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ESTIMATES FOR THE CUT-OFF RESOLVENT OF THE LAPLACIAN FOR

TRAPPING OBSTACLES

JEAN-FRANÇOIS BONY AND VESSELIN PETKOV

1. Introduction

Let K ⊂ Rn, n ≥ 2 be a bounded domain with C∞ boundary ∂K and connected complement
Ω = Rn \K. The set K is called an obstacle in Rn. We consider the Dirichlet problem for the wave
equation 




(∂2
t − ∆x)u = 0 in R × Ω,

u = 0 on R × ∂K,

u(0, x) = f0(x), ∂tu(0, x) = f1(x).

(1)

Let K ⊂ Ba = {x ∈ Rn : |x| ≤ a} and for m ≥ 0 set

pm(t) = sup
[ ‖∇xu‖L2(Ba∩Ω) + ‖∂tu‖L2(Ba∩Ω)

‖∇xf0‖Hm(Ba∩Ω) + ‖f1‖Hm(B1∩Ω)
;

(0, 0) 6= (f0, f1) ∈ C∞
0 (Ω) × C∞

0 (Ω), supp fi ⊂ Ba, i = 0, 1
]
.

For Imλ > 0 consider the cut-off resolvent Rχ(λ) = χ(−∆D − λ2)−1χ : L2(Ω) −→ L2(Ω), where
χ ∈ C∞

0 (Rn), χ = 1 on Ba and ∆D is the Dirichlet Laplacian in Ω. The behavior of Rχ(λ) on the
real axis is closely related to the decay of the local energy pm(t) as t −→ +∞. The following result
of Vodev generalizes the classical one of Morawetz [13].

Theorem 1. ([23]) The following conditions are equivalents:
(a) limt→+∞ p0(t) = 0,
(b) There exist C0 > 0, C1 > 0 so that

‖λRχ(λ)‖ ≤ C1, λ ∈ R, |λ| ≥ C0,

(c) There exist constants C, γ > 0 such that for t ≥ 1 we have

p0(t) ≤

{
Ce−γt, n odd,

Ct−n, n even.

It is known that (a) holds if the obstacle K is non-trapping, which means that the singularities
of the solution of the Dirichlet problem with initial data with compact support leave any compact
ω ⊂ Ω for t ≥ t(ω). For trapping obstacles without any condition on the geometry of the obstacle
N. Burq proved the following

Theorem 2. ([5]) There exist constants C > 0 and C0 > 0 so that

‖Rχ(λ)‖ ≤ CeC|λ|, λ ∈ R, |λ| ≥ C0
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and for every integer m > 1 we have

pm(t) ≤
Cm

(log t)m
, t > 1. (2)

It is well known that the cut-off resolvent Rχ(λ) has a meromorphic continuation in C for n
odd and in C′ = {z ∈ C : z 6= −iµ, µ ∈ R+} for n even. There are many examples when we have a
domain

Dδ = {z ∈ C : −δ ≤ Im z ≤ 0}, δ > 0

without poles (resonances) of Rχ(λ) (see for example [9]). We will show that in this case we have
a polynomial bound of the cut-off resolvent Rχ(λ) on R and a better local energy decay than (2).

A general result says that if the generalized Hamiltonian flow introduced in [12] is continuous
and if we have at least one trapping ray γ, then the condition (b) in Theorem 1 fails and we have

sup
λ∈R

‖λRλ(λ)‖L2(Ω)→L2(Ω) = +∞. (3)

This condition (3) is too weak and we have no information on the geometry of K outside a small
neighborhood of the ray γ. Nevertheless, this condition implies some interesting spectral properties
of the Lax-Phillips semigroup Z(t) and we discuss this question in Sections 3 and 4.

