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SCATTERING AND RESOLVENT ON GEOMETRICALLY FINITE

HYPERBOLIC MANIFOLDS WITH RATIONAL CUSPS

COLIN GUILLARMOU

Abstract. These notes summarize the papers [8, 9] on the analysis of resolvent, Eisenstein
series and scattering operator for geometrically finite hyperbolic quotients with rational non-
maximal rank cusps. They complete somehow the talk given at the PDE seminar of Ecole
Polytechnique in october 2005.

1. Introduction

In this talk we describe recent results of [8, 9] about geometric scattering theory on infinite
volume hyperbolic manifolds with rational non-maximal rank cusps.

It is well-known that the resolvent of the Laplacian extends meromorphically through the con-
tinuous spectrum in some geometric situations, the first obvious case is of course the Euclidean
Laplacian and (fairly general) compactly supported perturbations. Poles of the this extension
are called resonances and contain informations about classical dynamic and geometry of the
considered system. Many deep studies of resonances and scattering objects shed light on these
relations between classical dynamic-trapped set and quantum data. In hyperbolic geometry the
most striking example is the Selberg zeta function for convex co-compact hyperbolic manifolds
which is defined as an infinite products over the length of closed geodesics and whose singularities
are essentially the resonances (see [24, 10]).

It is however important to observe that very few cases of Riemannian manifolds enjoy this
property of meromorphic extension of the resolvent through the essential spectrum. It turns out
that this property is extremely sensible to the asymptotic behaviour of the geometry near infin-
ity, and it is believed that slight perturbations of locally symmetric spaces have this property,
see recent works of Mazzeo-Vasy in this direction [21]. For geometrically finite hyperbolic man-
ifolds Γ\Hn+1, i.e. those groups Γ which have a finite-sided fundamental domain in the natural
compactification of hyperbolic space Hn+1, Bunke and Olbrich [1] show in the most general case
that one can define a scattering operator acting on the infinity of the manifold and it extends
to C meromorphically. This extension is in general equivalent to the extension of the resolvent.
When the manifold is convex-compact, that is without cusps, the first proof of the extension of
the resolvent and its careful pseudo-differential analysis goes back to Mazzeo-Melrose [18] and
the bound on the counting function of resonances was given by Guillopé-Zworski [12], improved
by Patterson-Perry [24] using thermodynamic formalism of Fried-Ruelle and Selberg zeta func-
tion. The study of scattering operator in this precise case is done by Guillopé-Zworski [11, 13] in
dimension 2, by Perry [26] in higher dimension and by Joshi-Sa Barreto [14] for a more general
class of manifolds called asymptotically hyperbolic. We finally recall that Froese-Hislop-Perry
[2] did analyze the general geometrically finite case in dimension 3, but without giving bounds
on resonances.

We propose another proof of the result of Bunke-Olbrich (in any dimension) in a simpler
geometric case. We deal directly with the resolvent, so that we are able to estimates the growth
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of the counting function of resonances; this allows us to describe what type of operator is
the scattering operator through the analysis of its Schwartz kernel and results in the spirit of
Graham-Zworski [6] are investigated too. Our geometric condition lies in the cusps, indeed we
consider only cusps that have no irrational rotational part, this fact will be explained later and
allows to have relatively explicit model formulae for the resolvent at infinity.

We consider an infinite volume hyperbolic quotient X := Γ\Hn+1 where Γ is a discrete group
of isometries of Hn+1 which admits a fundamental domain with finitely many sides, and such that
each parabolic subgroup of Γ does not contain irrational rotation. This last condition is always
satisfied in dimension n+1 = 3 and, in general, can be reduced to the case where each parabolic
subgroup is conjugate to a lattice of translations in Rn (in the model Hn+1 = (0,∞) × Rn),
possibly by passing to a finite cover, thus resolvent, scattering operator and Eisenstein functions
are obtained as a finite sum on the cover. Similarly, elliptic elements of Γ can also be excluded by
passing to a finite cover, X is then a smooth manifold, and since the presence of maximal-rank
cusps do not add difficulties (they are finite volume ends), we will avoid them for simplicity of
exposition. The manifoldX equipped with the hyperbolic metric is complete and the spectrum of

the Laplacian ∆X splits into continuous spectrum [n2

4 ,∞) and a finite number of L2 eigenvalues

included in (0, n2

4 ) which form the point spectrum σpp(∆X) (see Lax-Phillips [15]). In [8] we
proved that

Theorem 1.1. With previous assumptions on the manifold X = Γ\Hn+1, the modified resolvent

R(λ) := (∆X − λ(n− λ))−1

extends from {<(λ) > n
2 } to C meromorphically with poles of finite multiplicity (i.e. the rank

of the polar part in the Laurent expansion at each pole is finite) from L2
comp(X) to L2

loc(X), the
counting funtion for resonances satisfies

N(R) := ]{λ resonances ; |λ−
n

2
| < R} = O(Rdim X+1)

The non-optimal bound is a consequence of the method and was already a problem in the
simpler case with no cusps in [12], the optimal bound being obtained in that case by dynamic
arguments [24]. To prove this theorem, we proceed in way similar to [12], and we can deal with
rational cusps since an explicit formula for the resolvent is available for “models cusps” using
decomposition of variables.

Once the resolvent has been studied, we can define a Poisson operator, Eisenstein functions,
and scattering operator, then we show that they have meromorphic extension to C.

To explain the results, we have to recall the geometry at infinity of the manifold X . This is
actually described for instance in Section 2 of Mazzeo-Phillips [20]. In our case with rational
cusps, X (or actually a finite cover) can be seen as the interior of a smooth compact manifold
with boundary X̄. If ρ is a boundary defining function of the boundary ∂X̄ and if g is the
hyperbolic metric on X , then ρ2g extends as a smooth non-negative tensor on X̄, which is only
positively definite outside some submanifolds of the boundary ∂X̄ where it degenerates. Each
one of these submanifolds arises from a cusp point of X (i.e. a fixed point at infinity of Hn+1

for a parabolic subgroup of Γ) and is diffeomorphic to a k-dimensional torus T k if the parabolic
subgroup has rank k. If we note c the union of these submanifolds, B = ∂X̄ \ c is a non-compact
manifold which can be thought as the infinity of X , and B = Γ\Ω where Ω ⊂ Sn is the domain
of discontinuity of Γ. It turns out that B has ends diffeomorphic to (Rn−k

y \ {|y| < 1}) × T k,

each end arising from a rank-k parabolic subgroup of Γ fixing a point at infinity of Hn+1. The
natural compactification B̄ of B corresponds to the radial compactification in the y variable in
each end thus B̄ is a fibred boundary manifold in the sense of Mazzeo-Melrose [19], the trivial

III–2



fibrations being the projections

φk : Sn−k−1 × T k → Sn−k−1.

