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Propagation of analytic singularities for the
Schrodinger Equation

André Martinez!, Shu Nakamura?, Vania Sordoni’

1 Introduction

Let us consider the solution of the Schrodinger equation on R"™,

- Ju
15+ = Hu;
(Sch) : { ot 7
Ujt=0 = U0,
where H is a perturbation of the Laplacian operator Hy := —%A, and wug is

in L2(R™) (or, more generally, in some Sobolev space).

The problem we are interested in consists in understanding the relationship
between the singularities of u(t) (for any ¢ > 0 fixed) and (some simple
property of) the initial data ug.

As it is well known, the regularity of ug is not enough to insure that of
u(t), as illustrated in the example where one takes H = Hp and uy =
(—2i7r)_%e*i|x‘2/2. Since, for t # 0, the distributional kernel of e~ ig
(2imt) " 2ellmv*/2 we see that u(t) just coincides with v(t — 1), where v
solves the same Schrédinger equation with initial date v(0) = § (the Dirac
measure at = 0). In particular, u(1) = ¢ is singular, while «(0) is analytic.

In the literature, this phenomenon is referred as to the “infinite propagation
speed” of singularities, and the natural questions one may ask are: Where
does the possible singularities come from? Is there any way to read it easily
on up? Can we analogously read the possible regularity of u(t) on ug?

Actually, there are mainly two types of results on this problem, that we
describe now.

!Universitd di Bologna, Dipartimento di Matematica, Piazza di Porta San Donato 5,
40127 Bologna, Italy. Partly supported by Universita di Bologna, Funds for Selected
Research Topics and Founds for Agreements with Foreign Universities

2Graduate School of Mathematical Science, University of Tokyo, 3-8-1 Komaba,
Meguro-ku, Tokyo, Japan 153-8914.

XVIII-1



ANDRE MARTINEZ, SHU NAKAMURA AND VANIA SORDONI

Regularizing effects

Essentially, these are results that give necessary conditions on ug so that u(t)
is regular for some fixed ¢ > 0. There has been many works on this (see, e.g.,
[CKS, Dol, Do2, GiVe, HaKal, HaKa2, KaWa, KRY, KaSa, KaTa, KaYa,
KPV, MRZ, Nal, RoZul, RoZu2, RoZu3, Wu, Yajl, Yaj2, Yam, Ze]), but
the papers that have most motivated our study are those by Wunsh [Wu]
(in the C'*° framework) and Robbiano-Zuily [RoZul, RoZu2, RoZu3]| (in the
analytic framework).

In these papers, a new notion of wave front set is introduced (the so-called
“scattering quadratic wave front set”), that propagates with finite speed, and
gives information both on the decay of u at infinity and on its regularity.
Later on, in [Nal, Na2, MNSI1], it has been possible to give a simplified
(and somehow, more general) version of these results, by introducing in
an easiest way the notion of “homogeneous wave front set”, that appeared
afterwards to mainly coincide with that of scattering quadratic wave front
set (see [It, Mec]).

Note that these phenomenon of regularizing effects is also closely related to
the Strichartz estimates, that were recently studied by many authors (see,
e.g., [StTa, RoZu4, BGT, BoTz)).

Characterization through the free evolution

In contrast with the previous type of results (where only a sufficient condi-
tion for the regularity of u(t) was obtained), here a necessary and sufficient
condition (in terms of some wave front set of ug) is given, in order to know
if a non-trapping point (x,£) € T*R™\0 is or is not in the wave front set of
u(t). These results are mainly contained in the papers [HaWu, Na2, Na3|
(in the C*° context) and [MNS2] (in the analytic context).

In [HaWu], A. Hassel and J. Wunsch has obtained a characterization of the
wave front set of the solution to the Schrédinger equation, in terms of the
oscillations of the initial data near infinity (or near the boundary in the more
general case of a so-called scattering manifold). More precisely, assuming
that the metric is globally nontrapping, they show that the wave front set of
e~y is determined by the so-called scattering wave front set of ei|z‘2/2tu0.
(If the metric is not nontrapping, the result remains valid in the backward-
non-trapped set for ¢ > 0, and in the forward-non-trapped set for ¢ < 0.)
The proof is based on the construction of a global parametrix for the kernel
of the Schrédinger propagator e | and requires a considerable amount of
microlocal machinery (such as the scattering calculus of pseudodifferential
operators, introduced by R.B. Melrose [Mel]).

