much less obvious. The question
was studied in [5] in the case x € R and in [6] in the spatially periodic case.
However when the noise is close to space-time white noise the solutions are
not spatially regular, they are not even processes of the space variable x
and the question of their qualitative behavior is still widely open. When the
noise has sufficiently regular spatial correlations, however, the solutions lives
in the energy space, which may help in studying their dynamical behavior.
This fact has been used e.g in [3] where the exit time of a neighborhood of a
randomly modulated soliton was studied.

Let us mention some related works using methods linked to integrability
properties of equation (1.1). This is the case of [9] where inverse scatter-
ing methods are used to describe the qualitative behavior of the solution of
the perturbed equation with some specific (multiplicative) noise, and of [11]
where the KdV-Burgers equation is viewed, as the viscosity and the ampli-
tude of the noise both tend to zero, as a small perturbation of an infinite
dimensional Hamiltonian system, in action-angle variables.

Finally, let us recall the pioneering remark by Wadati [17], from which our
motivation to study the present problem originated. Consider the following
perturbed KdV equation

Ou + O + 0, (u*) = W (t) (1.2)

in which W (¢) is a one-dimensional white noise, that is the time derivative of
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a real valued standard Brownian motion. Then, using the Galilean invariance
of the KdV equation, it is easy to compute the solution u of equation (1.2)
in terms of the solution U of equation (1.1) :

u(t,z) = U (t,x - /OtW(s)ds) W),

In the particular case where the solution U is a soliton solution of the KdV
equation, which we recall is given by U(t,z) = ¢.(z — ct) with the localized

profile
3¢

~ 2cosh? (Vex/2)

the expression above allows to get the asymptotic behavior in time of the
spatial maximum of the expected solution. Indeed,

Pe() (1.3)

E(u(t,z)) = E(po(z — ct / W (s)ds)) = / ool — et — y)us(dy)

and since i, the distribution of the (real valued) random variable fg W (s)ds,
is a centered Gaussian distribution with variance #3/3, one gets

E(u(t,z)) = —— oz —ct—y)e 23d
(u(t, z)) Norr ( y) y
from which we deduce, thanks to the localization of the profile ., that as

time goes to infinity,

< (14-3/2
max E(u(t, z)) < Ct7,

i.e. the soliton diffuses with a rate ¢=3/2.

The question was then : is it possible to recover the same kind of results
in the case of a perturbed equation of the form (1.2), but in which the noise
depends both on the space and time variables ? Of course, in that case no
explicit expression of the solution is available in terms of the solution of the
unperturbed equation, and one can only hope to get results on the soliton
diffusion in the limit where the amplitude of the noise tends to zero. A first
attempt to study the problem was the motivation of [3], where the KdV
equation with an additive space-time noise was studied. We failed to get an
asymptotic rate of diffusion in that case, but it appears that homogeneity
(or stationarity) in space of the noise can help to get such a result. However,
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spatial stationarity and additivity of the noise are incompatible as long as the
solution lives in an homogeneous Sobolev space, as the energy space H'(R)
for the KAV equation (see [5] for an explanation of this fact). This is the
reason why we will here consider a multiplicative equation.

2 The multiplicative homogeneous noise

The equation we consider may be written in It6 form as
du + (O2u + 0,(u?))dt = eudW (2.1)

where ¢ > 0, u is a random process defined on (t,z) € RT x R, W is an
infinite dimensional Wiener process on L?(R) with covariance Q = ¢¢*, ¢
being a convolution operator on L*(R) defined by

of(x) = / ke —y)f()dy, | € I2(R). (2.2)

We will assume that the convolution kernel k is in H'(R) N L'(R), so that
the solutions will almost surely have finite energy (see Theorem (2.1) be-
low). Considering a complete orthonormal system (e;);en in L*(R), we may
alternatively write W as

W(t,z) =Y Bit)pei(x),
ieN
(B:)ien being a family of independent real valued Brownian motions. Note
that the correlation function of the process W is given by

EW(t,x)W(s,y)) =c(z —y)(sAt), z,y€eR, s,t>0,

where
c(x) = /Rk:(a: + 2)k(2)d=.

Let us recall the existence and uniqueness result for solutions of (2.1)
which was proved in [4].