2. Estimates of Rχ(λ) and local energy decay

Under the hypothesis that there exists a resonances free region we obtain the following

Theorem 3. Assume that the cut-off resolvent Rχ(λ) has no poles in the domain Imλ ≥ −δ, δ > 0.
Then

‖Rχ(λ)‖L2→L2 ≤ C|λ|n−2, λ ∈ R, |λ| ≥ C0. (4)

The proof is based on a semiclassical approach. Setting λ =
√
z
h , 0 < h ≤ 1, we have

(−∆D − λ2)−1 = h2(−h2∆D − z)−1

and we study the operator χ(P (h) − z)−1χ with P (h) = −h2∆D, h > 0, in the domain

Da,c = {z ∈ C : a−1 < |Re z| < a, −ch < Im z < c, a > 2, c > 0}.

We will work in the “black box” setup ([19], [20]). For this purpose define HR = L2(Ω ∩BR) and
set

L = HR ⊕ L2(Rn \BR).

We consider P (h) as an operator P (h) : L −→ L with domain D(P ) ⊂ L and the hypothesis in
[19], [20] for a “black box” framework are satisfied. In particular, setting

H] = HR ⊕ L2(TnR \B1), TnR = Rn/(RZn),

we introduce P ](h) by replacing −h2∆D by −h2∆Tn
R
. The operator P ](h) has a discrete spectrum

and we denote by N(P ](h), λ) the number of eigenvalues of P ](h) in [−λ, λ]. Then we have

N(P ](h), λ) = O
(( λ

h2

)n/2)
, for λ ≥ 1.

We examine the resolvent of the complex dilated operator Pθ(h) (see [19]) and we take θ = c̃h,
c̃� c so that in the domain

Ωω,c = {z ∈ C : |z − ω| ≤ θ, −ch ≤ Im z ≤ c} ⊂ Da,c,
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for a−1 < |Reω| < a, there are no eigenvalues of Pθ. Note that the eigenvalues of Pθ coincide with
their multiplicities with the resonances of P ([19], [20]). By using the construction of a suitable
finite rank perturbation (see [1]) and a Grushin type operator we show that

‖(Pθ − z)−1‖ ≤ C1e
C2h−n+1

, z ∈ Ωω,c/2.

This estimate is uniform with respect to the choice of ω with 2a−1 < |Reω| < a/2. Thus we obtain

‖(Pθ − z)−1‖ ≤ C3e
C3h−n+1

, z ∈ Da/2,c/2.

The complex scaling is chosen so that for suppχ ⊂ BR+1 we have

χ(P − z)−1χ = χ(Pθ − z)−1χ,

hence
‖χ(−h2∆D − z)−1χ‖L2(Ω)−→L2(Ω) ≤ C4e

C4h−n+1

, z ∈ Da/2,c/2.

Taking into account λ =
√
z
h , for z ∈ Da/2,c/2 we get

‖Rχ(λ)‖ ≤ C5e
C5|λ|n−1

, Reλ ≥ b, Imλ ≥ −b, b > 0. (5)

In the same way we treat the domain Reλ ≤ −b, Imλ ≥ −b and we obtain (5) for |Reλ| ≥ b > 0.
To establish the estimate (4) on R, we apply Phragmen-Lindelöf theorem to prove the following

Proposition 1. Let f(z) be a holomorphic function in

Uα = {z ∈ C : Im z ≥ −α}, α > 0,

such that
|f(z)| ≤ A0e

A|z|m, z ∈ Uα, m ≥ 1,

|f(z)| ≤
A1

|z| Im z
, Im z > 0.

Then we have |f(z)| ≤ A2(1 + |z|)m−1, z ∈ R.

In our case, the resolvent R(z) = (−∆D − z2)−1 of the positive operator −∆D satisfies the
estimate

‖R(z)‖L2→L2 ≤
C

|z| Im z
, Im z > 0

and using Proposition 1 we complete the proof of Theorem 3. We refer to [4] for more details.

Remark 1. Notice that if for some M ≥ 0 we have the estimate

‖Rχ(λ)‖L2→L2 ≤ C1(1 + |λ|)M , Imλ ≥ −δ, |Re λ| ≥ C0,

then a result of N. Burq [8] says that

‖Rχ(λ)‖L2→L2 ≤ C2
log(2 + |λ|2)

|λ|
, λ ∈ R, |λ| ≥ C0.