For the asymptotically short-range flat metric case, Nakamura [Na2] gave
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simpler proof based on a Egorov-type argument, later extended to long-range
type perturbations of the Laplacian in [Na3].

Here, the result that we would like to present more in details, is that of
[MNS2], which can be considered as a generalization of [Na2] to the analytic
framework.

2 Notations and Main Result

We set

1 & 1 —
H=3 > Djajr(z)Dy + 3 > (aj()D; + Dja;(x)) + ao(x)

on H = L*(R"), where D; = —id,,, and we suppose the coefficients {aq(z)}
satisfy to the following assumptions. For v > 0 we denote

I, ={zeC"||Imz| <v(Rez)}.

Assumption A. For each «, aq(x) € C°(R") is real-valued and can be
extended to a holomorphic function on I'), with some v > 0. Moreover, for
x € R", the matrix (a;x(2))i1<jk<n is symmetric and positive definite, and
there exists o € (0, 1] such that,

for x € I'), and with some constant Cy > 0.

In particular, H is essentially selfadjoint on C3°(R"™), and we use the same
letter H for its unique selfadjoint extension on L?(R").

We denote by p(x,§) := % szzl a;j ()€€, the principal symbol of H, and
by Hy := —%A the free Laplace operator. For any (z,&) € R?", we also
denote by (y(t;x,&),n(t;z,§)) = exptH,(x, &) the solution of the Hamilton

system,
dy Op dn _@
pr afg(y,n), P (2] (2.1)

with initial condition (y(0),7(0)) = (=, €).

Note that the requirement on the a;s is to decay like (z)~7 only, and that
ag may even increase at infinity. We still use the term “short-range” per-
turbation because, for this problem, the relevant decay is that of each term
of the total symbol of H — Hy divided by (£)?, as (x) ~ (&) — +o0.
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We say that a point (xg,&) € T*R™\0 is forward non-trapping (respec-
tively backward non-trapping) when |y(t,zo,&p)| — oo as t — 400 (resp.
as t — —o0). In that case, there exist x(zg,&), &+ (x0,&) € R™ (resp.
x_(x0,&0),&—(x0,&) € R™), such that,

[z (20, 80) + t&4 (w0, 0) — y(t,70,&0)| — 0 as t — +oo,

(resp. |z— (w0, §o) + t&— (w0, o) — y(t, 0, &0)| — 0 as t — —o0),

and we set Sy (z0,&0) = (24 (20, &0), &+ (20, &0)) (respectively S_(zo, o) =
(z_(x0,&0),&—(x0,&0))) that corresponds to the forward (resp. backward)
classical wave map. We also denote by F'NT (resp. BNT') the set of forward
(resp. backward) non-trapping points.

Our main result is,
Theorem 2.1. Suppose Assumption A. Then,

(i) For anyt <0, one has,

WE,(e ™ ug) N FNT = S;H W E, (e Houy)); (2.2)

(i1) For any t > 0, one has,
WEF,(e ™ uy) N BNT = S~H (W F,(e”Hoyy)). (2.3)
Remark 2.2. In the particular case where the metric is globally non-

trapping, this result gives a complete characterization of the analytic wave
front set of u(t) in terms of that of e~#Hoy,,

Remark 2.3. For Rep > 0, if one sets Ty (z) = [ e #=9/hy(y)dy, a
direct computation gives,

T ) = ()

V3

2
i /ehﬁﬂt(zy) g (y)dy, (2.4)
and, as it is well known (see, e.g. [Ma]), T), can be used instead of T" for
determining the analytic wave front set of a distribution. Then, for ¢t > 0,
if we set vo(y) := el¥*/2tyg(y) and take p = t~1(¢t~! + ih), one can deduce
from (2.4) that a point (zg,&) is not in W F,(e~#Hoyy), if and only if there
exists & > 0 such that the quantity

Too(@, & h) = / /iSRG 20y () dy
is uniformly O(e=%/") as h — 0, and (Z,€) stays in a neighborhood of

(—=&o,x0)/t. This naturally leads to a notion of wave front set (say, WFE, (v9))
that, in many aspects, looks rather similar to that of analytic homogeneous
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wave front set introduced in [MNS1]. We did not check it in details, but we
strongly suspect that it corresponds to the analytic version of the scattering
wave front set used in [HaWu]| (see also [RoZu3]). In any case, this notion
permits us to state our results in a way very similar to that of [HaWu],
namely (for the FNT case),

. 1 .
(x0,&0) € WFa(eanuo) NENT — ;f o Sy (x0,&) € WFa(e”yP/%uo),

where f(z,£) := (=&, ) is the canonical map of the Fourier transform.