Theorem 2.1 Let ¢ > 0; assume that the kernel k of the noise satisfies
ke H*(R)NLY(R), s =0 or 1. Then for any ug in H*(R), there is a unique
adapted solution u® with paths almost surely in C(R*; H*(R)) of equation
(2.1), satisfying u®(0,x) = uo(x) a.s. Moreover, u € L*(Q; C(R™; L*(R))).
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Note that the paths of the solution are not sufficiently regular in time to
allow us to define pathwise the product of ;W by u® : typically, for a fixed
x, uf(.,x) belongs to H® for any s < 1/2, while 9,W (., z) belongs to H* for
any s < —1/2; hence the use of the stochastic calculus is necessary to define
this product. Here, as mentioned above, we use the Ito definition for the
product.

The local existence result in Theorem 2.1 is obtained with the use of
Bourgain’s type spaces, based on space-time Sobolev spaces and on the group
associated with the linear (Airy) equation

oyu + 8;?’u =0.

The time regularity used for these spaces is however not the standard one : it
is less than 1/2, as imposed by the time regularity of the Brownian motion.
In order to get the globalization of the solutions in time, we use the evolution
of the mass

m(u) = = /R(u(x))de (2.3)

and of the energy (or Hamiltonian)

H(u) = % /R (Quu)2dz — % /R Wz, (2.4)

which are both conserved quantities for the deterministic equation (1.1).
Their evolution for the solutions of the stochastic equation (2.1) is obtained
thanks to the Ito formula.

3 Dynamics of the stochastic equation

From now on we fix ¢y > 0 and we take as the initial state u®(0,z) = @, ().
Let us recall that the soliton family is a two parameter family of solutions
given by {¢.(. + x¢), ¢ > 0, g € R}. Our aim is then to describe the main
part of the corresponding solution of the stochastic equation as a soliton
whose parameters — the velocity ¢ and the phase 7 — may have been shifted.

In order to explain how we must then write the solution, we have to
recall briefly the arguments of the proof of orbital stability for ¢., in the
deterministic equation, which were originally given by Benjamin in [1]. The
proof relies on the use of the functional Q. (u) = H(u)+ com(u), defined for
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u € H'(R), as a Lyapunov functional. Note that ., is a critical point of
ey, 1-€. it is a stationary solution of the evolution equation written in the
frame moving with velocity c¢g. Then it is not difficult to see that

LCO = Q/c/o (9000) = _ag + Co — 29000

is a positive operator on L*(R) (with domain H?(R)) when restricted to the
orthogonal in L*(R) of the space spanned by ¢., and 0,¢.. Writing then
the solution of the deterministic equation (1.1) (with initial state ug close to
Pey) S

u(ta T+ ZL’(t)) = QOCO(J:) + n(tv l’)

with x(t) chosen in such a way that (7, d,¢¢,) = 0, then one gets

QCO (u(t> T+ Qf(t))) - QCO ((1060)
= Qo (u0) = Qe (Pcy)

= L(Leyn,n) + o(|Inll3)

from which the bound 6|73 < Qe (uo) — Qeo(e,) would follow, with a
positive constant §, provided that 7 is initially sufficiently small, if one had in
addition the orthogonality relation (7, ¢¢,) = 0. This relation is not satisfied
in general, but the conservation of m for the solution u of equation (1.1)
allows to prove that (7, p.,) is a second order term in ||5||zz, and hence to
get the above estimate on 7 which leads to the orbital stability of ¢.,.

Let us now come back to the solution of the stochastic equation (2.1)
with initial state ¢.,, and let us write the corresponding solution as

u(t,x) = ey (x — 2°(t)) + en(t, o — 2°(1)), (3.1)

with the aim of keeping the remaining term £n® small as long as possible. In
view of the above arguments it is natural to require

(1°(1), @ey) = (M°(1), Oupe,) = 0. (3.2)

If o is a parameter that measures the smallness of the remaining term en®(t),
then we can prove the following estimate on the stopping time 7. up to which
the decomposition (3.1)-(3.2) is valid, showing that this stopping time is of

the order of ¢72.



Exp. n° V— On a stochastic Korteweg-de Vries equation with homogeneous noise

Theorem 3.1 Let u® be, as defined above, the solution of (2.1) with u®(0) =
Yeos and let o > 0 be sufficiently small. Then there are random processes
24(t) and &(t) with values resp. in R and RT, which are semi-martingales
(i.e. solutions of stochastic differential equations), defined a.s. fort < ¢,
where TS, is a stopping time, and such that (3.1) and (3.2) hold a.s. for
t < 75. Moreover, a.s. fort <75, [en®(t)|mmw) < a and |c*(t) — o] < a.

