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Abstract

We formulate two results on controllability properties of the 3D Navier—
Stokes (NS) system. They concern the approximate controllability and
exact controllability in finite-dimensional projections of the problem in
question. As a consequence, we obtain the existence of a strong solution
of the Cauchy problem for the 3D NS system with an arbitrary initial
function and a large class of right-hand sides. We also discuss some qual-
itative properties of admissible weak solutions for randomly forced NS
equations.
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Keywords: Approximate controllability, exact controllability in projec-
tions, 3D Navier—Stokes system, Agrachev—Sarychev method, stationary
solutions, irreducibility.

1 Main results

Let D C R3 be a bounded domain with C2-smooth boundary dD. Consider 3D
Navier-Stokes (NS) equations

i+ (u, V)u —vAu+Vp = f(t,x), divu=0, zé€D, (1)

where u = (u1,us2,u3) and p are unknown velocity and pressure fields, v > 0 is
the viscosity, and f(¢,z) is an external force. We introduce the spaces

H={ue€ L*(D,R?) :divu =0in D, (u,n)|op = 0},
V =H}(D,R*nH, U=HDR)NYV,

where n stands for the outward unit normal to D and (-, -) denotes the scalar
product in R3. Tt is well known (e.g., see [Tem79]) that H is a closed vector
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space in L2(D,R?), and we denote by II the orthogonal projection in L?(D, R?)
onto H. Equations (1) are equivalent to the following evolution equation in H:

U+ vLiu+ B(u) = f. (2)

Here L = —IIA, B(u) = B(u,u), B(u,v) = II{(u, V)v}, and we use the same
notation for the right-hand side of (1) and its projection to H. Equation (2) is
supplemented with the initial condition

u(0) = uo, 3)

where ug € V. Let us assume that the right-hand side of (2) is represented in
the form

f(tvx) = h(tvx) + U(t»x)» (4)

where h € L2 (R4, H) is a given function and 7 is a control taking on values
in a finite-dimensional subspace. To formulate the main results, we introduce
some notation.

Define the space Xr = C(Jr,V) N L?(Jr,U), where Jr = [0,T]. For any
T >0,he L*(Jr,H), and ug € V, we denote by O7(h, ug) the set of functions
n € L*(Jr, H) for which problem (2) — (4) has a unique solution v € Xp. It
follows from the implicit function theorem that

Dr = {(uo,n) € V x L*(Jp, H) : n € Or(h, up)} (5)

is an open subset of V x L2(Jr, H), and the operator R taking (ug,n) € Dr
to the solution u € Xr of (2) — (4) is locally Lipschitz continuous. We denote
by R: the restriction of R to the time t € Jp. Let E C U and F C H be finite-
dimensional subspaces, let Pr : H — H be the orthogonal projection onto F,
and let X C L?(Jr, E) be a vector space, not necessarily closed. We denote
by Br(R) the closed ball in F' of radius R centred at origin.

Definition 1. Equations (2), (4) with n € X are said to be approximately
controllable in time T if for any up,% € V and any € > 0 there is a control
n € Or(h,up) N X such that

[Rr(uo,n) —ally <e. (6)

Equations (2), (4) with n € X are said to be F-controllable in time T if for any
ug € V and @ € F there is n € Op(h,up) N X such that

PrRr(uo,n) = . (7)

Equations (2), (4) with n € X are said to be solidly F-controllable in time T if
for any ug € V and any R > 0 there is a constant 6 > 0 and a compact set C
in a finite-dimensional subspace Y C X such that C C Or(h,up), and for any
continuous mapping @ : C — F satisfying the inequality

sup [[@(n) = PrRr (uo, mllr < 9, (8)
ne

we have (C) D Br(R).
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For any finite-dimensional subspace G C U, we denote by F(G) the largest
vector space G1 C U such that any element 71 € G is representable in the form

k
m=n-Y_ NB(),

Jj=1

where 1, ¢!, ..., (" € G are some vectors and \p,...,\; are non-negative con-
stants. Since B is a quadratic operator continuous from U to V, we see that
F(G) C U is a well-defined vector space of finite dimension. Also note that
F(G) O G.