When equipped with the metric h0 := ρ2g|B, (B, h0) is conformal to the ‘exact Φ-type metric’
(as defined in [19]) equal to

dr2

r4
+
dθ2

r2
+ dz2, on (0, ε)r × Sn−k−1

θ × T k
z

near its infinity, the conformal factor decreasing enough to make the volume of B finite.

Poisson and scattering operators P(λ), S(λ) are constructed in [9] through a Poisson problem
(i.e. a generalized eigenvalue problem) in a way similar to that introduced on Euclidean manifolds
by Melrose (see [23]). The structure of the metric near the cusps c is quite degenerate and
P(λ), S(λ) do not act naturally on C∞(∂X̄) as it would be the case when there is no cusps.
Indeed, they acts much on subspaces related to this cusp structure. We define the subalgebra
C∞

acc(X̄) of C∞(X̄) of functions which are asymptotically constant in the cusps, these are the
f ∈ C∞(X̄) such that

Z(f |c) = 0, Z((X1 . . . XNf)|c) = 0

for all smooth vector fields X1, . . . , XN on X̄ (∀N ∈ N) and all smooth vector fields Z on
c. In other words, these are the functions whose restrictions at the cusp submanifolds are
locally constant and similarly for all derivatives. It is actually possible to find a boundary
defining function ρ for X̄ in this subalgebra. The volume form dvolg of g can be expressed by
ρ−n−1R2

cµX̄ for a function Rc which is smooth positive in X̄ \ c with R2
c ∈ C∞

acc(X̄) vanishing
at order 2k at each k-dimensional component of c and where µX̄ is a smooth volume density
on X̄. We can define C∞

acc(∂X̄) and R−1
c C∞

acc(∂X̄) by restriction of C∞
acc(X̄) and R−1

c C∞
acc(X̄) at

∂X̄ and B = ∂X̄ \ c (here we use the same notation for Rc and its restriction Rc|∂X̄). For any
boundary defining function ρ ∈ C∞

acc(X̄), one can define the Poisson operator P(λ) by solving
the generalized eigenvalue problem: if <(λ) ≥ n

2 and λ /∈ n
2 + N, then for f ∈ R−1

c C∞
acc(∂X̄)

there exists a unique solution P(λ)f of the following














(∆X − λ(n− λ))P(λ)f = 0
P(λ)f = ρn−λF (λ, f) + ρλG(λ, f)
F (λ, f), G(λ, f) ∈ R−1

c C∞
acc(X̄)

F (λ, f)|ρ=0 = f

.

The solution is constructed by approximation using an indicial equation for ∆X and then by
correcting the error through the resolvent; for that we need the precise mapping property of the
extended resolvent of Theorem 1.1:

R(λ) : Ċ∞(X̄) → ρλR−1
c C∞

acc(X̄).

where Ċ∞(X̄) is the set of functions in C∞(X̄) vanishing at all order at ∂X̄ (a kind of Schwartz
space).

Next we analyze Eisenstein functions in [9]. The metric h0 induces an L2(B) Hilbert space
on B and we prove

Theorem 1.2. If R(λ;w;w′) denotes the Schwartz kernel of the modified resolvent, the Eisen-
stein function

E(λ; b;w′) := lim
w→b

[ρ(w)−λR(λ;w;w′)], b ∈ B,w′ ∈ X

is a smooth function on B × X if λ is not a resonance. There exists C > 0 such that for all
N > 0 it is the Schwartz kernel of a meromorphic operator

E(λ) : ρNL2(X) → L2(B)

in <(λ) > n
2−CN with poles of finite multiplicity, satisfying P(λ) = (2λ−n)tE(λ) on R−1

c C∞
acc

(∂X̄).
Except possibly at {λ;<(λ) < n

2 , λ(n − λ) ∈ σpp(∆X)}, the set of poles of E(λ) coincides with
the set of resonances.
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Using the asymptotic expression of P(λ)f , the scattering operator is defined (with same
notations) by

S(λ) :

{

R−1
c C∞

acc(∂X̄) → R−1
c C∞

acc(∂X̄)
f → F (λ, f)|ρ=0

.

For <(λ) = n
2 , S(λ) can be extended to L2(B) as a unitary operator and it gives, in a sense, a

parametrization of the absolutely continuous spectrum of ∆X . When the manifold has no cusp,
it is proved in [26, 14] that S(λ) is an elliptic pseudo-differential operator of order 2λ−n, a fact
that contrasts with the Euclidean geometry where it is a Fourier integral operator.

We prove in [9] the following result

Theorem 1.3. The scattering operator S(λ) extends meromorphically to C as a family of
pseudo-differential operators in the full Φ-calculus on the manifold with fibred boundary B̄ in
the sense of Mazzeo-Melrose [19]. In {<(λ) ≤ n

2 , λ(n − λ) /∈ σpp(∆X)}, λ0 is a pole of S(λ) if
and only if λ0 is a resonance and it has finite multiplicity. In {<(λ) > n

2 }, S(λ) has only first
order poles whose residue is

Resλ0
S(λ) =

{

− (−1)j+12−2j

j!(j−1)! Pj + Πλ0
if λ0 = n

2 + j, j ∈ N

Πλ0
if λ0 /∈

n
2 + N

where Pj is the j-th GJMS conformal Laplacian of [5] on (B, h0) and Πλ0
is an operator with

rank dim kerL2(∆X − λ0(n− λ0)).

Note that the GJMS conformal Laplacians Pj in [5] are well-defined for all j if n ≥ 3 (resp.
for j ≤ 1 if n = 2) if the manifold is locally conformally flat, which is the case for B.