3 Sketch of proof

We explain the proof for the forward non-trapping case only (the backward
non-trapping case being similar).

Replacing ug by e ug, and then changing t to —t, we see that we have to
prove that for any ¢t > 0 and (z9,&)) € FNT, one has the equivalence,

(z0,&0) € WFy(ug) <= Sy(x0,&) € WFa(eitHOe_itHuo).

Following [Na2], we set v(t) := etHoe=#Hy that solves the system,
zg: =Lty ; v(0)=up. (3.1)
Here, ‘ ‘
L(t) = "0 (H — Ho)e ™0 = Ly(t) + Li(t) + Lo(t),  (3.2)
with,

1
La(t) = 5 > Dj(a}ly(x +tDy) — 8;4) Di
Jik=1
n

La(t) i= 5 D@ (o 4 #D2) Dy + Dyal¥ (z +12)

)
X

Lo(t) == ay (z + tDy),

where we have denoted by a"V (x, D) the usual Weyl-quantization of a sym-
bol a(z,§), defined by,

1
(2m)"

aW(x,Dm)u(az) =

/ eV ((z 1 y) /2, €)uly)dyde.

In order to describe the analytic wave-front set of v, we introduce its FBI
transform T'v defined by,

Tv(z,h) = /6_(Z_y)2/2hv(y)dy,
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where z € C" and h > 0 is a small extra-parameter. Then, Tv belongs
to the Sjostrand space H(II;’OC with ®¢(z) := |Im 2|?/2 (see [Sj]), and a point
(x,€) is not in WF,(v) if and only if there exists some § > 0 such that
Tv = O(e®0(2)=9)/h) yniformly for z close enough to z — i€ and h > 0
small enough. By Cauchy-formula, this is also equivalent to the existence
of some ¢’ > 0 such that He*‘I’O/hTUHLz(Q) = O(e%/") for some complex
neighborhood €2 of z — i&.

Since T' is a convolution operator, we immediately observe that T'D,, =
D, T. However, in order to study the action of L(t) after transformation by
T, we need the following key-lemma that will allow us to enter the framework
of Sjostrand’s microlocal analytic theory. Mainly, this lemma tells us that,
if f is holomorphic near T',,, then, the operator T := T o fW (x + thD,) is a
FBI transform with the same phase as T', but with some symbol f(t, z,x;h).

Lemma 3.1. Let f be a holomorphic function on T, verifying f(x) =
O((z)?) for some p € R, uniformly on I',. Let also K1 and K2 be two com-
pact subsets of R", with 0 ¢ Ky. Then, there exists a function f(t,z, x;h)
of the form,

1/Ch

f(t, z,z;h) thktza: (3.3)

where fy, is defined, smooth with respect to t and holomorphic with respect to
(z,2) near ¥ :=Ry x {(z,2); Re z € K1, |Re (z — 2)| + [Im x| < dp, Im 2 €
Ko} with 5g > 0 small enough, and such that, for any u € L>(R"), one has,

TV (o + thDoju(zh) = [ eGP 2 hyu(a)d
|z—Re z|<do

+o(<t>p+e(¢’o(2)—€)/h)’

for some € = e(u) > 0 and uniformly with respect to h > 0 small enough, z
in a small enough neighborhood of K := Ky + K5, and t € R. (Here, we
have set p4 = max(p,0).)
Moreover, the fis verify,

folt,z,z) = f(x +it(z — x));
|02, fult, 2, )| < CEHAE 4 [a))(E)?,

for some constant C > 0, and uniformly with respect to k € Z4, o € Zi",
and (t,z,z) € X.

