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Magnetic Schrödinger Operator: Geometry,
Classical and Quantum Dynamics and

Spectral Asymptotics

Victor Ivrii

Abstract

I study the Schrödinger operator with the strong magnetic field,
considering links between geometry of magnetic field, classical and
quantum dynamics associated with operator and spectral asymptotics.
In particular, I will discuss the role of short periodic trajectories.

0 Preface

I will consider Magnetic Schrödinger operator

(1) H =
1

2

(∑
j ,k

Pjg
jk(x)Pk − V

)
, Pj = hDj − µAj

where g jk , Aj , V are smooth real-valued functions of x ∈ Rd and (g jk) is a
positive-definite matrix, 0 < h � 1 is a Planck parameter and µ � 1 is a
coupling parameter. I assume that H is a self-adjoint operator.

2-dimensional magnetic Schrödinger is very different from 3-dimensional,
all others could be close to one of these cases but are more complicated.

I am interested in the geometry of magnetic field, classical and quantum
dynamics associated with operator (1) and spectral asymptotics

(2)

∫
e(x , x , 0)ψ(x) dx

as h → +0, µ → +∞ where e(x , y , τ) is the Schwartz kernel of the spectral
projector of H and ψ(x) is cut-off function. Everything is assumed to be C∞.
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1 Geometry of Magnetic Field

Magnetic Intensity Magnetic field is described by a form

(3) σ = d
(∑

k

Akdxk

)
=

1

2

∑
j ,k

Fjkdxj ∧ dxk

with

(4) Fjk = ∂jVk − ∂kVj .

So σ does not change after gauge transformation ~A 7→ ~A + ~∇φ and this
transformation does not affect other objects I am interesting in as well.

I am discussing local things and Aharonov-Bohm effect which demon-
strates that knowledge of σ, gjk , V is not sufficient to characterize spectral
properties of H is beyond my analysis.

Canonical forms If σ is of maximum rank 2r = 2bd/2c one can reduce it
locally to the Darboux canonical form

(5) σ =
∑

1≤j≤r

dx2j−1 ∧ dx2j .

So, (5) is a canonical form of σ near generic point for generic ~A. However

situation becomes much more complicated near general point for generic ~A.
Complete results are not known. Assuming d = 2r and σ is generic J. Mar-
tinet [Ma] had shown that Σk = {x , rank F (x) ≤ d − k} are submanifolds
and calculated their codimensions. In particular, codim Σ1 = 1. Moreover,
Σ2 = ∅ as d = 2, 4 (not true for d ≥ 6).

As d = 2 generic 2-form σ has a local canonical form

(6) σ = x1dx1 ∧ dx2, Σ = {x1 = 0}.

However, as d = 4 not all points of Σ = Σ1 are equal: Λ = {x ∈ Σ, Ker F (x) ⊂
TxΣ} is submanifold of dimension 1. As x̄ ∈ Σ \ Λ dim

(
Ker F (x) ∩ Tx̄Σ

)
= 1

and in its vicinity one can reduce σ to

(7) σ = x1dx1 ∧ dx2 + dx3 ∧ dx4
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while in the vicinity of x̄ ∈ Λ canonical form is

(8) σ = dx1 ∧ dx2 − x4dx1 ∧ dx3 + x3dx1 ∧ dx4 + x3dx2 ∧ dx3 + x4dx2 ∧ dx4+

2
(
x1 −

1

2
(x2

3 + x2
4 )

)
dx3 ∧ dx4

(R. Roussarie [Rou], modified by x2 7→ x2 − 1
2
x3x4).

Magnetic lines Magnetic lines are described by

(9)
dx

dt
∈ Ker F (x)∩TxΣ

where one can skip ∩TxΣ without changing the substance of the definition.
As rank F = d (and thus d is even) there are no magnetic lines. As

rank F = d − 1 (and thus d is odd) through each point passes exactly 1
magnetic line.

As d = 2 and σ is defined by (6) the only magnetic line is {x1 = 0}. As
d = 4 and σ is defined by (7) magnetic lines are straight lines {x1 = 0, x3 =
const, x4 = const}. As d = 4 and σ is defined by (8) Λ = {x1 = x3 = x4 = 0}
and magnetic lines are helices {x1 = 0, x3 = r cos θ, x4 = r sin θ, x2 = const −
r 2θ/2} (with r = const), winging around Λ.

