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Abstract

Corresponding to the wellposedness result [2] for the classical 3-D Navier-Stokes equa-

tions (NSν) with initial data in the scaling invariant Besov space, B−1+ 3

p

p,∞ , here we con-
sider a similar problem for the 3-D anisotropic Navier-Stokes equations (ANSν), where
the vertical viscosity is zero. In order to do so, we first introduce the Besov-Sobolev type

spaces, B− 1

2
,
1

2

4 and B− 1

2
,
1

2

4 (T ). Then with initial data in the scaling invariant space B− 1

2
,
1

2

4 ,
we prove the global wellposedness for (ANSν) provided the norm of initial data is small
enough compared to the horizontal viscosity. In particular, this result implies the global
wellposedness of (ANSν) with high oscillatory initial data (1.2).

1 Introduction

1.1 Introduction to the anisotropic Navier-Stokes equations

Let us first recall the classical (isotropic) Navier-Stokes system for incompressible fluids in
the whole space:

(NSν)





∂tu + u · ∇u − ν∆u = −∇p,
div u = 0,
u|t=0 = u0,

where u(t, x) denote the velocity, p(t, x) the pressure and x = (xh, x3) a point of R3 = R2 ×R.
In this text, we are going to study a version of the system (NSν) where the usual Laplacian

is substituted by the Laplacian in the horizontal variables, namely

(ANSν)





∂tu + u · ∇u − ν∆hu = −∇p,
div u = 0,
u|t=0 = u0.
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Systems of this type appear in geophysical fluids (see for instance [5]). It has been studied
first by J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier in [6] and D. Iftimie in [10]
where it is proved that (ANSν) is locally wellposed for initial data in the anisotropic space

H0, 1
2
+ε def

=
{

u ∈ L2(R3) / ‖u‖2

Ḣ
1
2+ε

def
=

∫

R
3
|ξ3|1+2ε|û(ξh, ξ3)|2dξ < +∞

}
,

for some ε > 0. Moreover, it is also proved that small enough data u0 is in the sense that

‖u0‖ε
L2‖u0‖1−ε

Ḣ0, 12+ε
≤ cν (1.1)

for some sufficiently small constant c, then we have a global wellposedness result. Let us
notice that the space in which uniqueness is proved is the space of continuous functions with
value in H0, 1

2
+ε and the horizontal gradient of which belongs to L2([0, T ];H0, 1

2
+ε).

Let us observe that, as classical Navier-Stokes system, the system (ANSν) has a scaling.
Indeed, if u is a solution of (ANSν) on a time interval [0, T ] with initial data u0, then the

vector field uλ defined by uλ(t, x)
def
= λu(λ2t, λx) is also a solution of (ANSν) on the time

interval [0, λ−2T ] with the initial data λu0(λx). The smallness condition (1.1) is of course
scaling invariant. But the norm ‖ · ‖

Ḣ0, 12 +ε is not and this norm determines the level of

regularity required to have wellposedness.
For classical Navier-Stokes system a lot of results of global wellposedness in scaling in-

variant space are available. The first one is the theorem of Fujita-Kato (see [9]) in which it
is proved that the system (NSν) is globally wellposed for small initial data in the Sobolev

space Ḣ
1
2 which is the space of tempered distributions u such that

‖u‖2

Ḣ
1
2

def
=

∫

R
3
|ξ| |û(ξ)|2dξ < ∞.

M. Paicu proved in [12] a theorem of the same type for the system (ANSν) in the case when

the initial data u0 belongs to the scaling invariant space B0, 1
2 (see Definition 1.2 below).

On the other hand, the classical isotropic system (NSν), is globally wellposed for small
initial data in Besov norms of negative index. Let us first recall the definition of the Besov
norms of negative index.

Definition 1.1 Let f be in S ′(R3). Then we state, for positive s, and for (p, q) in [1,∞]2,

‖f‖Ḃ−s
p,q

def
=
∥∥∥‖t

s
2 et∆f‖Lp

∥∥∥
Lq(R+, dt

t
)
.

In [2], M. Cannone, Y. Meyer and F. Planchon proved that, if the initial data satisfies,
for some p greater than 3, ‖u0‖

Ḃ
−1+ 3

p
p,∞

≤ cν for some constant c small enough, then the

incompressible Navier-Stokes system is globally wellposed. Let us mention that H. Koch and
D. Tataru generalized this theorem to the ∂BMO norm (see [11]).

In particular, this theorem implies that, for any function φ in the Schwartz space S(R3),
if we consider the family of initial data uε

0 defined by

uε
0(x) = sin

(x1

ε

)
(0,−∂3φ, ∂2φ, ) , (1.2)

the system (NSν) is globally wellposed for such initial data when ε is small enough. The goal
here is to prove the same for the anisotropic Navier-Stokes system (ANSν).
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1.2 Statement of the results

Let us begin by the definition of the spaces we are going to work with. It requires an
anisotropic version of dyadic decomposition of the Fourier space, let us first recall the following
operators of localization in Fourier space, for (k, `) ∈ Z2,

∆h
ka = F−1(ϕ(2−k|ξh|)â), and ∆v

`a = F−1(ϕ(2−`|ξ3|)â),

Sh
k a =

∑

k′≤k−1

∆h
k′a, and Sv

` a =
∑

`′≤`−1

∆v
`′a, (1.3)

where Fa and â denote the Fourier transform of a, and ϕ a function in D
([3

4
,8

3

])
such that

∀τ > 0 ,
∑

j∈Z

ϕ(2−jτ) = 1.

Before we present the space we are going to work with, let us first recall the Besov-Sobolev
type space B0, 1

2 defined by M. Paicu in [12].

Definition 1.2 We denote by B0, 1
2 the space of a in S(R3) such that

â ∈ L1
loc and ‖a‖

B0, 12

def
=
∑

`∈Z

2
`
2 ‖∆v

`a‖L2(R3) < ∞.

In [12], M. Paicu proved the global wellposedness of (ANSν) for small initial data in B0, 1
2 .

In order to state Paicu’s Theorem, let us introduce the following space.

Definition 1.3 We denote by B0, 1
2 (T ) the space of a in C∞([0, T ],B0, 1

2 such that

‖a‖
B0, 1

2 (T )

def
=
∑

`∈Z

2
`
2

(
‖∆v

`a‖L∞

T
(L2(R3)) + ν

1
2 ‖∇h∆v

`a‖L2
T

(L2(R3))

)
< ∞.