Thanks to this lemma, and using again Sjostrand’s theory of microlocal
analytic singularities [Sj], we deduce the existence of an analytic second-
order pseudodifferential operator Q(¢, h) on Héﬁ’(f(@"\{lm z = 0}), such that,

TL(t) = Q(t, h)T.
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Moreover, the symbol of Q(t, h) is mainly given by,

(ajr(z +iC +th™'¢) — §;1)¢Gh
1

WE

h72
Q(t, ha 2, C) = 7

j7

=
3 |l

+h71 Y an(z+iC+thT' ()¢ + ao(z +i¢ + th™ Q).
/=1

Then, applying T to (3.1), multiplying it by h2, and changing the time-scale
by setting s := t/h, we obtain the new evolution equation,

T
ih% = B(s,h)Tv ; Twv(0) = Tuy, (3.4)

where B(s, h) is an analytic pseudodifferential operator of order 0 (still in the
sense of [Sj]), acting on Hg’(f(@”\{lm z = 0}), with symbol b(s, h) verifying,

b(s,h) ~ Y hby(s)
k>0
(in the sense of analytic symbols), with

n

Z (ajk(z +1iC + sC) — 67k)CiCks

jk=1

bofs:2,C) = 5

and,

bi(s; 2,¢) = O((s)~");
bi(s;2,¢) = O((s)'77) for k > 2, (3.5)

uniformly with respect to s > 0, and locally uniformly with respect to
z € C"\{Im z = 0} and ¢ close enough to —Im z.

Let us recall from [Sj] that the quantization of such a symbol b(s, h; z, () on
H flﬁ’oc is given by,

1
(2wh)"

B(s,h)w(z;h) = / Wy (s, by 2, Ow(y)dydd,
7(2)

where 7(z) is a complex contour of the form,
Y(z): (=-Imz+iR(z—vy); ly—z <

with R > 0 is fixed large enough, and r > 0 can be taken arbitrarily small.
In particular, denoting by By(s) the quantization of by(s), we deduce from
(3.5) that B(s, h) can be written as,

B(s,h) = Bo(s) + hBi(s, h),
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where Bi(s,h) admit a symbol uniformly O(({s)~7 + h(s)!=7), for s > 0, z
in a compact subset of C"\{Im z = 0}, and (y, () € v(2).
Then, for zp € C"\{Im z = 0} and ¢y > 0, if we set,

L%, (20,€0) := L*({|z — 20| < e0}; e 2%/"dRe zdIm 2) N Ha, (|2 — 20| < €0),

we see that By (s, h) is a bounded operator from L<21>0 (20,€0) to Léo (20,€0/2),
and its norm can be estimated in terms of the supremum of its symbol. Thus,
here we obtain,

o —0o -0y __ —0
HBI(S)HL<L<21>0(ZO,EO);LéO(ZO,EO/2)> - O(<S> + h’<8> ) - O(<3> )7 (36)
uniformly with respect to h > 0 small enough and |s| < T'/h (T > 0 fixed
arbitrarily).

3.1 The Flat Case

Let us first consider the case where p = pg := £2/2, and show how we
can easily deduce the result from (3.4). In that case, we have By = 0

and (x4 (zo,&0), &+ (w0,€0)) = (w0,&o) for all (zo,&) € T*R™\0. Setting
20 = xo — &y and w = Tu, Equation (3.4) gives,

i0sw(s) = Bi(s,h)w(s) in He,(|z — 20| < €0), (3.7)

with €9 > 0 fixed small enough.

Let us denote by @y = ®¢(z,z) a smooth real-valued function defined near
z = 2z, such that |®y — ®g| and ]V(Z,z)(fi)o — ®p)| are small enough, and
verifying,

i)o > (I)O in {‘Z — Zo| < 50}; (38)
by = g in {|2 — 29| < £0/4}; :
Dy > By + 1 in {|z — 20| > €0/2}, (3.10)

for some €1 > 0. Then, by changing the contour defining Bj(s) to a singular
contour (see [Sj], Remarque 4.4), we know that Bj(s) is also bounded from

Léo (z0,€0) to Léo (20,€0/2), and its norm on these space verifies the same

estimate (3.6) as on L?I)O.