In [9], we also prove some results similar to Graham-Zworski theorems in [6] for this class of
manifolds. We actualy study conformally covariance of S(λ) under change of boundary defining
function in C∞

acc(X̄). We also show that Branson’s Q curvature is a scattering object in some
sense

Q =
(−1)

n
2 2−n

n
2 !(n

2 − 1)!
S(n)1.

Moreover Q is in L1(B, dvolh0
) and

(−1)
n
2 21−n

n
2 !(n

2 − 1)!

∫

B

Q dvolh0
= L

where L is the log term, independent of ρ, appearing in the expansion of the volume

volX({ρ > ε}) ∼ c0ε
−n + · · · + cn−2ε

−2 + L log(ε−1) + V + o(1).

The case of irrational cusps is more technically involved and will probably be carried out in
a following paper. It is worthy to add that this analysis could be used to study the divisors of
Selberg’s zeta function as Patterson-Perry [24] did for convex co-compact hyperbolic manifolds.

2. Geometry, covering and asymptotically constant functions in the cusps

We describe here with more details the assumptions about the cusps discussed roughly in the
introduction; we strongly use Section 2 of Mazzeo-Phillips [20]. Let Γ a discrete subgroup of
orientation preserving isometries of the hyperbolic space Hn+1. Recall that Γ acts also on the
natural compactification H̄n+1 = {m ∈ Rn+1; ||m|| ≤ 1} of Hn+1 and on its boundary Sn; an
element γ ∈ Γ is called hyperbolic if it fixes two points on Sn and no point in H

n+1, parabolic if
it fixes one point on Sn and no point in Hn+1, then γ is elliptic if it fixes a point of Hn+1. The
limit set of the group Λ is the set of accumulation points of Γ.m on Sn where m is any fixed
point in Hn+1, the domain of dicontinuity is Ω := Sn \ Λ.

If Γ contains elliptic elements, there exists a subgroup Γ0 of finite index of Γ without elliptic
elements thus X is finitely covered by Γ0\Hn+1, the latter being a smooth manifold. Since we
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study resolvent of the Laplacian and other related objects, we can always pass to a finite cover
without difficulties: objects on X can indeed be obtained by summing on a finite set objects
on the finite cover. Thus we exclude elliptic elements in Γ. We suppose that Γ is geometrically
finite, which means here that it admits a fundamental domain F with finitely many sides in
H̄n+1.

If the group has no parabolic elements and is non-compact, the manifold X := Γ\Hn+1 is said
convex co-compact. In particular it is the interior of a smooth compact manifold with boundary
X̄ := X ∪ ∂X̄ where ∂X̄ is the compact manifold Γ\Ω, Ω being the domain of discontinuity
of Γ. The metric is asymptotically hyperbolic in this case, which means that there exists a
diffeomorphism ψ from [0, ε)ρ × ∂X̄ to its image in X̄ such that ψ∗(ρ) is a boundary defining
function of ∂X̄ in X̄

ψ∗g =
dρ2 + h(ρ)

ρ2

where h(ρ) is a family of metrics on ∂X̄ depending smoothly on ρ ∈ [0, ε).
If Γ contains parabolic elements, each fixed point p ∈ Sn of a parabolic element of Γ is called

a cusp point, and for each cusp point p, let Γp be the subgoup of Γ fixing p. Actually Γp contains
only parabolic elements and it can be shown that there is a Γp invariant neighbourhood Up of
p such that Γ\(F ∩ Up) is isometric to a neighbourhood of p in Γp\(F ∩ Up). The subgroup Γp

has a maximal free abelian subgoup Γa with rank k, the rank of the cusp p is defined to be the
integer k. We suppose that k ≤ n−1 for each p since this case is well known in term of scattering
theory. Using now conjugation, it suffices to look at the case where p = ∞ in the upper half
model Hn+1 = R+ × Rn. Section 2 of [20] (the arguments come from Thurston’s lecture notes)
shows that there is an affine subspace Rk ⊂ Rn fixed by Γ∞ on which Γa acts as a group of k
translations. Note that k is called the rank of the cusp. Every γ ∈ Γa acts as

γ(y, z) = (Rγy, z + bγ) on R
n−k−1
y ⊕ R

k
z

for some Rγ ∈ O(n − k − 1) and bγ ∈ Rk. There is a flat torus Γa\Rk ' T k such that Γa\Rn

is a flat vector bundle with basis this torus. We assume that the holonomy representation
γ → Rγ ∈ O(n− k − 1) of this bundle has a finite image, so that all rotations Rγ have rational
angle pπ/q for some p, q ∈ N. Then there is a finite cover of this bundle which is isometric to
T k × Rn−k, and we are reduced to study the case where each Rγ is the identity.

Example: to fix the ideas, we give the most basic case of geometrically finite hyperbolic
manifold with rational non-maximal rank cusp (actually with no rotational part), this is the
quotient X = Γ\H3 where Γ = 〈γ〉 is the group generated by the element

γ : (x, y, z) ∈ H
3 = R

+ × R
2 → (x, y, z + 1) ∈ H

3.

It is topologically R+
x ×Ry ×S1

z , the domain of discontinuity is Ω = R2 = S2 \ {∞} and the nat-
ural boundary B := Γ\Ω ' Ry ×S1

z . Note that a natural compactification X̄ of X is to consider
X ' S1

z × H2
(x,y) and compactify H2 into the ball H̄2 := {m ∈ R2; |m| ≤ 1}. The boundary of

X̄ is a torus T 2 := S1 × S1 of genus 1 and the cusp (the fixed point at infinity of γ) becomes a
circle S1, ∂X̄ is also the compactification of B obtained by compactifying the line Ry into a circle.

We get back to the general case. The construction of the extension of the resolvent is done
by parametrix construction and Fredholm theorem, as usual. In our case we do not have the
explicit expression of a model resolvent that gives directly the parametrix, contrary to Euclidean
case or Riemann surfaces [11, 13]. However we are able to have fairly good local parametrix
on the neighbourhoods of infinity, in particular near the cusps. We need to describe precisely a
covering by neighbourhood of infinity.