Now let us recall M. Paicu’s theorem.

Theorem 1.1 If u0 ∈ B0, 1
2 , then a positive time T exists such that the system (ANSν) has

a unique solution u in B0, 1
2 (T ). Moreover, a constant c exists such that

‖u0‖
B0, 12

≤ cν =⇒ T = +∞.

Let us note that uε
0 defined in (1.2) is not small in this space B0, 1

2 no matter how small the
parameter ε is. Our motivation to introduce the following spaces is to find a scaling invariant
space such that in particular uε

0 is small in this space for ε sufficient small.

Definition 1.4 We denote by B− 1
2
, 1
2

4 the space of a in S ′(R3) such that

â ∈ L1
loc and ‖a‖

B
−

1
2 , 12

4

def
=
∑

`∈Z

2
`
2

( ∞∑

k=`−1

2−k‖∆h
k∆v

`a‖2
L4

h
(L2

v)

) 1
2

+
∑

j∈Z

2
j

2‖Sh
j−1∆

v
ja‖L2(R3).
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Definition 1.5 We denote by B− 1
2
, 1
2

4 (T ) the space of a in C([0, T ],B− 1
2
, 1
2

4 ) such that

‖a‖
B
−

1
2 ,12

4 (T )

def
=

∑

`∈Z

2
`
2

(( ∞∑

k=`−1

2−k‖∆h
k∆v

`a‖2
L∞

T
(L4

h
(L2

v))

) 1
2

+ ν
1
2

( ∞∑

k=`−1

2k‖∆h
k∆v

`a‖2
L2

T
(L4

h
(L2

v))

) 1
2

)

+
∑

j∈Z

2
j

2

(
‖Sh

j−1∆
v
ja‖L∞

T
(L2(R3)) + ν

1
2‖∇hSh

j−1∆
v
ja‖L2

T
(L2(R3))

)
.

In the following section, we shall use Littlewood-Paley theory to study the inner relations

between B− 1
2
, 1
2

4 (T ) and B0, 1
2 (T ). Now, we present the main results of this paper.

Theorem 1.2 A constant c exists such that, if u0 ∈ B− 1
2
, 1
2

4 and ‖u0‖
B
−

1
2 , 12

4

≤ cν, then, with

initial data u0, the system (ANSν) has a unique global solution u in B− 1
2
, 1
2

4 (∞).

This theorem can be applied to initial data given by (1.2) thanks to the following proposition,
proved in section 2.

Proposition 1.1 Let φ ∈ S(R3). If φε(x)
def
= eix1/εφ(x), then ‖φε‖

B
−

1
2 , 12

4

= O(ε
1
2 ).

Classically, a global wellposedness theorem with small data in a space where smooth functions
are dense corresponds to a version concerning local wellposedness for large data.

Theorem 1.3 If u0 belongs to B− 1
2
, 1
2

4 , then a positive T exists such that the system (ANSν)

has a unique solution in the space B− 1
2
, 1
2

4 (T ).

1.3 Structure of the text

This text does not contain all the details of the proofs and we refer to [7] for complete proofs.
The purpose of the second section is to state some results about anisotropic Littlewood-Paley
theory which will be of a constant use in what follows.

The third section will be devoted to the proof of the existence of a solution of (ANSν).
In order to do it, we shall search for a solution of the form

u = uF + w with uF
def
= eνt∆huhh , uhh

def
=

∑

k≥`−1

∆h
k∆v

`u0 and w ∈ B0, 1
2 (∞). (1.4)

In the last section, we shall prove the uniqueness in the following way. First, we shall

establish a regularity theorem claiming that if u ∈ B− 1
2
, 1
2

4 (T ) is a solution of (ANSν) with

initial data in B− 1
2
, 1
2

4 , then w = u − uF ∈ B0, 1
2 (T ). Therefore, looking at the equation of w,

we shall prove the uniqueness of the solution u in the space uF + B0, 1
2 (T ). Let us point out

that the uniqueness result we prove is surprinsingly not a stability result. We should mention
that the method introduced by M. Paicu in [12] will play a crucial role in our proof here.

We present only the sketch of the proof and refer to [7] for the details.
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Notations: Let A,B be two operators, we denote [A;B] = AB − BA, the commutator
between A and B, a . b, we means that there is a uniform constant C, which may be
different on different lines, such that a ≤ Cb. Finally, we denote Lr

T (Lp
h(Lq

v)) the space
Lr([0, T ];Lp(Rx1 ×Rx2;L

q(Rx3))).

2 Some properties of anisotropic Littlewood-Paley theory

As we shall constantly use the anisotropic Littlewood-Paley theory, and in particular aniso-
tropic Bernstein inequalities. We list them as the following:

Lemma 2.1 Let Bh (resp. Bv) a ball of R2
h (resp. Rv), and Ch (resp. Cv) a ring of R2

h

(resp. Rv); let 1 ≤ p2 ≤ p1 ≤ ∞ and 1 ≤ q2 ≤ q1 ≤ ∞. Then there holds:

If the support of â is included in 2kBh, then

‖∂α
xh

a‖L
p1
h

(L
q1
v ) . 2

k
“

|α|+2
“

1
p2

− 1
p1

””

‖a‖L
p2
h

(L
q1
v ).

If the support of â is included in 2`Bv, then

‖∂β
3 a‖L

p1
h

(L
q1
v ) . 2

`(β+( 1
q2

− 1
q1

))‖a‖L
p1
h

(L
q2
v ).

If the support of â is included in 2kCh, then

‖a‖L
p1
h

(L
q1
v ) . 2−kN sup

|α|=N
‖∂α

h a‖L
p1
h

(L
q1
v ).

If the support of â is included in 2kCv, then

‖a‖L
p1
h

(L
q1
v ) . 2−kN‖∂N

3 a‖L
p1
h

(L
q1
v ).

Let us state two corollaries of this lemma, the proof of which are obvious and thus omitted.

Corollary 2.1 The space B0, 1
2 is included in B− 1

2
, 1
2

4 and so is B0, 1
2 (T ) in B− 1

2
, 1
2

4 (T ) for any

positive T . Moreover, the space B0, 1
2 (T ) is included in L∞

T (L2
h(L∞

v )).