We now define a sequence of subspaces Fj C U by the rule

o0
Ey=E, Ep=F(Ex1) fork>1, Ex=|]Ek (9)
k=1

The following theorem established in [Shi06a, Shi06b].

Theorem 2. Let E C U be a finite-dimensional subspace such that E is
dense in H. Then the following assertions take place for any T > 0, v > 0, and
heL*(Jr,H).

(1) Equations (2), (4) with n € C*°(Jr, E) are approzimately controllable in
time T'.

(ii) Equations (2), (4) withn € C*(Jr, E) are solidly F-controllable in time T
for any finite-dimensional subspace F' C H.

In the general case, it is difficult to verify whether a subspace E C U satisfies
the conditions of Theorem 2. However, if D is a torus in R?, then one can obtain
a sufficient condition under which F. is dense in H.

2 Case of a torus

In this subsection, we study controlled Navier—Stokes equations with periodic
boundary conditions. More precisely, let us fix a vector ¢ = (q1, g2, ¢3) with
positive components and set ']I‘g =R3/ QWZE, where

Zg ={r = (x1,72,23) € R®: 2;/q; € Z for i = 1,2, 3}.

Consider the Navier—Stokes system on ']I‘g. In other words, we consider Egs. (1)
with D = R? and assume that all functions are periodic of period 2wg; with
respect to x;, ¢ = 1,2, 3. To simplify notation, we shall assume, without loss of
generality, that the mean values of u, h, and n with respect to = € Tg are zero.
As in the case of a bounded domain with Dirichlet boundary condition, one can
reduce (1) to an evolution equation in an appropriate Hilbert space. Namely,
we set

H= {u € L*(T3,R%) : diquO,/ u(z) dx = 0}
T

3
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and denote by II : Lz(’]l‘g’, R3) — H the orthogonal projection in L? (']I‘g’, R3) onto
the closed subspace H. Define the spaces

V=H T3 R*)NH, U=HTR*NH.

Projecting (1) to the space H, we obtain Eq. (2) in which L = —A is the Stokes
operator with the domain D(L) = U and B(u) = I{(u,V)u}. Theorem 2,
which was formulated for the Dirichlet boundary condition, remains valid in
this case as well. Our aim is to describe explicitly a finite-dimensional subspace
FE C U for which the hypothesis of Theorem 2 is fulfilled.

To this end, we first construct an orthogonal basis in H formed of the eigen-
functions of L. For z,y € R3, let

3 3 3
(T,y)q = Zq;lxiyi, (z,y) = inyi» || = Z |-
i=1 i=1 i=1

We set Z3 = 73\ {0} and R? = R3\ {0}. For a € R3, denote by at the
two-dimensional subspace in R?® defined by the equation (z,a), = 0. Note
that at = (—a)*. For any m € Z2, let us choose a vector £(m) € m* so
that {¢(m),¢(—m)} is an orthonormal basis in m* with respect to the scalar

product (-,-). We now set
em(z) = £(m) cos(m,x)q,  Sm(z) =£(m)sin(m,z), for m e Z3.

It is a matter of direct verification to show that c,, and s,, are eigenfunctions
of L and that {cy, $;m, m € Z3} is an orthogonal basis in H. For a finite family
of functions A, we denote by span A the vector space spanned by A.

Theorem 3. For any vector ¢ = (q1,q2, q3) with positive components there is
an integer d > 4 such that if

E = Span{crmsma |m| < d},
then the vector space Eoo defined in (9) is dense in H.

Theorems 2 and 3 imply the following result on controllability of the NS
system by a force of finite dimension.

Corollary 4. Let E C U be the subspace defined in Theorem 3. Then for any
finite-dimensional subspace F C H and arbitrary constants T > 0 and v > 0
the Navier—Stokes equations (2), (4) with n € C*(Jr,E) are approzimately
controllable and solidly F'-controllable in time T .