In particular, such an estimate holds for two strictly convex disjoint obstacles and under some
conditions for several strictly convex disjoint obstacles (see [9]). It is interesting to examine wether
it is possible under the hypothesis of Theorem 3 to obtain an estimate of Rχ(λ) on R independent on
the dimension n. For the semiclassical Schrödinger operators −h2∆+V (x) in the case of dimension
1 a polynomial bound O(h−M ) of the cut-off resolvent in

W = {z ∈ C : 0 < a0 ≤ Re z ≤ a1, Im z ≥ −a2h, ai > 0, i = 0, 1, 2}
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has been obtained in [2], provided that we have no resonances in W.

Theorem 3 combined with a result of G.Popov and G. Vodev [17] leads to the following

Theorem 4. Under the hypothesis of Theorem 3 for every m > 0 and t > 1 we have for n odd the
estimate

pm(t) ≤ C(t−1 log t)m/(n−1),

while for n even and t > 1 we have

pm(t) ≤

{
C(t−1 log t)m/(n−1), for 0 < m ≤ n(n− 1),

Ct−n form > n(n− 1).

3. Spectrum of the semigroup Z(t)

Throughout this and the following sections we assume n ≥ 3, n odd, and we examine the
spectrum of the Lax-Phillips semigroup Zb(t) = P b+U(t)P b−, t ≥ 0, where U(t) = eitG is the unitary
group related to the Dirichlet problem for the wave equation in Ω and P a± are the orthogonal
projections on the orthogonal complements of the spaces

Db
± = {f ∈ H : U0(t)f = 0, |x| < ±t+ b,±t > 0}.

Here b > a and U0(t) is the unitary group related to the Cauchy problem for the wave equation in
Rt × Rn. We choose χ ∈ C∞

0 (Rn) so that χ = 1 for |x| ≤ a, χ = 0 for |x| ≥ b. We fix b > a with
this property and note that P b±χ = χ = χP b±. For simplicity of the notations we will write Z(t)

instead of Zb(t) and P± instead of P b±. Let B be the generator of Z(t). Therefore,

σ(B) ⊂ {z ∈ C : Re z < 0}

and the eigenvalues zj of iB coincide with their multiplicities with the poles of Rχ(λ) (see [14]).
The condition (3) implies

sup
λ∈R

‖(B + iλ)−1‖H→H = +∞. (6)

In fact, for Reλ > 0 we have

χ(iG − λ)−1χ = −

∫ ∞

0
e−λtχeitGχdt = χ(B − λ)−1χ.

By analytic continuation for Reλ ≥ 0 we obtain

χ(iG+ iλ)−1χ = χ(B + iλ)−1χ, ∀λ ∈ R

and we may exploit the representation

(G− λ)−1 =
(

λR(λ) −iR(λ)
−i∆DR(λ) λR(λ)

)
.

The condition (3) is typical for trapping obstacles. To make a precise definition we must consider
the generalized bicharacteristics of the wave operator � = ∂2

t − ∆x determined as the trajectories
of the generalized Hamiltonian flow Ft in Ω generated by the symbol

∑n
i=1 ξ

2
i − τ

2 of � (see [12] for
a precise definition). In general, Ft is not smooth and in some cases there may exist two different
integral curves issued from the same point in the phase space. To avoid this situation we introduce
the following generic condition

(G) If for (x, ξ) ∈ T ∗(∂K) the normal curvature of ∂K vanishes of infinite order in direction
ξ, then ∂K is convex at x in direction ξ.
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Assuming (G), given σ = (x, ξ) ∈ T ∗(Ω) \ {0} = Ṫ ∗(Ω), there exists a unique generalized

bicharacteristic (x(t), ξ(t)) ∈ Ṫ ∗(Ω) such that x(0) = x, ξ(0) = ξ and we define Ft(x, ξ) =