Corollary 2.2 If a belongs to B− 1
2
, 1
2

4 (T ), then we have

∑

`∈Z

2
`
2

(∑

k∈Z

2−k‖∆h
k∆v

`a(0)‖2
L4

h
(L2

v)

) 1
2

. ‖a(0)‖
B
−

1
2 , 12

4

and

∑

`∈Z

2
`
2

(∑

k∈Z

(
2−k‖∆h

k∆v
`a‖2

L∞

T
(L4

h
(L2

v)) + ν2k‖∆h
k∆v

`a‖2
L2

T
(L4

h
(L2

v))

)) 1
2

. ‖a‖
B
−

1
2 , 12

4 (T )
.

Proposition 1.1 tells us how large is the difference between the norms ‖ · ‖
B0, 12

and ‖ · ‖
B
−

1
2 ,12

4

.
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Proof of Proposition 1.1 By definition of the norm ‖ · ‖
B
−

1
2 , 12

4

, we have, as the ‖ · ‖`2 norm

is less than or equal to the ‖ · ‖`1 norm,

‖φε‖
B
−

1
2 , 12

4

≤
4∑

j=1

Φ(j)
ε with

Φ(1)
ε

def
=

∑

ε2k>1
k≥`−1

2−
k−`
2 ‖∆h

k∆v
`φε‖L4

h
(L2

v),

Φ(2)
ε

def
=

∑

ε2k≤1
k≥`−1

2−
k−`
2 ‖∆h

k∆v
`φε‖L4

h
(L2

v),

Φ(3)
ε

def
=

∑

ε2j>1

2
j

2 ‖Sh
j−1∆

v
jφε‖L2 and

Φ(4)
ε

def
=

∑

ε2j≤1

2
j

2 ‖Sh
j−1∆

v
jφε‖L2 .

In order to estimate Φ
(1)
ε , let us notice that

Φ(1)
ε ≤

( ∑

ε2k>1

2−
k
2

)∑

`∈Z

2
`
2 sup

k∈Z

‖∆h
k∆v

`φε‖L4
h
(L2

v) ≤ ε
1
2

∑

`∈Z

2
`
2 sup

k∈Z

‖∆h
k∆v

`φε‖L4
h
(L2

v).

Using Lemma 2.1, we have, by definition of φε,

sup
k∈Z

‖∆h
k∆v

`φε‖L4
h
(L2

v) . ‖φε‖L4
h
(L2

v) . ‖φ‖L4
h
(L2

v). and

sup
k∈Z

‖∆h
k∆v

`φε‖L4
h
(L2

v) . 2−`‖∂3φε‖L4
h
(L2

v) . 2−`‖∂3φ‖L4
h
(L2

v).

Thus, taking the sum over ` ≤ N and ` > N and choosing the best N gives

Φ(1)
ε ≤ ε

1
2

∑

`∈Z

2
`
2 sup

k∈Z

‖∆h
k∆v

`φε‖L4
h
(L2

v) ≤ ε
1
2 ‖φ‖

1
2

L4
h
(L2

v)
‖∂3φ‖

1
2

L4
h
(L2

v)
.

The estimate of Φ
(2)
ε uses the oscillations. We have ∆h

k∆v
`φε = φ1,ε

k,` + φ2,ε
k,` with

φ1,ε
k,`(x)

def
= iε∆h

k∆v
` (e

i
y1
ε ∂1φ) and

φ2,ε
k,`(x)

def
= −iε2kφ̃2,ε

k,`(x) with

φ̃2,ε
k,`(x)

def
= 22k2`

∫
(∂1g̃)(2k(xh − yh))h̃(2`(x3 − y3))e

i
y1
ε φ(y)dy,

where (g̃, h̃) ∈ S(R2) × S(R) such that F g̃(ξh) = ϕ̃(|ξh|) and F h̃(ξ3) = ϕ̃(ξ3). Using
Lemma 2.1, we get

2−
k
2

∑

`≤k+1

2
`
2‖φ1,ε

k,`‖L4
h
(L2

v) . ε sup
`∈Z

‖∆h
k∆v

` (e
i

y1
ε ∂1φ)‖L4

h
(L2

v) . ε2
k
2 ‖∂1φ‖L2(R3).
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Moreover, we have

2−
k
2

∑

`≤k+1

2
`
2‖φ2,ε

k,`‖L4
h
(L2

v) ≤ ε2
k
2

∑

`∈Z

2
`
2 ‖φ̃2,ε

k,`‖L4
h
(L2

v).

Using Lemma 2.1, we get

‖φ̃2,ε
k,`‖L4

h
(L2

v) . ‖φ‖L4
h
(L2

v) and ‖φ̃2,ε
k,`‖L4

h
(L2

v) . 2−`‖∂3φ‖L4
h
(L2

v).

Again taking the sum over ` ≤ N and ` > N and choosing the best N , we get

∑

`∈Z

2
`
2 ‖φ̃2,ε

k,`‖L4
h
(L2

v) . ‖φ‖
1
2

L4
h
(L2

v)
‖∂3φ‖

1
2

L4
h
(L2

v)
.

We get that Φ(2)
ε ≤ Cφε

∑

ε2k≤1

2
k
2 ≤ Cφε

1
2 . The estimates on Φ

(3)
ε and Φ

(4)
ε are analogous. �

Notations In that follows, we make the convention that (ck)k∈Z (resp. (dj)j∈Z) denotes a
generic element of the sphere of `2(Z) (resp. `1(Z)). Moreover, (ck,`)(k,`)∈Z2 denotes a generic
element of the sphere of `2(Z2) and (dk,`)(k,`)∈Z2 denotes a generic sequence indexed by Z2

such that
∑

`∈Z

(∑

k∈Z

d2
k,`

) 1
2

= 1. Let us notice that we shall often use the following property,

the easy proof of which is omitted.

Lemma 2.2 Let α be a positive real number and N0 an integer. Then we have

∑

(k,`)∈Z2

`≥j−N0

2−α(`−j)dk,`ck . dj.

The following lemma will be of a frequent use in this work.

Lemma 2.3 For any a ∈ B− 1
2
, 1
2

4 (T ), one has

‖Sh
k ∆v

`a‖L∞

T
(L4

h
(L2

v)) + ν
1
2 ‖∇hSh

k ∆v
`a‖L2

T
(L4

h
(L2

v)) . dk,`2
k
2 2−

`
2 ‖a‖

B
−

1
2 , 12

4 (T )
and

‖Sh
k a‖L∞

T
(L4

h
(L∞

v )) + ν
1
2 ‖∇hSh

ka‖L2
T

(L4
h
(L∞

v )) . ck2
k
2 ‖a‖

B
−

1
2 , 12

4 (T )
.