Now, by (3.7), we have,
83”“1(5)”%20(20’50/2) = 2Im <Bl(8)w(3)7 w(8)>L§~>O(ZO,EO/2)’

and thus, by Cauchy-Schwarz inequality and (3.6),

85”'111(3)”%(21)0(20’60/2) = O(<$>_U)Hw(s)”iéo(zojeo)- (311)
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Then, using (3.10) and the fact that ||v(¢)||z2 = ||uo||z2 does not depend on
t, we also have the estimate,

(M5 ey = 100N (o + O,

that, inserted into (3.11), gives,

63HIU(S)H%§)0(ZO7EO/2) < C<S>_U||w(8)H%%O(ZO,EO/Q) + Ce—m/h’

with some constant C' > 0. Setting g(s) := Cfo )~7ds’, and using Gron-
wall’s lemma, we finally obtain,

HUJ(S)Hi% (20,0/2) Seg(S)Hw(())H%% - 80/2)+C/ eg(s)fg(s’)fgl/hdsl;
Hw( )HL2 (zo 50/2) Hw( )HL2 (20 50/2)+C/ eg El/hds

Then, replacing s by t/h and observing that g(s) = O({s)!77) = O(h°~1),
the equivalence (zg, o) ¢ WE,(uo) <= (x0,&0) ¢ WEF,(u(t)) follows imme-
diately. Therefore, in that case we have proved,

WE, (e Huyg) = WE, (e~ Hoyy).

3.2 The general case

In order to get rid of By(s), in the general case we construct a Fourier
integral operator F'(s, h) on Hg, ,, verifying,

{ ihOsF (s, h) — Bo(s,h)F(s,h) ~ O(h);

Fls—o = 1.
More precisely, we look for F'(s,h) of the form,
1 ; _
F(s)u() = G / ( )e“’“s’zm u/o (y)dydy, (3.12)
Vs(z

where 75(z) is a convenient contour and % is a holomorphic function that
must solve the system (eikonal equation),

{ Ot + bols, 2 Va0) = 0; 3.13)
(0 |s:0 = z.1.

The construction of 1 (s) for small s just follows from standard Hamilton-
Jacobi theory. Then, the extension to larger values of s can be made by
using the classical flow R of by(s), that is related to the Hamilton flow of p
through the formula,

Ry = roexp(—sHy,) oexpsH,or™ ", (3.14)
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where k(z, &) = (x—i&, €) is the complex canonical transformation associated
with T

In that way, we find a solution of (3.13) ¥ (s, ¢, n), defined for s € R, z close
to zg 1= xg — iy (where (x9,&) € FNT is fixed arbitrarily), and 7 close to
&o. One also has the relation,

(Zavz¢(5727ﬁ)) :Rs(vﬂw(s7z7n)an)7 (315)

which means that 1 is a generating function of the complex canonical
transformation Rs. In other words, the operator F'(s,h) defined by (3.12)
quantizes the canonical relation Ry, and, setting zs := m,Rs(z0,&p) (where
7, : (2,() — z), one can show that for any o > 0 small, F(s, h) acts as,

F(s) : Ho,(|z — 20| < €0) = Ha,(|z — 25| < e1), (3.16)

for some €1 = e1(eg) > 0. A priori, €1 also depends on s, but as a matter
of fact, since Ry tends to Roo := k08, o k! on a neighborhood of (zo, &)
as § — 400, one can prove that F'(s; h) admits a limit F(h), too, that is a
FIO quantizing Rs. Then, the action (3.16) remains valid for 0 < s < 400
(with zeo 1= T, Roo(20,&0)), and €1 can be taken independent of s.

Now, by construction, for s € R, F(s) verifies,
ihOsF(s) — Bo(s)F(s) = hFi(s),
where Fi(s) : Ho,(|z — 20| < €0) — Ha,(]z — 25| < £1) is of the form,

1

Fi(s)v(z) = (27rh)”/ ( )€i(w(s’z’n)_yn)/hf1(8,Zﬂ?%h)v(y)d@/dm
Vs(Z

with fi is an analytic symbol that is O((s)7179) as s — oo.

In the same way, for any y close enough to 29, we can define a Fourier
integral operator F(s) of the form,

F(s)oly) = o

/ (i m=s.2m) /by () gy,
Fs(y)
(where 7,(y) is again a convenient contour), such that F(s) maps He,(]z —
zs| < o) into He, (|2 — 20| < €1), and verifies,
ihdsF(s) + F(s)B = hFy(s), (3.17)

where Fl(f) : Hoy (|2 — 25| < e0) — Ha, (]2 — 20| < £1) is a FIO with same
phase as F(s) and symbol f; = O((s)~177).

Now, setting,

w(s) = F(s)Tu(hs) € Ha,(|z — 20| < €1),
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by (3.4) and (3.17), we see that @ verifies,

i05(s) = [F@)Bl(s) + By ()] Tu(hs).