True geometry From the point of view of operator H simultaneous anal-
ysis of form σ and metrics (g lj) should be crucial, but I am not aware about
any results. It appears, however, that only eigenvalues ±ifj and eigenspaces
of matrix (F l

k) = (
∑

j g
ljFjk) are really important, and in the case of the

generic magnetic field they are not very difficult to examine.
As d = 2

(10) f1 = F12/
√

g , g = det(g jk)−1

while for d = 3

(11) f1 =
1

2

( ∑
j ,k,l ,m

g jkg lmFjlFkm

)1/2
=

( ∑
j ,k,l ,m

gjkF
jF k

)1/2

where F j = 1
2

∑
k,l ε

jklFkl is a vector intensity of magnetic field, εjkl is an
absolutely skew-symmetric tensor with ε123 = 1/

√
g .
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2 Classical Dynamics

2.1 Constant case

This case has been well-known long ago.

2D case Assume first that g jk , Fjk and V are constant. Then with no loss
of the generality one can assume that g jk = δjk , skew-symmetric matrix (Fjk)
is reduced to the canonical form:

(12) Fjk =


fj j = 1, ... , r , k = j + r

−fk j = r + 1, ... , 2r , k = j − r

0 otherwise

,

fj > 0 and V = 0; moreover, one can select Aj(x) as linear functions.
Then as d = 2, f1 > 0 classical particle described by Hamiltonian

(13) H(x , ξ) =
1

2

(∑
j ,k

g jk(x)
(
ξj − µAj(x)

)(
ξk − µAk(x)

)
− V (x)

)
moves along cyclotrons which in this case are circles of radius ρ1 = (µf1)

−1
√

2E
with the angular velocity ω1 = µf1 on energy level {H(x , ξ) = E}.

3D case As d = 3, f1 > 0 there are a cyclotron movement along circles
of radii ρ1 = (µf1)

−1
√

2E1 with the angular velocity ω1 = µf1 and a free
movement along magnetic lines (which are straight lines along Ker F ) with
a speed

√
2Ef and energy E is split into two constant arbitrary parts E =

E1 + Ef .

Multidimensional case Multidimensional case with d = 2r = rank F is
a combination of 2D cases: there are r cyclotron movements with angular
velocities ωk = µfk and radii ρk = (µfk)

−1
√

2Ek where energy E is split into
r constant arbitrary parts E = E1 + E2 + · · · + Er . The exact nature of the
trajectories depends on the comeasurability of f1, ... , fr .

As d > 2r = rank F in addition to the cyclotronic movements described
above appears a free movement along any constant direction ~v ∈ Ker F with
a speed

√
2Ef where energy E is split into r + 1 constant arbitrary parts

E = E1 + E2 + · · ·+ Er + Ef .
This difference between cases d = 2r = rank F and d > 2r = rank F will

be traced through the whole paper.
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2.2 Full rank case

Assume now only that d = rank F (see f.e [Ivr2, Ivr3]. In addition, assume
temporarily that Fjk and g jk are constant but potential V (x) is linear. Then
cyclotronic movement(s) is combined with the magnetic drift described by
equation

(14)
dxj

dt
= (2µ)−1

∑
k

Φjk∂kV

where (Φjk) = (Fjk)
−1.

As d = 2 it will be movement along cycloid and multidimensional move-
ment will be combination of those.

Not assuming anymore that V is linear we get a bit more complicated
picture:

• Equation (14) holds modulo O(µ−2); modulo error O(µ−2t);

• As d = 2 cycloid is replaced by a more complicated curve drifting along
V = const and thus cyclotron radius ρ = (µf1)

−1
√

2E + V would be pre-
served;

• In higher dimensions all cyclotron radii are preserved as well.

Without assumption that g jk annd Fjk are constant picture becomes even
more complicated:

• As d = 2 cycloid is replaced by a more complicated curve drifting along
f −1(V + 2E ) = const (thus preserving angular momentum ω1ρ

2
1 according

to equation

(15)
dx

dt
= (2µ)−1

(
∇f −1(V + 2E )

)⊥
where ⊥ means clockwise rotation by π/2 assuming that at point in question
g jk = δjk ;

• In higher dimensions (at least as non-resonance conditions fj 6= fk for
all j 6= k and fj 6= fk + fl for all j,k,l are fulfilled) one can split potential

V = V1 + · · ·+Vk so that similar equations hold in each eigenspace of (F j
k)

and both separate energies and angular momenta are (almost) preserved.
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2.3 3D case

As d > 2r = rank F the free movement is the main source of the spatial
displacement and the most interesting case is 2r = d − 1 and especially
d = 3, r = 1.

In this case the magnetic angular momentum M is (almost) preserved;
thus kinetic energy of magnetic rotation is 1

2
f −1M2; therefore in the coor-

dinate system such that g 1j = δ1j the free movement is described by 1D
Hamiltonian

(16) H1(x1, ξ1; x
′, M) =

1

2
ξ2
1 −

1

2
Veff

with effective potential Veff(x1, x
′) = V − f −1M2, x = (x1, x

′).
Thus the particle does not necessarily run the whole magnetic line and

the helix winging around it does not necessarily have constant the step or
radius. Effect of the magnetic drift is rather minor.