With Lemma 2.3, we are going to state a result which is very close to Sobolev embedding
and will be of a constant use in the existence proof of Theorem 1.2.

Lemma 2.4 The space B− 1
2
, 1
2

4 (T ) is included in L4
T (L4

h(L∞
v )). More precisely, let a be a

function in B− 1
2
, 1
2

4 (T ), then we have

‖∆v
j a‖L4

T
(L4

h
(L2

v)) .
dj

ν
1
4

2−
j

2‖a‖
B
−

1
2 , 12

4 (T )
and ‖a‖L4

T
(L4

h
(L∞

v )) .
1

ν
1
4

‖a‖
B
−

1
2 , 12

4 (T )
.
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Proof of Lemma 2.4 Let us first notice that ‖∆v
ja‖2

L4
T

(L4
h
(L2

v))
= ‖(∆v

ja)2‖L2
T

(L2
h
(L1

v)). Then

using Bony’s decomposition in the horizontal variables, we write

(∆v
ja)2 =

∑

k∈Z

Sh
k−1∆

v
ja∆h

k∆v
ja +

∑

k∈Z

Sh
k+2∆

v
ja∆h

k∆v
ja

These two terms are estimated exactly in the same way. Applying Hölder inequality, we get

‖Sh
k−1∆

v
ja∆h

k∆v
ja‖L2

T
(L2

h
(L1

v)) ≤ 2−
k
2 ‖Sh

k−1∆
v
ja‖L∞

T
(L4

h
(L2

v))2
k
2 ‖∆h

k∆v
ja‖L2

T
(L4

h
(L2

v)).

Using the first inequality of Lemma 2.3 and Corollary 2.2, we infer

‖Sh
k−1∆

v
ja∆h

k∆v
ja‖L2

T
(L2

h
(L1

v)) .
d2

k,j

ν
1
2

2−j‖a‖2

B
−

1
2 , 12

4 (T )
.

Taking the sum over k and using Lemma 2.2, we deduce

‖(∆v
j a)2‖L2

T
(L2

h
(L1

v)) .
d2

j

ν
1
2

2−j‖a‖2

B
−

1
2 , 12

4 (T )
,

which is exactly the first inequality of the lemma. Now, using Lemma 2.1, we have

‖∆v
ja‖L4

T
(L4

h
(L∞

v )) . 2
j

2 ‖∆v
ja‖L4

T
(L4

h
(L2

v)).

This proves the whole lemma. �

Now let us use Lemma 2.1 to study the free evolution uF to the high horizontal fre-
quency part of the initial data u0, as defined in (1.4). In order to do so, let us first recall a
lemma from [3] or [4], which describes the action of the semi-group of the heat equation on
distributions, the Fourier transform of which are supported in a fixed ring.

Lemma 2.5 Let u0 ∈ B− 1
2
, 1
2

4 and uF be as in (1.4), α ∈ N3, 1 ≤ p ≤ ∞. Then, there holds

‖∆h
k∆v

`uF ‖Lp
T

(L4
h
(L2

v)) .





dk,`

ν
1
p

2
k

“

1
2
− 2

p

”

2−
`
2‖u0‖

B
−

1
2 , 12

4

, for k ≥ ` − 1,

0, otherwise.

Moreover, uF belongs to B− 1
2
, 1
2

4 (∞), and we have ‖uF ‖
B
−

1
2 , 12

4 (∞)
. ‖u0‖

B
−

1
2 , 12

4

.

Proof of Lemma 2.5 The relations (4) and (5) of the proof of Lemma 2.1 of [3] tell us that

∆h
k∆v

`uF (t) = 22kg(t, 2k ·) ? ∆h
k∆v

`u0 with ‖g(t, ·)‖L1(R2) ≤ Ce−cνt22k

. (2.1)

Here the convolution must be understood as the convolution on R2. Thus

‖∆h
k∆v

`uF (t, xh, ·)‖L2
v
≤ 22k|g(t, 2k ·)| ? ‖∆h

k∆v
`u0(·)‖L2

v
.

Using (2.1) and again Lemma 2.1, we get

‖∆h
k∆v

`uF (t)‖L4
h
(L2

v) . e−cνt22k‖∆h
k∆v

`u0‖L4
h
(L2

v) . e−cνt22k

dk,`2
k
2 2−

`
2‖u0‖

B
−

1
2 , 12

4

.

By integration, the lemma follows. �

Lemma 2.6 Under the assumptions of Lemma 2.5, one has

‖∆v
juF ‖L2(R+;L∞

h
(L2

v)) .
dj√
ν
2−

j

2‖u0‖
B
−

1
2 , 12

4

and ‖uF ‖L2(R+;L∞(R3)) .
1√
ν
‖u0‖

B
−

1
2 , 12

4

.
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3 The proof of an existence theorem

The purpose of this section is to prove the following existence theorem.

Theorem 3.1 A sufficiently small constant c exists which satisfies the following property:

if u0 is in B− 1
2
, 1
2

4 , and ‖u0‖
B
−

1
2 ,12

4

≤ cν, then the system (ANSν) has a global solution in the

space uF + B0, 1
2 (∞) where uF is defined in (1.4).

Proof of Theorem 3.1 As announced in the introduction, we shall look for a solution of the
form u = uF + w. Let us first establish the equation satisfied by w. Actually by substituting
the above formula to (ANSν), we obtain

(ÃNSν)





∂tw + w · ∇w − ν∆hw + w · ∇uF + uF · ∇w = −uF · ∇uF −∇p,
div w = 0,

w|t=0 = u`h
def
= u0 − uhh.

Notice that by (1.4), we have u`h =
∑

j∈Z

Sh
j−1∆

v
ju0. Moreover, there holds

∆v
ju`h =

∑

|j−j′|≤1

Sh
j′−1∆

v
j′∆

v
ju0 and thus ‖∆v

ju`h‖L2 .
∑

|j−j′|≤1

‖Sh
j′−1∆

v
j′u0‖L2 .