By assumptions on the cusps and using [2, 26] we obtain a covering of the manifold X by
model charts. There exists a compact K of X such that X \ K is covered by a finite number
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of charts isometric to either a regular neighbourhood (Mr, gr) or a rank-k cusp neighbourhood
(Mk, gk) where

Mr := {(x, y) ∈ (0,∞) × R
n;x2 + |y|2 < 1, }, gr = x−2(dx2 + dy2),

Mk := {(x, y, z) ∈ (0,∞) × R
n−k × T k;x2 + |y|2 > 1}, gk = x−2(dx2 + dy2 + dz2)

for k = 1, . . . , n− 1 with (T k, dz2) a k-dimensional flat torus.
One can choose the covering such that the cusps neighbourhood do not intersect, possibly by

adding regular neighbourhoods. We will make as if there was only one neighbourhood of each
type to simplify notations, moreover we consider by abuse of notation Mr,Mk as sets of X .

The model Mk can be considered as a subset of the quotient Xk = Γ∞\Hn+1 of Hn+1 by a
rank-k parabolic subgroup Γ∞ of Γ which fixes the point at infinity of Hn+1. Moreover from
previous discussion and since we work on the finite cover, we can consider the subgroup Γ∞ to
be a group of translations ating on rrk; Xk is isometric to R+

x × Rn−k
y × T k

z equipped with the
metric

gk =
dx2 + dy2 + dz2

x2

dz2 being the flat metric on a k-dimensional torus T k. Hence Xk can be compactified into the
compact manifold with boundary X̄k = H̄

n−k+1 × T k where H̄
n−k+1 is the ball {|w| ≤ 1} in

Rn−k+1. With the new coordinates

(2.1) t :=
x

x2 + |y|2
, u :=

−y

x2 + |y|2

(Mk, gk) is isometric to

{(t, u, z) ∈ (0,∞) × R
n−k × T k; t2 + |u|2 < 1}

equipped with the metric

(2.2)
dt2 + du2 + (t2 + |u|2)2dz2

t2
.

These coordinates compactify Mk by adding {t = 0}, since t and u extend smoothly to X̄k \{x =
y = 0}, the infinity of X in the chart Mk is {t = 0}. Also we will call cusp submanifold the
submanifold {t = u = 0} of Mk, it will be denoted ck and we remark that ck ' ∞× T k ' T k

in Mk where ∞ is the point at infinity in the half-space model of Hn−k+1. Let us finally denote
M̄k = Mk ∪ {t = 0}.

The model Mr is simpler and can be considered as a subset of Hn+1, we define as for Mk

M̄r := Mr ∪ {x = 0}.

There exist some smooth functions χ, χr, χ1, . . . , χn−1 on respectively X,Mr,M1, . . . ,Mn−1

which, through the isometric charts Ir , I1, . . . , In, satisfy

(2.3) I∗rχ
r +

n−1
∑

k=1

I∗kχ
k + χ = 1

with χ having compact support in X .

Using the previous discussion, one obtains a compactification of X as a smooth compact
manifold with boundary X̄ . Moreover, with no loss of generality one can choose a boundary
defining function ρ which is equal to the function t in each neighbourhood M̄k. The boundary
∂X̄ is covered by some charts B1, . . . , Bn−1, Br induced by M1, . . . ,Mn−1,Mr by taking

Bk := M̄k ∩ ∂X̄ ' {(u, z) ∈ R
n−k × T k; |u|2 < 1}

Br := M̄r ∩ ∂X̄ ' {y ∈ R
n; |y|2 < 1}.
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From the discussion above, we see that the metric on X can be expressed by

g =
H

ρ2

with H a smooth non-negative symmetric 2-tensor on X̄ which degenerates at the cusps sub-
manifolds (ck)k=1,...,n−1. Let us define c := (∪kck) ⊂ ∂X̄ ⊂ X̄ , and B := ∂X̄ \ c, then the
restriction

(2.4) h0 := H |B = (ρ2g)|B

is a smooth metric on the non-compact manifold B.
We will also need to use functions representing the distance to the cusps submanifolds as

follows: for k = 1, . . . , n − 1, let rck
be a continuous non-negative function in X̄, smooth and

positive in X̄ \ ck which satisfies

Ik∗(rck
) =

√

t2 + |u|2

in M̄k and is equal to 1 in Mj when j 6= k. Then we define the functions

(2.5) rc :=
n−1
∏

k=1

rck
, Rc :=

n−1
∏

k=1

(rck
)k

on X̄ and we will also denote by rck
, rc and Rc their restriction to ∂X̄. It can easily be checked

that B equipped with the metric h0 of (2.4) has a volume density dvolh0
which is of the form

(2.6) dvolh0
= R2

cµ∂X̄

with µ∂X̄ a smooth non-vanishing density (volume density) on ∂X̄. Similarly the volume density
dvolg on X can be expressed by

(2.7) dvolg = ρ−n−1R2
cµX̄

for a smooth volume density µX̄ on X̄ . In what follows, we will write L2(X) and L2(B) for the
Hilbert spaces of square integrable functions on X and B with respect to the volume densities
dvolg and dvolh0

.

For a compact manifold M̄ with boundary ∂M̄ , we denote by Ċ∞(M̄) the set of smooth
functions on M̄ which vanish at all orders at ∂M̄ . There will be a special set of smooth functions
on X̄, ∂X̄ which will play an important role for what follows, these are the functions which
are “asymptotically constant in the cusp variables”. To give a precise definition we begin by
introducing the sets C(T X̄), C(T∂X̄) and C(Tc) of smooth vector fields on X̄, ∂X̄, c. Then we
set

C∞
acc(X̄) := {f ∈ C∞(X̄); ∀X1, . . . , XN ∈ C(T X̄), ∀Z ∈ C(Tc), Z(f |c) = 0, Z(X1 . . . XNf |c) = 0}

and C∞
acc(∂X̄) is defined similarly by replacing X̄ by ∂X̄. These functions are constant on each

cusp submanifold ck and their derivatives as well. In local coordinates (t, u, z) near the cusp
ck = {t = u = 0}, one can check by a Taylor expansion at (0, 0, z) ∈ ck and Borel Lemma that
a function f ∈ C∞

acc(X̄) can be decomposed locally as a sum

(2.8) f(t, u, z) = f0(t, u) +O((t2 + |u|2)∞) = f0(t, u) +O(r∞c )

for some f0 smooth. The class C∞
acc(X̄) forms a subalgebra of C∞(X̄) which is stable under the

action of C(T X̄). It can be topologized by the semi-norms of C∞(X̄) and it is closed in C∞(X̄).
Observe also that r2c and R2

c defined by (2.5) are in C∞
acc(X̄). Actually one can check (see [9])

that the space R−1
c C∞

acc(X̄) does not depend on the choices of ρ,R2
c in C∞

acc(X̄), this space will
be useful later.
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To construct the solution of the Poisson problem, we need a kind of model form for the
metric. It is actually possible to prove that there exists a collar neighbourhood (0, ε)ρ × ∂X̄ of
∂X̄ induced by a boundary defining function ρ ∈ C∞

acc(X̄) such that

(2.9) g =
dρ2 + h(ρ)