2.4 2D case: variable rank

Situation becomes really complicated for variable rank F . I am going to
consider only d = 2, 4 and a generic magnetic form σ. Let me start from the
model Hamiltonian as d = 2:

(17) H0 =
1

2

(
ξ2
1 + (ξ2 − µxν

1 /ν)
2 − 1

)
;

the drift equation is

(18)
dx1

dt
= 0,

dx2

dt
=

1

2
(ν − 1)µ−1x−ν

1

and for |x1| � γ̄ = µ−1/(ν+1) gives a proper description of the picture.
For the model Hamiltonian (17) with µ = 1 (otherwise one can scale

x1 7→ µ1/2x1, ξ2 7→ µk) we can consider also 1-dimensional movement along
x1 with potential

(19) V(x1; k) = 1− (k − xν
1 /ν)

2, k = ξ2;

Then for odd ν

• V is one-well potential;
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• As k = ±1 one of its extremes is 0 where dV
dx1

(0) = 0;

• Well is more to the right/left from 0 as ±k > 0; as k = 0 well becomes
symmetric.
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(c) k = 1;

Figure 1: Effective potential for odd ν.

On the other hand, for even ν potential is always symmetric and

• We have two-well potential with the central bump above surface if k > 1

• and below it as 0 < k < 1:

• As k = ±1 one of its extremes is 0 where dV
dx1

(0) = 0;

• Well is more to the right/left from 0 as ±k > 0; as k = 0 well becomes
symmetric.
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(d) −1 < k ≤ 0;

Figure 2: Effective potential for even ν.
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Let us consider trajectories on the energy level 0. From the analysis of
the potential one can conclude that for k 6= ±1 the movement along x1 is
periodic with the period

(20) T (k) = 2

∫ x+
1 (k)

x−1 (k)

dx1√
2V(x1; k)

;

however one needs to analyze the increment of x2 during this period

(21) I (k) = 2

∫ x+
1 (k)

x−1 (k)

(k − xν
1 /ν)dx1√

2V(x1; k)
.

One can prove that I (k) ≷ 0 as k ≷ k∗ with 0 < k∗ < 1 for even ν and k∗ = 0
for odd ν. In particular, k∗ ≈ 0.65 for ν = 2. Further, I (k) � (k − k∗) as
k ≈ k∗.

On figures 3–5 are shown trajectories on (x1, x2)-plane plotted by Maple in
the outer zone (these trajectories have mirror-symmetric or central-symmetric
for even or odd ν in zone x1 < 0), in the inner zone for even ν and in the
inner zone for odd ν respectively. For the spectral asymptotics periodic tra-
jectories are very important, especially the short ones. Periodic trajectories
shown above are very unstable and taking V = 1− αx1 instead of x1 breaks
them down (figure 6). One can find details in section 1, [Ivr5].

2.5 4D case: variable rank

The most natural model operator corresponding to the canonical form (7)
is H0 + H ′′ with H0 as above and 2H ′′ = ξ2

3 + (ξ4 − x3)
2. Then H ′′ is a

movement integral. Therefore the dynamics is split into dynamics in (x ′, ξ′) =
(x1, x2, ξ1, ξ2) described above with potential W = V − 2E and the standard
cyclotron movement with energy E in (x ′′, ξ′′) = (x3, x4, ξ3, ξ4).

Situation actually is way more complicated: considering H0 + (1 +αx1)E
we arrive to the 1-D potential V − 1(1 + αx1) and playing with E and α one
can kill the drift even for k � 1 leading to many periodic trajectories.

Consider canonical form (8) which in polar coordinates in (x3, x4) becomes

(22) σ = d
(
(x1 −

1

2
ρ2)dx2 + (x1 −

1

4
ρ2)ρ2dθ)

)
.

The most natural classical Hamiltonian corresponding to this form is

(23) 2H = ξ2
1 +

(
ξ2 − µ(x1 −

1

2
ρ2)

)2
+ %2 + r−2

(
ϑ− µ(x1 −

1

4
ρ2)ρ2

)2 − 1
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(a) k � 1; as x1 > 0 trajectory
moves up and rotates clockwise
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!0.2
1.4

y(t)

0.8

0.4

!0.8

1.2 1.6
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0.2

!0.4

(b) k decreases, still k > 1. Trajec-
tory becomes less tight; actual size of
cyclotrons increases;

1.0

0.4

!1.2

0.0

1.6

y(t)

!0.4

!1.6

0.8

0.5
x(t)

1.5
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1.2

(c) k further decreases, still k > 1;

!"# $"!