This implies that, if u0 belongs to B− 1
2
, 1
2

4 , then u`h belongs to B0, 1
2 and

‖u`h‖
B0, 12

. ‖u0‖
B
−

1
2 , 12

4

. (3.1)

We shall use the classical Friedrichs’ regularization method to construct the approximate
solutions to (ÃNSν). For simplicity, we just outline it here (for the details in this context,

see [12] or [4]). Let us define the sequence (Pn)n∈N by Pna
def
= F−1

(
1B(0,n)â

)
and

(ÃNSν,n)





∂twn − ν∆hwn + Pn(wn · ∇wn) + Pn(wn · ∇uF,n) + Pn(uF,n · ∇wn)

= −Pn(uF,n · ∇uF,n) + Pn∇∆−1∂j∂k

(
(uj

F,n + wj
n)(uk

F,n + wk
n)
)

div wn = 0,

wn|t=0 = Pn(u`h)
def
= Pn(u0 − uhh).

where uF,n
def
= (Id−Sjn)uF with jn ∼ − log2 n and where ∆−1∂j∂k is defined precisely by

∆−1∂j∂ka
def
= F−1(|ξ|−2ξjξkâ).

Because of properties of L2 and L1 functions the Fourier transform of which are supported
in the ball B(0, n), the system (ÃNSν,n) appears to be an ordinary differential equation in

L2
n

def
=
{

a ∈ L2(R3) /Supp â ⊂ B(0, n)
}

.

This ordinary differential equation is globally wellposed because

d

dt
‖wn(t)‖2

L2 ≤ Cn‖uF,n(t)‖L∞‖wn‖2
L2 + Cn‖uF,n(t)‖2

L4
h
(L2

v)‖wn(t)‖L2
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and uF,n belongs to L2(R+;L∞ ∩ L4
h(L2

v)). We refer to [4] and [12] for the details. Now,
the proof of Theorem 3.1 reduces to the following three propositions, which we admit for the
time being.

Proposition 3.1 Let u0 be in B− 1
2
, 1
2

4 , and a in B0, 1
2 (T ). With uF is defined in (1.4), we have

∀j ∈ Z , Ij(T )
def
=

∫ T

0

∣∣(∆v
j (uF · ∇uF )|∆v

ja
)∣∣ dt .

d2
j

ν
2−j‖u0‖2

B
−

1
2 , 12

4

‖a‖
B0, 12 (T )

.

Proposition 3.2 Let a be a divergence free vector in B0, 1
2 (T ), and b in B0, 1

2 (T ). Then

∀j ∈ Z , Jj(T )
def
=

∫ T

0

∣∣(∆v
j (a · ∇uF )|∆v

j b
)∣∣ dt .

d2
j

ν
2−j‖a‖

B0, 12 (T )
‖u0‖

B
−

1
2 ,12

4

‖b‖
B0, 12 (T )

.

Proposition 3.3 Let a be a divergence free vector in B− 1
2
, 1
2

4 (T ), and b ∈ B0, 1
2 (T ). Then

∀j ∈ Z , Fj(T )
def
=

∫ T

0

∣∣(∆v
j (a · ∇b)|∆v

j b
)∣∣ dt .

d2
j

ν
2−j‖a‖

B
−

1
2 , 12

4 (T )
‖b‖2

B0, 12 (T )
.

Conclusion of the proof of Theorem 3.1 Notice from (ÃNSν,n) that Pnwn = wn, we

apply the operator ∆v
j to (ÃNSν,n) and take the L2 inner product of the resulting equation

with ∆v
jwn to get

d

dt
‖∆v

jwn(t)‖2
L2 + 2ν‖∇h∆v

jwn(t)‖2
L2 = −2(∆v

j (wn · ∇wn)|∆v
jwn)

− 2(∆v
j (uF,n · ∇wn)|∆v

jwn) − 2(∆v
j (wn · ∇uF,n)|∆v

jwn) − 2(∆v
j (uF,n · ∇uF,n)|∆v

jwn).

By integration the above equation over [0, T ], we get

2j‖∆v
jwn‖2

L∞

T
(L2) + 2j+1ν‖∇h∆v

jwn‖2
L2

T
(L2) ≤ 2j‖∆v

jwn(0)‖2
L2 + 2

4∑

k=1

W k
j (T ) (3.2)

with

W 1
j (T )

def
= 2j

∫ T

0

∣∣∣(∆v
j (wn(t) · ∇wn(t))|∆v

j wn(t))
∣∣∣dt,

W 2
j (T )

def
= 2j

∫ T

0

∣∣∣(∆v
j (uF,n(t) · ∇wn(t))|∆v

j wn(t))
∣∣∣dt,

W 3
j (T )

def
= 2j

∫ T

0

∣∣∣(∆v
j (wn(t) · ∇uF,n(t))|∆v

j wn(t))
∣∣∣dt,

W 4
j (T )

def
= 2j

∫ T

0

∣∣∣(∆v
j (uF,n(t) · ∇uF,n(t))|∆v

j wn(t))
∣∣∣dt.

Proposition 3.3 applied with a = b = wn together with Corollary 2.1 gives

W 1
j (T ) .

d2
j

ν
‖wn‖3

B0, 12 (T )
. (3.3)

VIII–10



Thanks to Lemma 2.5, Proposition 3.3 applied with a = uF,n and b = wn, then Proposition 3.2
applied with a = b = wn and finally Proposition 3.1implies in particular that

W 2
j (T ) . d2

j

‖u0‖
B
−

1
2 , 12

4

ν
‖wn‖2

B0, 12 (T )
,

W 3
j (T ) . d2

j

‖u0‖
B
−

1
2 , 12

4

ν
‖wn‖2

B0, 12 (T )
and (3.4)

W 4
j (T ) . d2

j

‖u0‖2

B
−

1
2 , 12

4

ν
‖wn‖

B0, 12 (T )
.

Plugging estimates (3.3) and (3.4) into (3.2) gives

2j
(
‖∆v

jwn‖L∞

T
(L2) +

√
2ν‖∇h∆v

jwn‖L2
T

(L2)

)2

≤ 2j‖∆v
jwn(0)‖2

L2 +
C

ν
d2

j

(
‖wn‖2

B0, 12 (T )
+ ‖u0‖2

B
−

1
2 , 12

4

)
‖wn‖

B0, 12 (T )
.

Using (3.1), we get, by definition of B0, 1
2 (T ),

‖wn‖
B0, 12 (T )

≤ 2C0‖u0‖
B
−

1
2 , 12

4

+
C√
ν

(
‖wn‖

B0, 12 (T )
+ ‖u0‖

B
−

1
2 , 12

4

)
‖wn‖

1
2

B0, 12 (T )
. (3.5)

Let us define

Tn
def
= sup

{
T > 0 /‖wn‖

B0, 12 (T )
≤ 4C0‖u0‖

B
−

1
2 , 12

4

}
.