(x(t), ξ(t)) for all t ∈ R (see [12]). We obtain a flow Ft : Ṫ ∗(Ω) −→ Ṫ ∗(Ω) which is called the

generalized geodesic flow on Ṫ ∗(Ω). The flow Ft is discontinuous at points of transversal reflection

at Ṫ ∗
∂K(Ω) and to make it continuous, consider the quotient space Ṫ ∗(Ω)/ ∼ of Ṫ ∗(Ω) with respect

to the following equivalence relation: ρ ∼ σ if and only if ρ = σ or ρ, σ ∈ T ∗
∂K(Ω) and either

limt↗0 Ft(ρ) = σ or limt↘0 Ft(ρ) = σ. Let Σb be the image of S∗(Ω) in Ṫ ∗(Ω)/ ∼. The set Σb

is called the compressed characteristic set. Melrose and Sjöstrand ([12]) proved that the natural

projection of Ft on Ṫ ∗(Ω)/ ∼ is continuous. Thus if (G) holds, the compressed Hamiltonian flow is
continuous.

Proposition 2. If the generalized compressed Hamiltonian flow is continuous and if we have at
least one (generalized) trapping ray the condition (3) is fulfilled.

Proof. Our hypothesis imply the existence of a sequence of ordinary reflecting rays γn with
sojourn times Tγn → ∞ (see for instance [12], [15]) and we may apply the result of Ralston [18]
which says that the condition (a) of Theorem 1 is not fulfilled.

In the following we suppose the condition (3) fulfilled. Assume that there are only finite number
of resonances in the domain

{z ∈ C : Im z ≥ −δ}, δ > 0.

Choose 0 ≤ α ≤ δ so that we have no resonances on the line {z ∈ C : Im z = −α}. Then the
resolvent (B + α+ iλ)−1 exists for every λ ∈ R and it is easy to see that

sup
λ∈R

‖(B + α+ iλ)−1‖H→H = +∞. (7)

Indeed, if the resolvent (B + α + iλ)−1 is uniformly bounded with respect to λ ∈ R, the cut-off
resolvent ‖λRχ(−iα + λ)‖L2→L2 will be also bounded uniformly with respect to λ ∈ R. Consider
the domain

{z ∈ C : −α ≤ Im z ≤ c0, |Re z| ≥ c1, ci > 0, i = 0, 1}

with sufficiently large c1. For each z in this domain we have the estimate (see [22])

‖zRχ(z)‖L2(Ω)→L2(Ω) ≤ CeC|z|n+1

and an application of the Phragmen-Lindelöf theorem leads to a contradiction with (3). Next,
assume that

e−α−iβ /∈ σ(eB), ∀β ∈ R.

Then ‖(e−α−iβ − eB)−1‖ ≤ Cα, ∀β ∈ R and we deduce

(B + α+ iβ)−1 = −

∫ 1

0
et(B+α+iβ)dt(I − eB+α+iβ)−1.

Consequently, the resolvent (B + α + iβ)−1 is uniformly bounded with respect to β ∈ R and we
obtain a contradiction with (7).

This shows that there exists β0 ∈ R such that

e−α−iβ0 ∈ σ(eB) \ eσ(B).
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Now we are in position to apply the result of I. Herbst [11] saying that there exists a set Mα ⊂ R+

with Lebesgue measure zero so that for all t ∈]0,∞[\Mα we have

et(−α−iβ0)eiω ∈ σ(Z(t)), ∀ω ∈ R,

hence

e−αt+iω ∈ σ(Z(t)), ∀ω ∈ R,

where σ(Z(t)) denotes the spectrum of Z(t).
Assume that for pn

qn
∈ Q, 0 < pn

qn
≤ δ, we have no resonances on the line

{z ∈ C : Im z = −
pn
qn

}.

The above argument implies the existence of a set Mn ⊂ R+ with Lebesgue measure zero such
that for t ∈]0,∞[\Mn we have

e−t
pn
qn

+iω ∈ σ(Z(t)).

The rationals are dense in ]0, δ[ and the spectrum σ(Z(t)) is closed. Thus for

t ∈]0,∞[\
( ⋃

n∈N

Mn

)

we get the relation

{z = e−ty+iω ∈ σ(Z(t)) : 0 ≤ y ≤ δ, ω ∈ R}.