%&'(

)&'(

*

!"!

!$

$

!*

!

(d) k = 1. Trajectory contains just
one cyclotron.

Figure 3: Movements in the outer zone

with %,ϑ dual to ρ, θ.
Note that ξ2 and ϑ are movement integrals and therefore x1 − 1

2
ρ2 is

preserved modulo O(µ−1). Based on this one can prove that

• There is a cyclotronic movement with the angular velocity � µ−1 in the
normal direction to parabolloid {−x1 + 1

2
ρ2 = 1

2
ρ̄2}
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(a) k < 1 slightly (b) k further decays but still larger
than k∗. Drift slows down

(c) k = k∗. No drift; trajectory be-
comes periodic

(d) k < k∗. Drift now is down!

(e) k decays further. Drift down ac-
celerates.

(f) and further; as k = −1 we have
just straight line down

Figure 4: Even ν; movements in the inner zone
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(c) k = 0. No drift.
Trajectory is periodic

Figure 5: Odd ν; movements in the inner zone
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(a) Even ν

y(t)
5

x(t)
!2

0

1

0

4

2

1

8

!2

7
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3

!1

(b) Odd ν

Figure 6: Breaking periodic trajectories by a linear potential

• combined in the zone {|x1| ≤ cρ2} with the movement similar to one
described in 2D case in (ρ, θ)-coordinates (with {x1 = 0} now equivalent
to {ρ = ρ̄}) on the surface of this ellipsoid

• and also combined some movement along x2;

• I did not consider zone {|x1| ≥ cρ2} since it was not needed for the
spectral asymptotics.

One can find details in section 1, [Ivr8].
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3 Quantum Dynamics

Microlocal canonical form (Birkhoff normal form) play a crucial role in the
analysis of the quantum dynamics and spectral asymptotics.

3.1 Canonical forms. I

In the case d = 2 and a full-rank magnetic field canonical form of magnetic
Schrödinger operator is (one half of)

(24) ω1(x1,µ
−1hD1)(h

2D2
2 + µ2x2

2 )−W (x1,µ
−1hD1)+∑

m+k+l≥2

amkl(x1,µ
−1hD1)(h

2D2
2 + µ2x2

2 )mµ2−2m−2k−lhl

with ωj = fj ◦ Ψ, W = V ◦ Ψ with some map Ψ. The first line is main part
of the canonical form.

In the case d = 3 and a maximal-rank magnetic field microlocal canonical
form of magnetic Schrödinger operator is one half of

(25) ω1(x1, x2,µ
−1hD2)(h

2D2
3 + µ2x2

3 ) + h2D2
1 −W (x1, x2,µ

−1hD2)+∑
m+n+k+l≥2

amnkl(x2,µ
−1hD2)(h

2D2
3 + µ2x2

3 )mDn
1×

µ2−2m−2k−l−nhl+n

Again, the first line is main part of the canonical form.
In the case d ≥ 4 and a constant rank magnetic field microlocal canonical

form of Magnetic Schröding operator is of the similar type provided we can
avoid some obstacles:

If fj have constant multiplicities (say, fj are simple, for the sake of sim-
plicity) then the main part is

(26)
∑

1≤j≤r

ωj(x
′, x ′′,µ−1hD ′′)(h2D2

r+q+j + µ2x2
r+q+j) + h2D ′2−

W (x ′, x ′′,µ−1hD ′′);

where x ′ = (x1, ... , xq), x ′′ = (xq+1, ... , xq+r ), 2r = rank F , q = d − 2r .
Next terms appear if one can avoid higher order resonances :

∑
j pj fj(x) =

0 with pj ∈ Z; 3 ≤
∑

j |pj | is calleed the order of the resonance.
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After operator is reduced to the canonical form one can decompose func-
tions as

(27) u(x) =
∑

α∈Z+r

uα(x ′, x ′′)Υp1(xr+q+1) · · ·Υpr (xd)

where Υ are eigenfunctions of harmonic oscillator h2D2 + µ2x2 (i.e. scaled
Hermite functions).

Then as 2r = d one gets a family of r -dimensional µ−1h-PDOs and for
2r < d one gets a family of q-dimensional Schrödinger operators with poten-
tials which are r -dimensional µ−1h-PDOs.

The similar approach also works for 2 and 4-dimensional Schrödinger op-
erators with the degenerate magnetic field of the types I considered before but

only in the far outer zone {γ(x)
def
= |x1| � µ−1/ν} and to this form operator

is reduced in balls B(x̄ , 1
2
γ(x̄)).