ρ2

for some smooth family of symmetric tensors h(ρ) on ∂X̄, depending smoothly on ρ, positive for
ρ > 0, with h(0) = h0 positive on B and satisfying

h(ρ) = du2 + (ρ2 + |u|2)2dz2

in each M̄k. The proof is detailed in [9, Sec. 2.5] and we actually describe the set of boundary
defining functions in C∞

acc(X̄) that puts the metric under an “almost model” form, a fact that is
necessary to investigate the conformal invariance properties of scattering operator and related
objects as in [6].

3. The resolvent

We begin by recalling results known in the convex co-compact case. First Mazzeo-Melrose
[18] and Guillopé-Zworski [12] results can be summarize as

Theorem 3.1. If X := Γ\Hn+1 is convex co-compact, then the resolvent R(λ) = (∆X − λ(n−
λ))−1 extends meromorphically from <(λ) > n

2 to C with poles of finite multiplicity. The counting
function for resonances N(R) satisfies

N(R) = O(Rdim X+1)

Note that the bound is improved in O(Rdim X) by Patterson-Perry [24] using thermodynamic
formalism of Fried-Ruelle, a formalism which seems not well adapted to cases with cusps.

Example: we return to our example given in last section. The Laplacian is

∆X = −(x∂x)2 + 2x∂x + x2∆R×S1

and by decomposing in spherical harmonics on S1 and Fourier transform in R the Laplacian on
the cylinder ∆R×S1 becomes |ξ|2 + ω2

m where ω2
m are the eigenvalues of ∆S1 . Now we have a

one dimensional spectral problem on the half line (0,∞)x, the resolvent can be computed by
Sturm-Liouville theory, the Green kernel for <(λ) > 1 is

Gλ,ξ,m(x, x′) =

{

−Kλ−1(x|ξm|)Iλ−1(x
′|ξm|) if x > x′

−Kλ−1(x
′|ξm|)Iλ−1(x|ξm|) if x ≤ x′

where Ks, Is are the modified Bessel functions and ξm = (ξ, ωm) ∈ R2. The resolvent Schwartz
kernel is then obtained by

R(λ;x, y, z;x′, y′, z′) = −xx′
∑

m∈Z

∫

R

eiξ.(y−y′)+iωm(z−z′)Gλ,ξ,m(x, x′)dξ

and can be proved to extend meromorphically in C as operator from C∞
0 (X) → C∞(X). The

generalized eigenfunctions can be obtained from this formula by considering the asymptotics
Bessel functions: for f ∈ C∞

0 (B) (recall B = R × S1) and <(λ) = 1, the function

P (λ)f =
−21−λ

Γ(λ)
x

∑

m∈Z

∫

Rn−k

eiξm.(y−y′,z−z′)|ξm|λ−
n
2 Kλ−n

2
(|ξm|x)f(y′, z′)dy′dz′dξ

is a generalized eigenfunction of ∆ for spectral parameter λ(2 − λ) and with an asymptotic

(3.1) P (λ)f = x2−λf(y, z) + xλ(S(λ)f)(y, z) +O(x2), x→ 0, |y| < C

where S(λ)f ∈ C∞(B). This defines S(λ), the scattering operator, and again the asymptotics of

Ks(z) as z → 0 gives that S(λ) = c(λ)∆λ−1
S1×R

for some explicit meromorphic constant c(λ). Ac-

tually the function x blows-up at the cusp in X̄, thus it is not really a “good” boundary defining
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function to use to obtain uniform asymptotics at infinity of X , the function ρ = x/(1+x2 + |y|2)
is more adpated for that in the sense that it is a smooth boundary defining function for the
compactification X̄ . Of course replacing x by ρ in (3.1) would change S(λ), though only by con-
formal multiplications on the right and left. Remark that S(λ) is a pseudo-differential operator
on the cylinder B = S1×R, but the terms coming from ωm = 0 and ωm 6= 0 are of very different
nature when we approach the infinity of B (two circles), corresponding to the cusp. The second
ones are rapidly decreasing in space (“almost properly supported”) as |y − y′| → ∞ wheras
the first one has conormal singularities as |y − y′| → ∞. In other words, the action of S(λ)
on constant functions in variable z has a very different behaviour than the action on functions
whose zeroth Fourier coefficient in the circle vanishes, which is also a typical fact of maximal
rank cusps (i.e. finite volume cusps) for instance. This is roughly the reason of introducing this
class C∞

acc of functions asymptotically constant in the cusps.

In our general case, a good parametrix can be found in the regular neighbourhood Mr of infin-
ity by the method of Guillopé-Zworski [12], which is a simplification of that of Mazzeo-Melrose
[18] for constant curvature manifolds.

A parametrix in the cusps neighbourhood can actually be obtained by an explicit calculation
of the resolvent on Xk = Γ∞\Hn+1 with Γ∞ a rank-k parabolic subgroup (of translations) fixing
∞, pretty much as in the previous example. Note that Γ∞ is the image of the lattice Z

k by a
map Ak ∈ GLk(R). By Fourier decomposition on the torus T k = Γ∞\Rk and conjugating by

x
k
2 , the operator ∆Xk

− λ(n− λ) acts on

L2(Xk) =
⊕

m∈Zk

Hm, Hm ' L2(Rn−k
y × R

+
x , x

−(n−k+1)dydx) = L2(Hn−k+1)

as a family of operators

Pm(λ) := −x2∂2
x + (n− k − 1)x∂x + x2(∆y + |ωm|2) − s(n− k − s)

where ωm = 2πt(A−1
k )m for m ∈ Zk are the (square root of) eigenvalues of the Laplacian on