The proofs of the above results are based on a development of a general
approach introduced by Agrachev and Sarychev in the case of 2D Navier—Stokes
equations (see [AS05, AS06]).
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3 Applications

Our first application concerns the Cauchy problem for (2). Let G C H be a
closed vector space. For any up € V, T' > 0, and v > 0, let 21, (G, up) be the
set of functions f € L?(Jr,G) for which problem (2), (3) has a unique solution
u € Xp. If E C G is a closed subspace, then we denote by G & E the orthogonal
complement of E in G and by Q(T, G, E) the orthogonal projection in L?(Jr, G)
onto the subspace L?(J7, G© E). The following result is established in [Shi06a].

Theorem 5. Let E C U be a finite-dimensional subspace such that E is dense
in H and let G C H be a closed subspace containing E. Then Zr (G, up) is a
non-empty open subset of L?(Jr,G) such that

Q(T,G,E)=r,,(G,ug) = L*(Jr,GOE) foranyT >0,v>0,uy € V.

Our second application concerns the case in which Navier—Stokes equations
are perturbed by a random force. Namely, suppose that

ft,x) = h(z) +n(t, z), (10)

where h € H is a deterministic function and 7 is an H-valued random process
satisfying the following condition.

(C) There is an orthonormal basis { f;;} in V and a sequence of standard inde-
pendent Brownian motions {3;(t),t > 0} defined on a filtered probability
space (Q, F, F:,P) such that

a o0
0t = 50, )= D b,
k=1
where {b;x} is a family of real constants satisfying the condition
(o)

jk=1

Let us recall the concepts of an admissible weak solution and of a stationary
measure for (2), (10). Define an Ornstein-Uhlenbeck process by the formula

2(t) = /0 e V=L qe(t).

It is well known that if Condition (C) is fulfilled, then z is a Gaussian process
whose almost every trajectory belongs to the space C(R4, V)N LE (R4, U) and
satisfies the Stokes equation

U+ vLu = n(t).
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Definition 6. An H-valued random process u(t) is called an admissible weak
solution for (2), (10) if it is representable in the form

u(t) = v(t) + 2(t),

where v(t) is an H-valued F;-adapted random process whose almost every tra-
jectory belongs to the space L2 (R, ,V)NLX (R, , H) and satisfies the equation

loc loc
O+vilv+Bv+z)=h

in the sense of distributions and the energy inequality

IO v [ o tds+ [ (B+z2).0ds

<

DN =

t
loO)]? + / (hov)ds, t>0,

where (-, ) denotes the scalar product in H.

Definition 7. An admissible weak solution u(t) for (2), (10) is said to be
stationary if its distribution does not depend on ¢:

D(u(t)) = forall t > 0.
In this case, p is called a stationary measure for (2), (10).

Existence of admissible weak stationary solutions for 3D Navier—Stokes equa-
tions was established in [VF88, FG95]. Moreover, the construction of these
works implies that

/ 0] () < oo. (11)
H

Let us denote by @ the vector space of functions v € V' that are representable

in the form
o0
v = Z bjkujfk,
jk=1
where {u;} is a sequence of real numbers such that -, u? < oo. Recall that
the vector space Eo is defined in (9). For a finite-dimensional space F', denote
by ¢r the Lebesgue measure on F. The following theorem established in [Shi06¢]

provides some qualitative properties of stationary measures for (2), (10) (see
also [AKSS06]).

Theorem 8. Let n be a stationary process satisfying Condition (C), let E C U
be a finite-dimensional vector space for which E is dense in H, and let p be
a stationary measure for (2), (10) such that (11) holds. Suppose that Q D E.
Then the following assertions take place.

(i) The support of u coincides with H.

(ii) Let F C H be a finite-dimensional subspace and let ug be the projection
of uw to F. Then there is a function pp € C(F) such that ur > pplr and
pr(z) > 0 for {p-almost every x € F.
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