In addition, there is a constant C, > 0, such that for any T > 0, there
exists g > 0, with, for each € < €y,

P(r <T) < exp (—%) . (3.3)

Note that in [3], the same result was obtained for the KdV equation with
an additive noise, but the bound on the probability of the exit time was of
the form P(75 < T) < C,e*T. The exponential bound, in the additive case,
was obtained in [7], thanks to the use of exponential martingale estimates.
The same method works in the multiplicative case of equation (2.1).

Note also that the orthogonality conditions given in (3.2) are not the only
possible way of keeping the remaining term en°(¢) small as long as possible,
although they are the most convenient to estimate the exit time 72 (see the
argument on the orbital stability at the beginning of section 3).

4 A central limit theorem

Let us come back to the deterministic equation (1.1) and write the solution
u (with initial data ug close to ¢, in H'(R)) as

u(t, ) = pe,(z — cot) +v(t, z — cot).
Then the linearized equation for v is
Opv = 0y Leyv, with Lo, = Q7 (e, )- (4.1)

It is well known that the spectrum of the operator 9,L., in L*(R) (with
domain H3(R)) is entirely located on the imaginary axis. The continuous
spectrum fills all the axis iR, and the only eigenvalue is A = 0, with a
(generalized) null space spanned by 0,¢., and 0.¢.,, which satisfy

achoaxSch = 07 aachoac%Oco = _ax(pcm
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as easily obtained by differentiating the equation for ¢, with respect to z
and c. Those two zero modes correspond to small changes in the location
and velocity of the solitary wave, and give rise to solutions of (4.1) which
are respectively constant and linearly growing in time. This was pointed out
in particular in [12]|, where the asymptotic stability of the family of solitary
waves is studied. Formally, these two modes generate a two dimensional
“center manifold” for equation (4.1), on which the dynamics can be writ-
ten thanks to the reduced two-dimensional system of ordinary differential

equations
jﬁl = O
./tQ = —I.

Now, coming back to the stochastic equation (2.1), and proceeding as
above, that is writing the solution as

us(t, ) = Yeo (T — cot) + v (¢, © — cot),

linearizing the equation for v* and projecting on the “center manifold”, one
would formally be led to the reduced system of stochastic differential equa-
tions

dl’l = €dW1
dﬂ?g = —SCldt‘i‘EdWQ

where (W, Ws) is a R?-valued Brownian motion corresponding to the (spec-
tral) projection of the process ., W on the “center manifold ” spanned by
the two modes (0;pc,, Ocpe,) (see below for more precisions). It follows that

2o(t) = eWa(t) — ¢ / Wa(s)ds

(recall that the solution starts from the soliton solution ¢.,). Hence, one can
see that, asymptotically for large T" and small ¢, and for 6 > 0 sufficiently
small, there is a constant C' such that

P(22(T) > 8) < Ce™ 7

this corresponds to the probability that the projection of v* on the center
manifold is larger than §. Hence this strongly suggests that without using the
modulation parameters, the solution will not stay close to the soliton solution
on a time larger than ¢~ %2, to be compared to the order =2 obtained in
Theorem 3.1.
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Actually the modulation parameters may be changed in order to ensure
that n° do not contain any component on the “center manifold” defined
above, as least at first order in €. More precisely, Setting °(t) = z°(t)—eB(t),
with B some well chosen Brownian motion, then we can write

u(t,x) = ey (v = 2°(1) + en” (¢, @ = 2°(1))

for ¢ < 7° with the same stopping time 7_ as in Theorem 3.1, and then the
following theorem holds for the order one term 7)°, in which ) =1 — P, and
P denotes the spectral projection (with respect to the operator 0, L., ) on the
generalized null space spanned by 0,¢., and 0.¢.,.

Theorem 4.1 For any T > 0, 7° defined above satisfies

E( sup |[[7°(t)[[7) < C(T, a, co).

t<TENT

Moreover, 1 converges ton, as e tends to zero, in L*(Q2, L=(0, TATE; L*(R))),
with n solution of the linear equation

dn = 0, Leyndt + Q(pe,dW),  1(0) = 0.