Tk with eigenfunctions eiωm.z and s := λ − k
2 is a shifted spectral parameter. The problem

is reduced to study a family of Schrödinger operators on hyperbolic spaces of lower dimension
Hn−k+1. The resolvent RXk

(λ) = (∆Xk
− λ(n− λ))−1 for the Laplacian on Xk is for <(λ) > n

2

(3.2) RXk
(λ) =

⊕

m∈Zk

Rm(λ) on L2(Xk) =
⊕

m∈Zk

Hm

with

(3.3) Rm(λ;x, y, x′, y′) = |Ak|
− 1

2 (xx′)−
k
2

∫

Rk

RHn+1(λ;x, y, z;x′, y′, 0)eiωm.zdz

where RHn+1(λ) = (∆Hn+1 −λ(n− λ))−1 is the resolvent for the Laplacian on Hn+1 and |Ak| :=
| det(Ak)|. We set

(3.4) r = (|y − y′|2 + x2 + x′
2
)

1
2 , d =

xx′

r2
, τ =

xx′

r2 + |z|2
= d(1 +

|z|2

r2
)−1

and recall (see e.g. [12], [26]) that the resolvent on Hn+1 can be written for all J ∈ N ∪∞

(3.5) RHn+1(λ;x, y, z;x′, y′, 0) = τλ

J−1
∑

j=0

αj,n(λ)τ2j + τλ+2JGJ,n(λ, τ)

αj,n(λ) :=
2−1π−n

2 Γ(λ+ 2j)

Γ(λ− n
2 + 1 + j)Γ(j + 1)

with GJ,n(λ, τ) a smooth function in τ ∈ [0, 1
2 ) with a conormal singularity at τ = 1

2 and

G∞,n(λ, τ) = 0. Note that the sum (3.5) converges locally uniformly in τ ∈ [0, 1
2 ) if J = ∞.
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From (3.3) and (3.5) it is easy to see, by the change of variable w = z/r, that for m 6= 0 and
setting s := λ− k

2

(3.6) Rm(λ) = ds

J−1
∑

j=0

αj,n(λ)d2jFj,λ(rωm) + ds+2J

∫

Rk

e−irωm.zGJ,n(λ, d(1 + |z|2)−1)

(1 + |z|2)λ+2J
dz

(3.7)

Fj,λ(u) = |Ak|
− 1

2

∫

Rk

e−iu.w(1 + |w|2)−λ−2jdw = |Ak|
− 1

2
2−λ−2j+1(2π)

k
2

Γ(λ+ 2j)
|u|s+2jK−s−2j(|u|)

when <(λ) > n
2 (see e.g. [3] for the last formula), Ks(z) being the Bessel function defined by

(3.8) Ks(z) :=

∫ ∞

0

cosh(st)e−z cosh(t)dt, z > 0.

It is easy to see that the sum (3.6) with J = ∞ converges uniformly for r > 0 and d ∈ [0, 1
2 ).

When m = 0, R0(λ) is the shifted Green kernel of the Laplacian on Hn−k+1, that is

(3.9) R0(λ) = ds

J−1
∑

j=0

αj,n−k(s)d2j + ds+2JGJ,n−k(λ, d), s = λ−
k

2
.

The representations (3.6) and (3.9) give a meromorphic extension of Rm(λ) to C, with poles on
k
2 −N0 of finite rank which only come from the case m = 0 when n− k+1 is even. The continu-

ity property of the extented operators on weighted L2 spaces are a bit technical and checked in [8].

Once we have this resolvent, we can construct, using partition of unity (2.3), a parametrix
E1(λ) such that

(∆X − λ(n− λ))E1(λ) = 1 +K1(λ)

with K1(λ) compact on ρaL2(X) for some a > 0 in <(λ) > n−1
2 .

The final parametrix uses similar arguments as in [18, 12], in particular it just involves the
indicial operator of the Laplacian far from the cusps submanifolds. Indeed our parametrix in the
cusps is so good that it captures all the singularities in a neighbourhood of the cusps and it just
remains to deal with errors which are supported (in the left factor on X̄ × X̄) in a compact set
of X̄ that does not touch the cusp submanifolds, where the Laplacian is an elliptic 0-operator
in the sense of [18]. Indeed in Mk we have

∆X = −(ρ∂ρ)
2 + nρ∂ρ − 2k(ρ2 + |u|2)−1ρ3∂ρ + ρ2∆h(ρ)

with h(ρ) = du2 + (ρ2 + |u|2)2dz2 a metric on {0 < |u| < 1} × T k
z . The indicial equation is

(∆X − λ(n− λ))ρn−λ+jf − j(2λ− n− j)ρn−λ+jf ∈ ρn−λ+j+1C∞(X̄).

in {ρ < ε} if f ∈ C∞
0 (M) (recall M = ∂X̄ \ c).

This allows to construct by induction EN (λ) for any N > 0 such that

KN(λ) := (∆X − λ(n− λ))EN (λ) − 1

is compact (trace class) on ρNL2(X) for <(λ) > n
2 − CN where C < 1 is a constant. By Fred-

holm theorem we obtain the meromorphic extension of R(λ) on weighted spaces and a standard
application of determinant methods shows the bound on the counting function of resonances
claimed in Theorem 1.1. Of course many estimates on singular values of KN (λ) in term of λ,N
are required and a bit technical, see [8]. The non-optimal bound comes from similar reasons
than in [12], first the poles coming from the model resolvent on Hn+1 (used for the regular
neighbourhood of infinity Mr) with rank which are delicate to bound optimaly: because of the
cut-off functions, the cancellations that appear for these ranks in the model Hn+1 do not hold
here (at least we are not able to prove it). The other problem comes from the fact that it appears
difficult to use the dimension reduction through the scattering operator as for surfaces [11] or
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compact perturbations of Euclidean space [27].

A detailed study of the mapping properties of R(λ) using this construction in [9] gives

(3.10) R(λ) : Ċ∞(X̄) → ρλR−1
c C∞

acc(X̄)

which can be compared to the convex co-compact case (with no cusps) R(λ) : Ċ∞(X̄) →
ρλC∞(X̄).

4. Poisson problem and contruction of scattering operator

The construction of the scattering operator can be obtained by 2 methods, either by looking
at asymptotic boundary values (or much “infinity values”) of the resolvent or by solving a Pois-
son problem, both methods being equivalent.