The fact that wn is continuous with value in HN for any integer N implies that Tn is positive.
Then, Inequality (3.5) implies that, for any n and for any T < Tn, we have

‖wn‖
B0, 12 (T )

≤ 2C0‖u0‖
B
−

1
2 , 12

4

+
2C(4C0 + 1)

√
C0√

ν
‖u0‖

3
2

B
−

1
2 , 12

4

.

Then, if ‖u0‖
B
−

1
2 , 12

4

is small enough with respect to ν, we get, for any n and for any T < Tn,

‖wn‖
B0, 12 (T )

≤ 5

2
C0‖u0‖

B
−

1
2 , 12

4

.

Thus Tn = +∞ for any n. Then, the existence follows from classical compactness methods,
the details of which are omitted (see [12] or [4]). Then, Theorem 3.1 is proved, provided of
course that we have proved the three propositions 3.1–3.3. �

In the proof of the above three propooitions, things are different for terms involving
horizontal derivative and for terms involving vertical derivatives. Let us only prove Proposi-
titon 3.1 just to give a idea of the methods. It relies on the following lemma.

Lemma 3.1 Let (a, b) be in
(
B− 1

2
, 1
2

4 (T )
)2

. We have

‖∆v
j (ab)‖L2

T
(L2) .

dj

ν
1
2

2−
j

2‖a‖
B
−

1
2 , 12

4 (T )
‖b‖

B
−

1
2 , 12

4 (T )
.
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Proof of Lemma 3.1 Let us write

∆v
j (ab) =

∑

|j′≥j−N0

∆v
j

(
Sv

j′a∆v
j′b) + ∆v

j (S
v
j′+1b∆

v
j′a
)
.

Using Hölder inequality and Lemma 2.4, we get

2
j

2‖∆v
j

∑

j′≥j−N0

(Sv
j′a∆v

j′b)‖L2
T

(L2
h
(L2

v)) . ‖Sv
j′a‖L4

T
(L4

h
(L∞

v ))‖∆v
j′b‖L4

T
(L4

h
(L2

v))

.
( ∑

j′≥j−N1

2−
j′−j

2 dj′

)
ν

1
2 2−

j′

2 ‖a‖
B
−

1
2 , 12

4 (T )
‖b‖

B
−

1
2 , 12

4 (T )
.

The lemma is proved. �

Proof of Proposition 3.1 Thanks to the fact that uF is divergence free, we have,

Ij(T ) =

∫ T

0

∣∣(∆v
j (uF · ∇uF )|∆v

ja
)∣∣ dt ≤ Ih

j (T ) + Iv
j (T ), with

Ih
j (T )

def
=

∫ T

0

∣∣∣
(
∆v

j (u
h
F ⊗ uF )|∆v

j∇ha
)∣∣∣ dt and Iv

j (T )
def
=

∫ T

0

∣∣(∂3∆
v
j (u

3
F uF )|∆v

ja
)∣∣ dt.

Using Lemmas 2.5 and 3.1, we get

Ih
j (T ) ≤ ‖∆v

j (u
h
F uF )‖L2

T
(L2)‖∆v

j (∇ha)‖L2
T

(L2) .
d2

j

ν
2−j‖u0‖2

B
−

1
2 , 12

4

‖a‖
B0, 12 (T )

.

For the term with the vertical derivative, let us write, using Lemma 2.1,

Iv
j (T ) . 2j‖∆v

j (u
3
F uF )‖L1

T
(L2)‖∆v

j b‖L∞

T
(L2).

Using again Bony’s decomposition, we infer

∆v
j (u

3
F uF ) =

∑

|j′−j|≤5

∆v
j (S

v
j′−1u

3
F ∆v

j′uF ) +
∑

j′≥j−N0

∆v
j (∆

v
j′u

3
F Sv

j′+2uF ) and

Sv
j′−1uF ∆v

j′uF =
∑

k≥j′−N0

{
Sh

k−1S
v
j′−1u

3
F ∆h

k∆v
j′uF + ∆h

kSv
j′−1u

3
F Sh

k+2∆
v
j′uF

}
.

The two terms of the above sum are estimated exacty along the same lines. As in the proof of
Lemma 2.6, we use the smoothing effect on uF on the highest possible horizontal frequencies.
Using Hölder inequality, this gives

‖Sh
k−1S

v
j′−1u

3
F ∆h

k∆v
j′uF‖L1

T
(L2) ≤ 2−

k
2 ‖Sh

k−1S
v
j′−1uF‖L∞

T
(L4

h
(L∞

v ))2
k
2 ‖∆h

k∆v
j′uF ‖L1

T
(L4

h
(L2

v)).

Lemma 2.5 and Lemma 2.3 give

2
k
2 ‖∆h

k∆v
j′uF ‖L1

T
(L4

h
(L2

v)) .
1

ν
dk,j2

− j′

2 2−k‖u0‖
B
−

1
2 , 12

4

and

2−
k
2 ‖Sh

k−1S
v
j′−1uF‖L∞

T
(L4

h
(L∞

v )) . ck‖u0‖
B
−

1
2 , 12

4

.
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Then, using, it turns out that

‖Sv
j′−1uF ∆v

j′uF ‖L1
T

(L2) .
1

ν

( ∑

k≥j′−1

ckdk,j′2
−k
)
2−

j′

2 ‖u0‖2

B
−

1
2 , 12

4

.
dj′

ν
2−

3j′

2 ‖u0‖2

B
−

1
2 , 12

4

.

We deduce that

2
3j

2 ‖∆v
j (u

3
F uF )‖L1

T
(L2) .

1

ν
‖u0‖2

B
−

1
2 , 12

4

∑

j′≥j−N1

dj′2
− 3(j′−j)

2 .

This concludes the proof of Proposition 3.1. �

4 The proof of the uniqueness

The first step in order to prove the uniqueness part of Theorems 1.2 and 1.3 is the proof of
the following regularity theorem.

Theorem 4.1 Let u ∈ B− 1
2
, 1
2

4 (T ) be a solution of (ANSν) with initial data u0 in B− 1
2
, 1
2

4 .

Then, if uF is defined by (1.4), we have w = u − uF ∈ B0, 1
2 (T ).