3.2 Canonical forms. II

As d = 2, 4 and magnetic field degenerates there is also a more global canon-
ical form.

As d = 2 in zone {|x1| � 1} this form is (after multiplication by some
non-vanishing function)

(28) h2D2
1 + (hD2 − µxν

1 /ν)
2 −W (x) + perturbation

with W = Vφ−2/(ν+1) (if oiriginally f1 ∼ φ dist(x , Σ)ν−1, Σ = {x1 = 0}).
For d = 4 one can separate a cyclotron part corresponding to the non-

vanishing eigenvalue f2; after this one gets a 3-dimensional second-order DO
(+ perturbation) with the principal part which is the quadratic form of rank
2 and a free term V −(2α+1)µhf2 where α ∈ Z+ is a corresponding magnetic
quantum number.

This operator could be reduced to the form similar to (28) (at least away
from Λ = {x3 = x4 = 0}); here W =

(
V − (2α+ 1)µhf2

)
φ−2/3.

Close to Λ but as |x1| ≤ Cρ2 one can get a similar form but with θ instead
of x2 and µρ instead of µ.

3.3 Periodic orbits

One can prove that semiclassical quantum dynamics follows the classical one
long enough to recover sharp remainder estimates but the notion of periodic
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orbit should be adjusted to reflect logarithmic uncertainty principle

(29) | osc(x)| · | osc(D)| ≥ C~| log ~|

where ~ is effective Plank constant (it could be h or µ−1h or one of them
scaled depending on the particular situation).

I need a logarithm because I am interesting in the size of the box outside
of which function is negligible rather than in the mean quadratic deviation.
Function exp(−|x |2/2~) scaled shows shows that boxing requires a logarithmic
factor.

So instead of individual trajectories I consider their beams satisfying log-
arithmic uncertainty principle. One can see that the classical trajectory is
not periodic but cannot say this about the semiclassical beam until much
larger time, after few “periods”.

(a) (b)

Figure 7: Classical (a) and semiclassical (b) periodicity.

4 Spectral asymptotics

4.1 Tauberian method

Problem I am looking at asymptotics as h → +0, µ→ +∞ of

(30) Γ(Qe)(0) =

∫ (
e(., ., 0)Qt

y

)
x=y

dy = Tr(QE (0))
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where e(x , y , τ) is the Schwartz kernel of the spectral projector E (τ) of op-
erator H and Q is a pseudo-differential operator, Qt means a dual operator.

As Q = I we get Tr E (0) which is the number of negative eigenvalues of
H (and +∞ if there is an essential spectrum of H below 0).

I hope to construct this expession (30) with Q = I from itself for elements
of the partition of unity with self-adjoint Q ≥ 0.

Tauberian method Tauberian method Fourier says that the main part of
Γ(eQt

y) is given by expression

(31) h−1

∫ 0

−∞

(
Ft→h−1τ χ̄T (t)Γ(uQt

y)
)

dτ

while the remainder does not exceed C M
T

+ C ′hs where

(32) M = MT = sup
|τ |≤ε

|
(
Ft→h−1τ χ̄T (t)Γ(uQt

y)
)
|

and s is large, C does not depend on ε, T , h,µ and s while C ′ depends on
ε > 0, T , s.

Here and below u(x , y , t) is the Schwartz kernel of the propagator e ih−1tH ,
χ̄ ∈ C∞

0 ([−1, 1]) equal 1 at [−1
2
, 1

2
], χ ∈ C∞

0 ([−1, 1]) equal 0 at [−1
2
, 1

2
],

χT (t) = χ(t/T ), T > 0 and Ft→h−1τ is h-Fourier transform.
Actually this remainder estimate persists if one replaces T by any larger

number T ′ only in expression (31).
So, I want to increase T without (significantly) increasing MT in (32).

Evil of periodic trajectories Microlocal analysis says that if there are
no periodic trajectories with periods in [T

2
, T ] on energy levels in [−2ε, 2ε]

then

(33) sup
|τ |≤ε

|
(
Ft→h−1τχT (t)Γ(uQt

y)
)
| ≤ C ′hs .

Therefore if there are no periodic trajectories with periods in [T , T ′] on
energy levels in [−2ε, 2ε], then one can retain T in (31), MT in (32) but the
remainder estimate improves to C M

T’
+ C ′hs .

So, periodic trajectories are one of the main obstacles in getting a good
remainder estimate. For example, if all trajectories are periodic with the
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period T = TΠ then it can happen that MT � TT−1
Π MTΠ

as T ≥ TΠ and
increasing T does not bring any improvement.