The Poisson problem in the convex co-compact case is detailed by Graham-Zworski [6], it can
be described by: for λ not resonance, <(λ) ≥ n

2 and λ /∈ n
2 + N, then for all f ∈ C∞(∂X̄) there

exists a unique P(λ)f ∈ C∞(X) such that














(∆X − λ(n− λ))P(λ)f = 0
P(λ)f = ρn−λF (λ, f) + ρλG(λ, f)
F (λ, f), G(λ, f) ∈ C∞(X̄)
F (λ, f)|ρ=0 = f

.

The scattering operator is the operator on the boundary

S(λ) : C∞(∂X̄) → C∞(∂X̄), S(λ)f := G(λ, f)|∂X̄

it is proved in [14] to be a pseudo-differential operator of order 2λ − n on ∂X̄ with principal
symbol

σpr(S(λ))(y, ξ) = 2n−2λ Γ(n
2 − λ)

Γ(λ− n
2 )

|ξ|2λ−n
h0(y)

where h0 = ρ2g|T∂X̄ .

In our case with cusp, the same problem can not be solved because of singularities of the
objects at the cusps points. Instead a “natural” Poisson problem can be expressed as follows:
for λ not resonance, <(λ) ≥ n

2 and λ /∈ n
2 + N, then for all f ∈ R−1

c C∞
acc(∂X̄) there exists a

unique P(λ)f ∈ C∞(X) such that

(4.1)















(∆X − λ(n− λ))P(λ)f = 0
P(λ)f = ρn−λF (λ, f) + ρλG(λ, f)
F (λ, f), G(λ, f) ∈ R−1

c C∞
acc(X̄)

F (λ, f)|ρ=0 = f

.

It can actually be solved using an indicial equation to solve the problem up to Ċ∞(X̄) and then
correct with the help of the resolvent. In the neighbourhood Mk of the cusp ck the Laplacian
looks like

∆X = −(ρ∂ρ)
2 + nρ∂ρ − 2k(ρ2 + |u|2)−1ρ3∂ρ + ρ2∆h(ρ)

with h(ρ) = du2 + (ρ2 + |u|2)2dz2 a metric on {0 < |u| < 1} × T k
z ; by elementary computation

we obtain

Rc∆XR
−1
c = −(ρ∂ρ)

2 + nρ∂ρ + ρ2(∆u + (ρ2 + |u|2)−2∆z)

where ∆u,∆z are the flat Laplacians on Rn−k
u , T k

z . Then it is easy to check the indicial equation

(∆X − λ(n− λ))ρn−λ+jR−1
c f − j(2λ− n− j)ρn−λ+jR−1

c f ∈ ρn−λ+j+1R−1
c C∞

acc(X̄).

Here, the key fact is that the singular term r−4
c ∆z applied to f ∈ C∞

acc(∂X̄) gives a functions
vanihing at all order at the cusps submanifold c by (2.8). Therefore for all f ∈ R−1

c C∞
acc(∂X̄)
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one can construct by induction and Borel lemma (see [6] for more details) a function Φ(λ)f ∈
ρn−λR−1

c C∞
acc(X̄) for λ ∈ C \ 1

2 (n+ N) such that

(∆X − λ(n− λ))Φ(λ)f ∈ Ċ∞(X̄), ρλ−nΦ(λ)f |ρ=0 = f.

By construction, we have the formal Taylor expansion

(4.2) Φ(λ)f = ρn−λ

∞
∑

j=0

ρ2jcj,λPj,λf, ∀f ∈ C∞
acc(∂X̄)

where Pj,λ is a differential operator on B which is polynomial in λ and

cj,λ := (−1)j
Γ(λ− n

2 − j)

22jj!Γ(λ− n
2 )
.

Now we can set for λ /∈ 1
2 (n+ N) and λ not a resonance

(4.3) P(λ)f = Φ(λ)f −R(λ)(∆X − λ(n− λ))Φ(λ)f

which satisfies (4.1), thanks to (3.10). To prove uniqueness of the solution of (4.1), we first note
that if P1(λ)f,P2(λ)f are two solutions, then the indicial equation shows that P1(λ)f−P2(λ)f ∈
ρλR−1

c C∞
acc(X̄) thus in L2(X) for <(λ) > n

2 , it is then 0 if λ(n−λ) /∈ σpp(∆X). The case <(λ) = n
2

can be proved by a Green formula exactly as in [6], we refer to [9] for details.

The Poisson operator is proved to have a Schwartz kernel given by weighted limit of the
resolvent kernel, as in the convex co-compact case (see [14, 6]). Indeed if we define the Eisenstein
function by E(λ) := (ρ−λR(λ))|B×X then it is meromorphic in λ ∈ C, satisfies

E(λ) ∈ Rc
−1C∞(∂X̄ ×X)

and the Schwartz kernel of P(λ) is (2λ− n)E(λ;w; b) ∈ C∞(X × B). The Eisenstein functions
can be expressed quite explicitly uging the resolvent parametrix construction, it can even be
checked [9] that they define Hilbert-Schmidt operators

E(λ) : ρNL2(X) → L2(B)

meromorphically in |<(λ) − n
2 | < CN for some constant C, as stated in the introduction. This

gives a meromorphic extension of P(λ).

The Eisenstein functions are classically linked to the spectral projectors (via Stone’s formula)
of ∆X in the following sense If <(λ) = n

2 and λ 6= n
2 then

(4.4) R(λ;w;w′) −R(n− λ;w;w′) = (n− 2λ)

∫

B

E(λ; b;w′)E(n− λ; b;w) dvolh0
(b)

where h0 = (ρ2g)|B. Moreover there exists C > 0 such that for N large, we have

R(λ) −R(n− λ) = (2λ− n)tE(n− λ)E(λ)

in the strip |<(λ) − n
2 | ≤ CN as operators from ρNL2(X) to ρ−NL2(X). This relation and the

definition of E(λ) prove that resolvent and Poisson operator (or Eisenstein function) have same
poles, except possibly at the points λ such that λ(n− λ) ∈ σpp(∆X).