Moreover, since A(s) := F(s)F(s) is an elliptic pseudodifferential operator
on Hg, .., by taking a parametrix A(s), we have,

Tu(hs) = A(s)F(s)w(s) in He,(|z — 24| <€), (3.18)

(for some £ > 0 independent of s), and thus, we obtain,
10510 (s) = By (s)w(s). (3.19)
in He,(]z — 20| < €’), where Bl(s) = [F(S)Bl(s) +13'1(3)} fl(s)F(s) is a
pseudodifferential operator on Hg, (|2 — 20| < €’) with the same properties

as By(s) when s — +oo.

Thus, we are reduced to a situation completely similar to that of the flat
case, and, if for instance (xo,&p) € WFy(uo), the same arguments show that,

(s)l 3, oy < O™,

for some positive constant ¢ independent of A > 0 small enough and s €
[0,T/h]. As a consequence, using (3.18) and the fact that A(s)F(s) is uni-
formly bounded from L%O(zo,é) to L<21>o (zs,¢") for some & > 0, we obtain
(with some new constant C' > 0),

ITulhs)lz (oo < Ce™™,
0

Replacing s by t/h with t > 0 fixed, and observing that z; /n tends to
ko Sy (xo,&) as h — 04, we conclude that Sy (xg,&) ¢ WF,(u(t)). The
converse can be seen in the same way, and thus Theorem 2.1 is proved.

References

[BoTz] Bouclet, J.M., Tzvetkov, N., Strichartz estimates for long range per-
turbations, Amer. J. Math. vol 129, no. 6 (2007)

[BGT] Burq, N., Gérard, P., Tzvetkov, N. Strichartz inequalities and the
non-linear Schrédinger equation on compact manifolds, Am. J. Math. 126
(2004), 569-605.

[CKS] Craig, W., Kappeler, T., Strauss, W., Microlocal dispersive smooth-
ing for the Schrédinger equation, Comm. Pures Appl. Math. 48 (1996),
769-860.

XVIIT-11



ANDRE MARTINEZ, SHU NAKAMURA AND VANIA SORDONI

o] o1, O., Smoothing effects for Schrodinger evolution equation an
Dol] Doi, S., S hi ff for Schrodi luti ] d
global behavior of geodesic flow, Math. Ann. 318 (2000), 355-389.

[Do2] Doi, S., Singularities of solutions of Schrodinger equations for per-
turbed harmonic oscillators, Hyperbolic problems and related topics,
Grad. Ser. Anal. 185-199, Int. Press, Somerville, MA, 2003.

[GiVe] Ginibre, J., Velo, G., Smoothing properties and retarded estimates
for some dispersive evolution equations, Comm. Math. Phys. 144 (1992),
163-188.

[HaWu| Hassel, A., Wunsch, J., The Schriodinger propagator for scattering
metrics, Annals of Mathematics, 162 (2005)

[HaKal] Hayashi, N., Kato, K., Analyticity and smoothing effect for the
Schrédinger equation, Ann. Inst. H. Poincaré, Phys. Théo. 52 (1990),
163-173.

aKa ayashi, N., Kato, K., Analyticity in ttme and Smoothing effect
HaKa2| H hi, N., K K., Analyticity in ti d S hi
of solutions to nonlinear Schrodinger equations, Comm. Math. Phys. 184
(1997), 273-300.

[It] Ito, K.: Propagation of Singularities for Schridinger Equations on the
Euclidean Space with a Scattering Metric, Comm. P. D. E., 31 (12), 1735~
1777 (2006).

[KaWa| Kajitani, K., Wakabayashi, S., Analytic smoothing effect for
Schriodinger type equations with variable coefficients, in: Direct and In-
verse Problems of Mathematical Physics (Newark, DE 1997), Int. Soc.
Anal. Comput. 5, Kluwer Acad. Publ. (Dordracht, 2000), 185-219.

[KRY] Kapitanski, L., Rodnianski, I., Yajima, K., On the fundamental solu-
tion of a perturbed harmonic oscillator, Topol. Methods Nonlinear Anal.
9 (1997), 77-106.

[KaSa] Kapitanski, L., Safarov, Y., Dispersive smoothing for Schrodinger
equations, Math. Res. Letters 3 (1996), 77-91.

[KaTa] Kato, K., Taniguchi, K., Gevrey regularizing effect for nonlinear
Schrédinger equations, Osaka J. Math 33 (1996), 863—-880.