The above theorem implies that, if uj are two solutions of (ANSν) in B− 1
2
, 1
2

4 (T ) associated

with the same initial data, then δ
def
= u2 − u1 belongs to B0, 1

2 (T ). Moreover, it satisfies the
following system

(ANS′
ν)





∂tδ − ν∆hδ = Lδ −∇p
div δ = 0
δ|t=0 = 0

where L is the following linear operator Lδ
def
= −δ∇u1 − u2∇δ. In order to prove uniqueness,

we have to prove that δ ≡ 0. Because the existence of solution to (ANSν) is not proved
by using Picard’s fixed point method, the uniqueness can not be given by a contraction

in the space B0, 1
2 or even B− 1

2
, 1
2

4 . As pointed out first by D. Iftimie in [10], the system
(ANSν) is hyperbolic in the vertical direction. Roughly speaking, for hyperbolic system, the
contraction argument can be realized with one less derivative than the existence space. Here
of course, the derivative is lost in the vertical direction. The first idea is the introduction of
the homogenenous norm, given in the following definition.

Definition 4.1 Let s ∈ R, let us define the following semi norm

‖a‖H0,s
def
=

(∑

j∈Z

22js‖∆v
ja‖2

L2

) 1
2

.

Remark It is obvious that

‖a‖2

L∞

T
(H0, 12 )

+ ν‖∇ha‖2

L2
T

(H0, 12 )
. ‖a‖2

B0, 1
2 (T )

. (4.1)
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The norm ‖ · ‖
H0,− 1

2
is not very convenient to work with. In particular, it carries on infor-

mations about low frequencies which is not necesseraly relevant in the proof of an uniqueness
theorem which is by definition a local result. Moreover, there is no evidence that δ belongs
to such a space. We bypass this problem by the introduction of the inhomogenenous version
of the above norm. In order to do it, let us introduce the following notations:

∆vi
j = ∆v

j , Svi
j = Sv

j if j ≥ 0 and ∆vi
j = Svi

j+1 = 0 if j ≤ −2.

This leads to the following definition of the norm, which we use for a contraction argument.

Definition 4.2 Let us denote by H the space of tempered distribution such that

‖a‖2
H

def
=
∑

j∈Z

2−j‖∆vi
j a‖2

L2 < ∞.

Now the key point is the estimate of (Lδ|δ)H. We follow mainly [12] up to the fact that the

solutions u1 and u2 are not in B0, 1
2 (T ) but only in B− 1

2
, 1
2

4 (T ). This leads to the following
definition.

Definition 4.3 Let us denote by Bu the following (semi) norm

‖b‖2
Bu

def
=
∑

k∈Z

j∈N

2j−k‖∆h
k∆v

ja‖2
L4

h
(L2

v).

Remark We obviously have

‖b‖2
L∞

T
(Bu) + ν‖∇hb‖2

L2
T

(Bu) . ‖b‖2

B
−

1
2 , 12

4 (T )
. (4.2)

Let us state and admit (see [7] for the details) the following variation of Lemma 3.2 of [12].

Lemma 4.1 Let a and b be divergence free vector fields such that a and ∇ha are in H0, 1
2 ∩H,

b is in Bu ∩ L4
h(L∞

v ) with ∇hb ∈ Bu. Let us assume also that ‖a‖2
H ≤ 2−16. Then we have

|(b · ∇a|a)H| + |(a · ∇b|a)H| ≤
ν

10
‖∇ha‖2

H + C(a, b)µ(‖a‖2
H)

with µ(r)
def
= r(1 − log2 r) log2(1 − log2 r) and

C(a, b)
def
=

C

ν
‖b‖2

L4
h
(L∞

v )

(
1 +

‖b‖2
L4

h
(L∞

v )

ν2

)

+
C

ν
(1 + ‖b‖2

Bu
)
(
1 +

‖b‖4
Bu

ν2

)(
‖b‖2

Bu
‖∇hb‖2

Bu
+ ‖a‖2

H0, 1
2
‖∇ha‖2

H0, 12

)
.

Conclusion of the proof of Theorem 1.3 We postpone the proof of the fact that

δ ∈ L∞
T (H) and ∇hδ ∈ L2

T (H) (4.3)

which is a low vertical frequency information on δ. Lemma 4.1 implies that, for any t ∈ [0, T ],

‖δ(t)‖2
H ≤

∫ t

0
f(t′)µ(‖δ(t′)‖2

H)dt′ with f(t)
def
= C(u1(t), δ(t)) + C(u2(t), δ(t)).
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Lemma 2.4 and assertions (4.1) and (4.2) imply that f ∈ L1([0, T ]). Thus Theorems 1.2
and 1.3 are proved, provided of course that we prove Assertion (4.3). �

Proof of Assertion (4.3) Let us write that Sv
0δ is a solution (with initial value 0) of

∂tS
v
0δ − ν∆hSv

0δ = g1 + g2 + g3 with

g1
def
=

∑

λ∈Λ

Sv
0∂3(aλbλ)

g2
def
=

∑

λ∈Λ

Sv
0∂h(cλ(Id−Sv

0 )δ) and

g3
def
= Sv

0∂h

∑

λ∈Λ

dλSv
0δ

where Λ is a finite set of indices and aλ, bλ, cλ and dλ belong to B− 1
2
, 1
2

4 (T ). Using Lemmas 2.1
and 3.1, we get that

‖Sv
0∂3(aλbλ)‖L2

T
(L2) .

∑

j≤−1

2j‖∆v
j (aλbλ)‖L2

T
(L2)

.
1

ν
1
2

‖aλ‖
B
−

1
2 , 12

4 (T )
‖bλ‖

B
−

1
2 , 12

4 (T )
.

Thus we have that

‖g1‖L2
T

(L2) .
1

ν
1
2

C2
12(T ) with C12(T )

def
= ‖u1‖

B
−

1
2 , 12

4 (T )
+ ‖u2‖

B
−

1
2 , 12

4 (T )
. (4.4)

We estimate g2 using Lemma 2.4. It claims in particular that

‖(Id−Sv
0 )δ‖L4

T
(L4

h
(L2

v)) .
1

ν
1
4

(∑

j≥0

2−
j

2

)
‖δ‖

B
−

1
2 , 12

4 (T )
.

1

ν
1
4

‖δ‖
B
−

1
2 , 12

4 (T )
.