For example, let µ ≤ 1, V � 1. Then there are no periodic trajectories
with periods in [T0, T1], T0 = Ch| log h| and T1 = ε because dist(x(t), x(0)) �
T as T ≤ T1 and this distance is observable as T ≥ T0.

Then M ≤ Ch−dT0 = Ch1−d | log h| and the remainder estimate is
O(h1−d | log h|). Actually one can get rid off this log factor in M = Ch1−d and
the remainder estimate becomes O(h1−d). This remainder estimate cannot
be improved without geometric assumptions of the global nature.

Also, taking T really small in (31) allows us to calculate u and (31) by
a crude successive approximation method with an unperturbed operator H
having coefficients frozen as x = y .

As µ ≥ 1 the same arguments are true but T1 = εµ−1 and the remainder
estimate is O(µh1−d). This remainder estimate cannot be improved as d = 2,
g jk , f1 and V are constant.

In our arguments : because all trajectories are periodic (pure cyclotronic
movement).

From direct calculations : as domain is R2 all eigenvalues are Landau levels
(α+ 1

2
)µh − 1

2
V of infinite multiplicity (α ∈ Z+) and

(34) e(x , x , τ) =
1

2π

∑
n≥0

θ
(
2τ + V − (2n + 1)µhf

)
µh−1f

√
g

with jumps � µh−1 at Landau levels.
However in many cases one can improve remainder estimate O(µh1−d).

The idea is to show that actually periodicity is broken.
From the point of view of applications one should take Q with support

(with respect to x) in ball B(0, 1
2
) (then rescaling arguments could be applied)

and impose condition on operator only in the circle of light B(0, 1) with the
self-adjointness being the only condition outside of it.

So anything out of B(0, 1) is a dark territory and we must take T ≤ T ∗

which is the time for which trajectory which started from supp Q remains in
B(0, 1). But we can chose the time direction and we can chose it for every
beam individually.

Now, as d = 3 the typical trajectory is non-periodic because of the free
movement and

• one must take T ≤ T ∗ � 1;
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• but for most of the trajectories one can take T1 � T ∗ retaining T0 =
Ch| log h|

and the remainder estimate is O(h1−d) (under very mild assumptions).

Let d = 2 and f1 do not vanish. Then

• since the drift speed is O(µ−1) one can take T � µ; under certain non-
degeneracy conditions breaking periodicity of the cyclotronic movement one
can take T1 = T ∗ retaining T0 = Ch| log h|

and the remainder estimate is O(µ−1h1−d).
When tamed, our worst enemy (periodic trajectories) could become our

best friend!

4.2 Results: Constant-rank case

Results: “Constant” case

Theorem 1. Let g jk , Fjk and V be constant and domain be Rd . Then

(35) EMW
d (x , E )

def
= Ωd−2r (2π)−d+rµrh−d+r×∑

α∈Z+r

(
2E + V −

∑
j

(2αj + 1)fjµh − V
) d

2
−r

+
f1 · · · fr

√
g

where Ωk is a volume of unit ball in Rk .

In particular, the spectrum is pure point if and only if r = 0.

One can prove this theorem easily by direct calculations. Magnetic Weyl
Expression cEMW

d (x , E ) becomes our candidate for the main part of asymp-
totics in the general case.

Results: d = 2 As d = 2 formula (35) provides a good approximation and
the non-degeneracy condition below breaks periodicity and provides a good
remainder estimate [Ivr7]:

Theorem 2. Let d = 2 and g jk , Fjk , V be smooth in B(0, 1), f1 non-vanishing
there and ψ ∈ C∞

0 (B(0, 1)). Let assume that all critical values of V /f1 are
non-degenerate. Then

(36) |
∫ (

e(x , x , 0)− EMW
d (x , 0)

)
ψ(x) dx | ≤ Cµ−1h1−d

XVI–17



as µ ≤ ch−1.

Remark 3. (i) If in the general case magnetic field spoils remainder estimate
O(µh1−d), but in the covered case magnetic field improves it;

(ii) Estimate (36) holds in multidimensional full-rank case as well but non-
degeneracy condition is pretty complicated and is not generic [Ivr3];

(iii) As ε1 ≤ µh ≤ c nondegeneracy condition changes; as d = 2 it reads:
(2α+ 1)µh is not a degenerate critical value of V /f for any α ∈ Z+;

(iv) As f1 + · · ·+ fr ≥ ε > 0, e(x , x , 0) is negligible and EMW
d = 0 for µ ≥ ch−1.