Using notations of (4.1), we can define the scattering operator as the linear operator

(4.5) S(λ) :

{

R−1
c C∞

acc(∂X̄) → R−1
c C∞

acc(∂X̄)
f → G(λ, f)|B

for <(λ) ≥ n
2 , λ /∈ 1

2 (n + N) and λ not a resonance. With (4.3), one obtains a meromorphic
continuation of S(λ) to C.
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The Eisenstein function E(λ; b, w′) are actually continuous function on (b, w′) ∈ B × (X̄ \ c)
if <(λ) < 0. Then from (4.3), (4.5) and the fact that the Poisson operator has tE(λ) for kernel,
we deduce that for f ∈ C∞

0 (B) and <(λ) < 0

S(λ)f = lim
ρ→0

[ρ−λ((2λ− n)tE(λ)f − Φ(λ)f)] = (2λ− n) lim
ρ→0

[ρ−λ(tE(λ)f)]

which is well defined. As a consequence the distributional kernel of S(λ) on B is

S(λ; b; b′) = (2λ− n) lim
w′→b′

(ρ(w′)−λE(λ; b;w′))

which can be rewritten using the symmetry of the resolvent kernel as the restriction

(4.6) S(λ) = (2λ− n)(ρ−λρ′
−λ
R(λ))|ρ=ρ′=0

for <(λ) < 0 and λ not resonance. This last relation extends meromorhically to C. If <(λ) < 0,
we have by standard arguments, for w ∈ X , b′ ∈ B,

E(λ; b′;w) = −

∫

B

S(λ; b′; b)E(n− λ; b;w) dvolh0
(b)

and there exists C > 0 such that for N large the meromorphic identity

(4.7) E(λ) = −S(λ)E(n− λ)

holds true in the strip n
2 − CN < <(λ) ≤ n

2 as operators from ρNL2(X) to L2(B). Now, the
identities (4.6) and (4.7) shows that the poles of S(λ) in <(λ) < n

2 are exactly the poles of
the resolvent, i.e. the resonances. However we are not able for the moment to obtain explicit
relations between their multiplicities as in the convex co-compact case [7].

In <(λ) > n
2 , additional poles occur at n

2 + N for the scattering poles, exactly as in Graham-
Zworski [6], these are infinite rank, first order, poles coming from the construction of Φ(λ)f in
(4.2). We prove in [9] that the residue are differential operators on the boundary B, and actually
they are exactly the GJMS conformal powers of the Laplacian defined in [5]. The proof goes
through by mimicking the arguments of Graham-Zworski in this setting, in particular

Resλ0
S(λ) =

{

− (−1)j+12−2j

j!(j−1)! Pj + Πλ0
if λ0 = n

2 + j, j ∈ N

Πλ0
if λ0 /∈

n
2 + N

where Pj is the differential operator on (B, h0) with principal symbol σ0(Pj) = |ξ|2j
h0

, defined by

(4.8) [Resn
2
+jρ

−λΦ(λ)]|ρ=0 =
(−1)j2−2j

j!(j − 1)!
Pj

and Πλ0
is a finite-rank operator with Schwartz kernel 2j

(

(ρρ′)−λ0Resλ0
R(λ)

)

|B×B satisfying
rank Πλ0

= dimkerL2(∆X − λ0(n− λ0)). The fact that Pj in (4.8) is the GJMS operator comes
from the constant curvature, which make every derivative ∂ρh(0) in (2.9) locally determined
by h(0) in the same way that for convex co-compact manifolds (which are particular cases of
Poincaré-Einstein manifold).

5. The scattering operator as a Φ-Pdeudo-differential operator on the

boundary

The manifold B compactifies into B̄ and has ends diffomorphic to [0, ε) × Sn−k−1 × T k,
each end arising from cusp points. The compactification is done by radially compactifying
(Rn−k

y \ {|y| < 1}) × T k
z in y. The metric h0 is of the form

h0 = |y|−4(dy2 + dz2)

near the cusp ck, in the compactifiction coordinates v := |y|−1, ω := yv this gives

h0 = dv2 + v2dω2 + v4dz2.
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The boundary of B̄ is Sn−k−1 × T k and has a natural fibration over Sn−k−1 (the projection),
this gives B̄ a structure of manifold with fibred boundary in the sense of Mazzeo-Melrose [19], let
us call Φ the fibration. In [19], the authors define a general class of pseudo-differential operators
by their Schwartz kernel lifted on some manifold with corners B̄ ×Φ B̄ which is the blow-up of
B̄ × B̄ at some submanifolds defined by the fibration Φ. In some sense, these class capure the
different growth behaviour of the symbol in phase space, recall that here the manifold B is not
compact.

The study of the Schwartz kernel of S(λ) in compact parts of the manifold B (roughly coming
from the regular neighbourhood of infinity of X̄) are very similar to the convex co-compact case:
there is a classical conormal singularity that make them local pseudo-differential operators of
order 2λ−n. The most interesting part comes from the cusps: we can deduce from the resolvent
construction and (4.6) that all the main singularities of S(λ) near ck are contained in the term

c(λ)ψk
L|y|

2λ−n∆
λ−n

2

Yk
|y|2λ−nψk with c(λ) := 2n−2λ

Γ(n
2 − λ)

Γ(λ− n
2 )
.

(viewed as acting on L2(Yk, dydz)) where ψk
L, ψ

k are cut-off functions equal to 1 near the cusp
ck and Yk := R

n−k ×T k. The growth of its symbol in the phase space has two kind of behaviour
since ∆Yk

can be roughly decomposed (by Fourier transform) as a Laplacian on Rn−k corre-
sponding to the constant mode in the torus T k and a family of ∆Rn−k + cj where cj > 0 are the
non-zero eigenvalues of ∆T k . For instance, the Schwartz kernel κj(λ, y, y

′) of last term has fast
vanishing in space at infinity in |y|, |y′| variables outside the diagonal whereas the first term has
kernel κ0(λ, y, y

′) with a growth |y|k−n|y′|k−n.

These different asymptotic regimes are analyzed in detail on the blow-up manifold B̄×Φ B̄ in
the paper [9], we refer the reader there for details.

We finally emphasize that in a model irrational cusp case Γ∞\Hn+1, a spectral decomposition
of the Laplacian ∆Γ∞\Hn+1 leads to the study of a family complex powers of operators of the
form ∆Rn−k + cj as before, but the terms cj accumulate at 0, contrary to the rational case where
there is a spectral gap.
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