Lemma 2.4 also claims that ‖cλ‖L4
T

(L4
h
(L∞

v )) . 1

ν
1
4
‖cλ‖

B
−

1
2 , 12

4 (T )
. Then we have

‖cλ(Id−Sv
0)δ‖L2

T
(L2) . ‖cλ‖L4

T
(L4

h
(L∞

v ))‖(Id−Sv
0)δ‖L4

T
(L4

h
(L2

v))

.
1

ν
1
2

‖cλ‖
B
−

1
2 , 12

4 (T )
‖δ‖

B
−

1
2 , 12

4 (T )
.

This gives that

g2 = divh g̃2 with ‖g̃2‖L2
T

(L2) .
1

ν
1
2

C2
12(T ). (4.5)

The term g3 must be treated with a commutator argument based on the following lemma.

Lemma 4.2 Let χ be a function of S(R). A constant C exists such that, for any function a
in L2

h(L∞
v ), we have

‖[χ(εx3);S
v
0 ]a‖L2 ≤ Cε

1
2‖a‖L2

h
(L∞

v ).
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Proof of Lemma 4.2 Taylor’s formula at order one gives

Cε(a)(xh, x3)
def
= [χ(εx3);S

v
0 ]a(xh, x3)

= ε

∫

R×[0,1]
h(x3 − y3)χ

′ (ε((1 − τ)x3 + τy3)) a(xh, y3)dy3dτ.

Cauchy-Schwarz inequality for the measure |h(x3 − y3)|dx3dy3dτ on R2 ×[0, 1] gives

‖Cε(a)(xh, ·)‖2
L2

v
≤ ε2‖a(xh, ·)‖2

L∞
v

sup
‖ϕ‖

L2(R)≤1

(∫

R
2
|h(x3 − y3)|ϕ2(x3)dx3dy3

)
(Hε

1 + Hε
2)

≤ Cε2‖a(xh, ·)‖2
L∞

v
(Hε

1 + Hε
2) with

Hε
1

def
=

∫

R
2 ×[0, 1

2
]
(χ′)2 (ε((1 − τ)x3 + τy3)) |h(x3 − y3)|dx3dy3dτ and

Hε
2

def
=

∫

R
2 ×[ 1

2
,1]

(χ′)2 (ε((1 − τ)x3 + τy3)) |h(x3 − y3)|dx3dy3dτ.

Changing variables

{
xτ = (1 − τ)x3 + τy3

yτ = y3
in Hε

1 and

{
xτ = x3

yτ = τy3 + (1 − τ)x3
in Hε

2

gives

Hε
1 =

∫

R
2 ×[0, 1

2
]

1

1 − τ
(χ′)2(εxτ )

∣∣∣h
(xτ − yτ

1 − τ

)∣∣∣dxτdyτdτ and

Hε
2 =

∫

R
2 ×[ 1

2
,1]

1

τ
(χ′)2(εyτ )

∣∣∣h
(xτ − yτ

τ

)∣∣∣dxτdyτdτ.

We immediately infer that ‖Cε(a)(xh, ·)‖L2
v
≤ Cε

1
2‖a(xh, ·)‖L∞

v
and the lemma is proved. �

Now let us choose χ ∈ D(R) with value 1 near 0 and let us state Sv
0,εa

def
= χ(ε·)Sv

0a. The

classical L2 energy estimate gives

‖Sv
0,εδ(t)‖2

L2 + ν

∫ t

0
‖∇hSv

0,εδ(t
′)‖2

L2dt′ ≤ 2

∫ t

0
‖g1(t

′)‖L2‖Sv
0,εδ(t

′)‖L2dt′

+
1

ν

∫ t

0
‖g̃2(t

′)‖2
L2dt′ + 2

∫ t

0
〈χ(ε·)g3(t

′), Sv
0,εδ(t

′)〉dt′.

By definition of g3, the integrand in the last term of the above equality is a finite sum of
terms of the type

Dλ
def
= 〈χ(ε·)Sv

0 (dλSv
0δ), ∂hSv

0,εδ〉

with dλ ∈ B− 1
2
, 1
2

4 (T ). Writing that Dλ = D1
λ + D2

λ with

D1
λ

def
= 〈[χ(ε·);Sv

0 ](dλSv
0 )δ, ∂hSv

0,εδ〉 and D2
λ

def
= 〈Sv

0 (dλSv
0,εδ), ∂hSv

0,εδ〉.
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Lemmas 2.4 and 4.2 imply that

∫ t

0
|D1

λ(t′)|dt′ . ε
1
2 C2

12(t)‖∇hS0,εδ‖L2
t (L2)

≤ ν

4
‖∇hSv

0,εδ‖L2
t (L2) +

C

ν
εC4

12(t).

Then let us write that

|D2
λ(t)| . ‖dλ(t)‖L4

h
(L2

v)‖Sv
0,εδ(t)‖

1
2

L2‖∇hSv
0,εδ(t)‖

3
2

L2

≤ ν

4
‖∇hSv

0,ε(t)‖2
L2 +

C

ν3
‖dλ(t)‖4

L4
h
(L∞

v )‖S
v
0,ε(t)‖2

L2 .

Using (4.4) we get

‖Sv
0,εδ(t)‖2

L2 +
ν

2

∫ t

0
‖∇hSv

0,εδ(t
′)‖2

L2dt′ ≤ C

ν
(ε + 1)C4

12(T ) + C

∫ t

0
‖g1(t

′)‖2
L2 dt′

+ C

∫ t

0

(
1 +

1

ν3

(
‖u1‖4

L4
h
(L∞

v ) + ‖u2‖4
L4

h
(L∞

v )

))
‖Sv

0,εδ(t
′)‖2

L2dt′.

Gronwall lemma together with (4.4) gives

‖Sv
0,εδ(t)‖2

L2 +
ν

2

∫ t

0
‖∇hSv

0,εδ(t
′)‖2

L2dt′ ≤ C

ν
(ε + 1)C4

12(T )

× exp C

∫ t

0

(
1 +

1

ν3

(
‖u1‖4

L4
h
(L∞

v ) + ‖u2‖4
L4

h
(L∞

v )

))
dt′

and thus by Lemma 2.4

‖Sv
0,εδ(t)‖2

L2 +
ν

2

∫ t

0
‖∇hSv

0,εδ(t
′)‖2

L2dt′ ≤ C

ν
(ε + 1)C4

12(T ) exp C
(
1 +

1

ν3
C4

12(T )
)
.

Passing to the limit when ε tends to 0 allows to conclude the proof of Assertion (4.3). �
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