Results: Non full-rank case Let us assume that rank F is constant but
less than d . In this case remainder estimate cannot be better than O(h1−d)
but it also cannot be much worse [Ivr4]:

Theorem 4. Let g jk , Fjk , V be smooth in B(0, 1), rank(F ) = 2r , 0 < 2r < d
so f1,. . . ,fr do not vanish there and ψ ∈ C∞

0 (B(0, 1)). Then

(i) As either 2r = d − 1 and some very mild non-degeneracy condition is
fulfilled or 2r = d − 2 or µ ≤ hδ−1 with δ > 0

(37) |
∫ (

e(x , x , 0)− EMW
d (x , 0)

)
ψ(x) dx | ≤ Ch1−d ;

(ii) As 2r = d −1 the left-hand expression does not exceed Cµh2−δ−d +Ch1−d

with arbitrarily small δ > 0.

4.3 Results: Degenerating 2D case

Consider case d = 2, f1 � |x1|ν−1 with ν ≥ 2 assuming that

(38) V ≥ ε0 > 0.

We consider ε-vicinity of {x1 = 0} with small enough constant ε > 0.
Then in the outer zone {γ̄ = Cµ−1/ν ≤ |x1| ≤ ε} there is a drift with the

speed µ−1γ−ν , this drift breaks periodicity and therefore contribution of the
strip {|x1| � γ} with γ ∈ (γ̄, ε) to the remainder estimate does not exceed
Ch1−d ×γ×µ−1γ−ν where the second factor is the width of the strip and the
third one is the inverse “control time”. Then the total contribution of the
outer zone to the remainder estimate does not exceed the same expression
as γ = γ̄ which is Cµ−1/νh1−d ; this is our best shot.
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In the inner zone {|x1| ≤ γ̄} or equivalently {|ξ2| ≤ C0} the similar
arguments work as long as ρ � |ξ2 − k∗V 1/2| ≥ ε.

Otherwise there seems to be no drift to save the day. However it is not
that bad. Really, period in x1 is � γ̄ and if

(39) |ξ2 − k∗V 1/2| � ρ

the speed of the drift is � ρ, the shift with respect to x2 is � ργ̄ and in order
to be observable it must satisfy logarithmic uncertainty principle ργ̄ × ρ ≥
Ch| log h| because characteristic scale in ξ2 is ρ now. So, periodicity is broken
provided

(40) ρ ≥ ρ̄1 = C
(
γ̄−1h| log h|

) 1
2 ,

which leaves us with much smaller periodic zone

(41) Zper =
{
|ξ2 − k∗V 1/2| ≤ ρ̄1

}
.

And in this periodic zone picking up T1 � γ̄ we can derive remainder estimate
O(h−1ρ̄1) which does not exceed our dream estimate Cµ−1/νh−1 provided
ρ̄1 ≤ γ̄ or

(42) µ ≤ C (h| log h|)−
ν
3 .

Actually for the general operator rather than the model one we need to
assume that ρ ≥ C γ̄ but this does not spoil our dream estimate.

So we need to consider periodic zone defined by (41) assuming that (42)
does not hold.

Inside of Periodic Zone Even in the periodic zone Zper periodicity of
trajectories can be broken as W = Vφ−2/(ν+1)|x1=0 is “variable enough” which
leads us [Ivr5, Ivr6] to

Theorem 5. Let d = 2, f1 = φ(x)|x1|ν−1 with ν ≥ 2 and condition (38) be
fulfilled. Then as ψ ∈ C∞

0 (B(0, 1) ∩ {|x1| ≤ ε}

(43) |
∫ (

e(x , x , 0)− EMW
d (x , 0)

)
ψ(x) dx | ≤ C (µ−1/ν + ~(q+1)/2)h1−d

where here and below ~ = µ1/νh, q = 0 in the general case and q = 1 under
assumption “W does not have degenerate critical points”.
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To improve this remainder estimate one should take in account the short
periodic trajectories. Actually, periodicity of the trajectories close to them
is broken but only after time T0 = Cρ−2h| log h| (see our discussion in sub-
section 3.3). Skipping details [Ivr5, Ivr6]

Theorem 6. Let d = 2, f1 = φ(x)|x1|ν−1 with ν ≥ 2 and condition (38) be
fulfilled. Then as ψ ∈ C∞

0 (B(0, 1) ∩ {|x1| ≤ ε}

(44) |
∫ (

e(x , x , 0)− EMW
d (x , 0)

)
ψ(x) dx −

∫
EMW

corr (x2, 0)ψ(0, x2) dx2| ≤

Cµ−1/νh1−d

provided either some very mild nondegeneracy condition is fulfilled or µ ≤
chδ−ν where EMW

corr (x2, 0) is defined below.