Here, W (t, z) = W (t, z+cot) corresponds to the process written in the frame
moving with velocity cy. Note that due to our stationarity assumption on
W, the processes W and W have the same distribution. It follows that 7 is
a centered Gaussian process, that we may write as

t
o) = [Pl ) (4:2)

0
Now, since the projection () eliminates the secular modes, it is expected that
the operator 0, L., is in some sense a dissipative operator, when restricted to

the image of Q. It was proved in [12] that this is indeed the case, provided
that the functions are considered in the weighted space

H! ={v e H'(R), e“v € H'(R)}

for a > 0 sufficiently small, depending on ¢, where H! is endowed with the
norm

[0l mz = [le™ ol g
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More precisely, it is proved in [12] that there are constants C' > 0 and b > 0,
depending on a and ¢y, such that for any w € H},

le™ @t Qul gy < Ce™"||w|| ;. (4.3)

Using this result, it is then not difficult to prove that the covariance of
the process w,(t,x) = e**n(t, z) has a uniformly bounded trace, for t € R*.
Indeed, using that

W(tv ZL’) = Z ﬁz<t)¢6,<l’>,
ieN
for some family (Bi)ieN of independent real valued Brownian motions, and ¢
as in (2.2), we may easily estimate, thanks to (4.3) and Lemma 2.6 in [4]

t

trleovin(®) = 3 [ lerre oI Qlp, ge | [3nds
jeEN Ot
c ( / ezboda) S e ey (k 5 )]

jEN

C O peo 1772 171172

Note that ||, | g1 < 400 for a < /¢y (see (1.3). We easily deduce that for
each a > 0 sufficiently small, the random variable w,(t) converges weakly
to a centered Gaussian measure as t tends to infinity, or equivalently, the
process 7(t) defined in (4.2) converges weakly to

IA

IN

0
Moo = / e 9 Leos Qe dW (s)

—00

in the H!-norm.

5 Modulation equations and soliton diffusion

Let us come back to the dynamics on the center manifold, which is given by
the modulation equations on the parameters z° and ¢®; at order one in € the
system of equations may be written as

dz® = codt + eBydt + edBy + o(¢)
dc® = edBy + o(e)

V-10
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where (By, B2) = P(p,,W), P being the spectral projection on the center
manifold defined in Section 4. Note that (By, Bs) is a two-dimensional Brow-
nian motion. If we keep only the terms of order one in ¢, i.e. we consider the

solution (X¢(¢), C%(t)) of the system of SDEs

dX® = codt + eBydt + ed B>
dC*e = €dB1,

then (X°(t) — cot, C°(t) — cp) is a centered Gaussian vector, and it is easy to
compute its covariance matrix. Denoting then by puy its distribution, we may
compute

max B (s (o = X°(0) = max [ [ ol = )iy, do

zeR z€R

and we get after a few computations, asymptotically as ¢ goes to infinity,

_ ye L (1e—1/2,-5/4
rggﬂgE(nge(t)(x X5(t))) ~ Ce™ 271,

Note that for the original solution, this has only a meaning in the limit when
t goes to infinity and & goes to zero with ¢t = o(e72).

We could not obtain such a result for the additive equation studied in [3],
although the numerical computations in [13] and [15] suggest that diffusion
of the soliton also occurs with an additive noise, but with possibly a different
rate.

Let us finally mention the result of [16], where equation (2.1) is studied,
but with periodic boundary conditions for the space variable x. Although it
is not specified that the noise is homogeneous in z, the result of [16] could be
stated in our setting, under the assumption that for some constant o with
20 > [[k[2.,

|k * [v]?||2: > a?||vl|2, forall ve L? (5.1)

where k is the convolution kernel associated to the operator ¢ defining the
process W (see Section 2). It is then proved in [16] that for any ¢ > 0,
the solution u®(t) of (2.1) with periodic boundary conditions tends to zero
a.s. in L? as t goes to infinity. Note that on the opposite, E(||u®(t)]3.) is
exponentially growing in time, as may be easily seen with an application of
the Ito formula. The result does not apply directly to the case x € R, since
it is easy to see that there is no function k in L?(R) satisfying (5.1) for any
v € L*(R). However, the asymptotic behavior in time of the solution of (2.1)
for a fixed ¢ is still an open problem.

V-11
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