[KaYa] Kato, T., Yajima, K., Some exzamples of smooth operators and the
associated smoothing effect, Rev. Math. Phys. 1 (1989), 481-496.

[KPV] Kenig, C., Ponce, G., Vega, L., Oscillatory integrals and regularity
of dispersive equations, Ind. Univ. Math. J. 40 (1991), 33-69.

[Ma] Martinez, A., An Introduction to Semiclassical and Microlocal Anal-
ysis, UTX Series, Springer-Verlag New-York, 2002.

XVIIT-12



Exp. n° XVIII— Propagation of analytic singularities for the Schrédinger Equation

[MNS1] Martinez, A., Nakamura, S., Sordoni, V., Analytic smoothing effect
for the Schridinger equation with long-range perturbation, Comm. Pure
Appl. Math. 59 (2006), 1330-1351.

[MNS2] Martinez, A., Nakamura, S., Sordoni, V., Analytic wave front set
for solutions to Schrodinger equations, Preprint 2007.

[Mec] Mechergui, C., Fquivalence between the analytic quadratic scattering
wave front set and analytic homogeneus wave front set, Preprint 2007.

[Mel] Melrose, R. B., Spectral and scattering theory for the Laplacian on
asymptotically Euclidian spaces, Spectral and scattering theory (Sanda,
1992), Dekker, New York, 1994, pp. 85TH130.

[MRZ] Morimoto, Y., Robbiano, L., Zuily, C., Remark on the smoothing
for the Schridinger equation, Indiana University Mathematic Journal 49
(2000), 1563-1579.

[Nal] Nakamura, S., Propagation of the Homogeneous Wave Front Set for
Schradinger Equations, Duke Math. J. 126, 349-367 (2005).

[Na2] Nakamura, S., Wave front set for solutions to Schrodinger equations,
Preprint 2004

[Na3| Nakamura, S.: Semiclassical singularity propaga-
tion  property  for  Schrodinger  equations, Preprint 2006
(http://www.arxiv.org/abs/math.AP/0605742), to appear in J. Math.
Soc. Japan.

[Ro] Robert, S., Autour de I’Approzimation Semi-Classique, Birkhauser
(1987)

[RoZul] Robbiano, L., Zuily, C., Microlocal analytic smoothing effect for
Schrédinger equation, Duke Math. J. 100 (1999), 93-129.

RoZu2] Robbiano, L., Zuily, C., Effet régularisant microlocal analytique

[ y 9 ytiq
pour ’équation de Schrodinger: le cas des données oscillantes, Comm.
Partial Differential Equations 100 (2000) 1891-1906.

[RoZu3] Robbiano, L., Zuily, C., Analytic theory for the quadratic scattering
wave front set and application to the Schrédinger equation, Soc. Math.
France, Astérisque 283 (2002), 1-128.

[RoZu4] Robbiano, L., Zuily, C., Strichartz estimates for Schrodinger equa-
tions with variable coefficients, Mem. Soc. Math. France (N.S.) 101-102
(2005)

[Sj] Sjostrand, J., Singularités analytiques microlocales, Soc. Math. France,
Astérisque 95 (1982), 1-166.

XVIII-13



ANDRE MARTINEZ, SHU NAKAMURA AND VANIA SORDONI

[StTa] Staffilani, G., Tataru, D., Strichartz estimates for a Schrodinger op-
erator with non smooth coefficients, Com. P. D. E. 27 (2002), 1337-1372

[Wu] Wunsch, J., Propagation of singularities and growth for Schridinger
operators, Duke Math. J. 98 (1999), 137-186.

[Yajl] Yajima, K., On smoothing property of Schridinger propagators.
Functional-Analytic Methods for Partial Differential Equations, Lecture
Notes in Math., 1450 (1990), 20-35, Springer, Berlin.

[Yaj2] Yajima, K., Schridinger evolution equations and associated smooth-
ing effect, Rigorous Results in Quantum Dynamics, World Sci. Publishing,
River Edge, NJ, 1991, 167-185.

[Yam] Yamazaki, M., On the microlocal smoothing effect of dispersive par-
tial differential equations, Algebraic Analysis Vol. II, 911-926, Academic
Press, Boston, MA,1988.

[Ze] Zelditch, S., Reconstruction of singularities for solutions of Schrodinger
equation, Comm. Math. Phys. 90 (1983), 1-26.

XVIII-14