Remark 7. (i) In the case we are considering right now (and no other case
considered in this article) condition f1 + · · · + fr ≥ ε0 fails and therefore
e(x , x , 0) is not negligible as µ ≥ ch−1;

(ii) On the other hand, e(x , x , 0) is negligible as µ ≥ ch−ν ;

(iii) As ch−1 ≤ µ ≤ ch−ν , EMW(x , 0) is supported in the strip {|x1| ≤
γ̄1

def
= C0(µh)−1/(ν−1)} where γ̄1 ≥ γ̄ = cµ−1/ν ; therefore the main part of

the spectral asymptotics (after integration) is of magnitude (µh)−1/(ν−1)h−d .

In theorem 6 the correction term is defined by

(45) EMW
corr (x2, τ) = (2πh)−1

∫
n0(τ ; x2, ξ2, ~) dξ2 −

∫
EMW

0 (τ ; x1, x2, ~) dx1

where n0 is an eigenvalue counting function for an auxillary 1D-operator

(46) a0(x2, ξ2, ~) =
1

2

(
~2D2

1 +
(
ξ2 − xν

1 /ν
)2 −W (x2)

)
and EMW

0 is magnetic Weyl approximation for the related 2-dimensional op-
erator.

Using Bohr-Sommerfeld approximation one can find eigenvalues of a0(x , ξ2, ~)
with O(~s) precision and EMW

corr (x2, τ) with O(h−1~s) precision. In particular,
modulo O(h−1~) = O(γ̄−1)

(47) EMW
corr (x2, 0) ≡ κh−1~

1
2 W

1
4
− 1

4ν G
(S0W

1
2
+ 1

2ν

2π~

)
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with some constants κ and S0 and function G defined by

(48) G (t) =

∫
R

(
t +

1

2
η2 −

⌊
t +

1

2
η2 +

1

2

⌋)
dη

with the converging integral in the right-hand expression. One can prove
easily that

(49) G 6≡ 0, G (t + 1) = G (t),

∫ 1

0

G (t) dt = 0, G ∈ C
1
2 .

This is one of examples of the short periodic trajectories really contributing
to the asymptotics.

4.4 Results: Degenerating 4D case

4D case is way more complicated than 2D one. But there are some good
news: since f1 + f2 ≥ ε in the generic case, we need to consider only µ ≤ ch−1.

The main difficulty in 4D case comes from the outer zone {γ̄ = Cµ−1/ν ≤
|x1| ≤ ε} because there could be short periodic trajectories. In other words:
Landau level (2α1 +1)µhf1 +(2α2 +1)µhf2 could be flat 0. Still in contrast to
the very general case when this can happen for up to (µh)−1 pairs α ∈ Z+2,
in the assumptions of theorem below it can happen only for no more than C
pairs and I was able to prove [Ivr8]:

Theorem 8. Let F is of Martinet-Roussarie type and condition (38) be ful-
filled. Then as ψ is supported in B(0, 1) ∩ {|x1| ≤ ε}

(50) |
∫ (

e(x , x , 0)− EMW
4 (x , 0)

)
ψ(x) dx | ≤ Cµ−1/2h−3 + Cµ2h−2.

One can improve this result under extra condition breaking flat Landau
levels [Ivr8]:

Theorem 9. In frames of above theorem assume that (V /f2)x1=0 does not
have degenerate critical points. Then as ψ is supported in B(0, 1)∩{|x1| ≤ ε}

(51) |
∫ (

e(x , x , 0)− EMW
4 (x , 0)− EMW

corr (x , 0)
)
ψ(x) dx | ≤ Cµ−1/2h−3.

Here EMW
corr = O(µ5/4h−3/2) is associated with periodic zone {|x1| ≤ cµ−1/2},

and is the sum of similar expressions in 2D case for Vβ = V − (2β + 1)µhf2
with β ∈ Z+; locally all of them but one could be dropped.
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4.5 Results: Nondegenerating 4D case revisited

As I mentioned, even if magnetic field does not degenerate, non-degeneracy
condition of [Ivr3] is not generic (it defines open but not everywhere dense
set). Recently I was able to prove [Ivr9]

Theorem 10. Let us consider a 4D Schrödinger operator with non-degenerate
generic magnetic field. Then

(i) For generic potential V asymptotics holds woth the principal part as in
(51) and the remainder estimate O(µ−1h−3);

(ii) For general potential V asymptotics holds woth the principal part as in
(50) and the remainder estimate O(µ−1h−3 + µ2h−2); correction term could
be skipped with no penalty unless h−1/3+δ ≤ µ ≤ h−1/3−δ in which case it can
be skipped with the penalty O(h−8/3−δ where δ > 0 is arbitrarily small.

(added December 7, 2007)

All results here are proven in the series of articles at
http://www.math.toronto.edu/ivrii/Research/Preprints.php
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