Thus we have proved the following

Theorem 5. Suppose the condition (3) fulfilled. Assume that we have only a finite number of
resonances z with Im z ≥ −δ, δ > 0. Then there exists a set R ⊂ R+ with Lebesgue measure zero
so that for all t ∈]0,∞[\R we have

{z ∈ C : e−tδ ≤ |z| ≤ 1} ⊂ σ(Z(t)).

Moreover, if for all δ > 0 we have only a finite number of resonances z with Im z ≥ −δ, then there
exists M with Lebesgue measure zero so that for all t ∈]0,∞[\M we have

{z ∈ C : |z| ≤ 1} = σ(Z(t)). (8)

Remark 2. The argument used above shows that if the condition (3) holds, then for almost
all t ∈ R+ we have

S1 ⊂ σ(Z(t)).

Moreover, this relation is true without any hypothesis on the distribution of the resonances and on
the geometry of K.

Remark 3. The above theorem shows that if (3) holds, we have at least one of the following
properties:

(i) For some δ > 0 we have infinite number of resonances in the domain {z ∈ C : Im z ≥ −δ}.

(ii) For t ∈]0,∞[\M we have (8).

The condition (i) is known as the modified Lax-Phillips conjecture.

It is interesting to see that in some cases both properties (i) and (ii) are satisfied.
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Theorem 6. Suppose the condition (3) fulfilled and let | Imλj| ≥ ε > 0 for all resonances λj.
Assume that for every α > 0 and all r ∈ R the resonances counted with their multiplicities satisfy
the estimate

]{z ∈ Res(−∆D) : r ≤ Re z ≤ r + 1, Im z ≥ −α} ≤ Cα (9)

with Cα > 0 depending only on α. Then there exists M with Lebesgue measure zero so that for
all t ∈]0,∞[\M we have (8). In particular, (8) holds if K = K1 ∪ K2, where K1 ∩ K2 = ∅ and
Ki, i = 1, 2, are strictly convex obstacles.

The proof is based on the construction of a holomorphic function fα(z) such that fα(z) has as
zeros with their multiplicities the resonances lying in {z : Im z ≥ −α} and, moreover,

|fα(z)| ≤ Aα, | Im z| ≤ α,

|fα(z)| ≥ Bα > 0, z ∈ R.

Let {λj}j∈Z ∈ C counted with their multiplicities be such that −α ≤ Imλj ≤ β, α > 0, β > 0, and
assume that with some integer N = N(α, β), depending on α, β, we have

]{λj : Reλj ∈ [x, x+ 1], −α ≤ Imλj ≤ β} ≤ N, ∀x ∈ R. (10)

Given A > 0, define the function

f(z) =
∏

| Imλj |≤α

( z − λj
z − λj −Ai

)
exp

(
−

Ai

z − λj −Ai

)
.

Lemma 1. For all M > 0 and A > M + α we have |f(z)| = OA,M(1) in the domain

DM = {z ∈ C : | Im z| ≤M}.

Proof. For z ∈ DM we have Im(z − λj −Ai) < M + α−A < 0 and
∣∣∣

Ai

z − λj −Ai

∣∣∣ ≤ CA,M . (11)

Then

f(z) =
∏

j

(
1 +

Ai

z − λj −Ai

)[
1 −

Ai

z − λj −Ai
+ O

(( Ai

z − λj −Ai

)2)]

=
∏

j

(
1 + O

(( Ai

z − λj −Ai

)2))
.

We deduce

|f(z)| ≤ exp
(∑

j

( C

|z − λj −Ai|2

)

=exp
( ∞∑

k=0

∑

k≤|Re(z−λj)|<k+1

C

|z − λj −Ai|2

)

≤ exp
( ∑

|Re(z−λj)|<1

( C

|z − λj −Ai|2

)
+

∞∑

k=1

2NC

k2

)
= O(1),

where we have used (11) and we denote by C different positive constants which may change from
line to line.
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Lemma 2. For all M > 0, η > 0 and A > M + α, we have |f(z)|−1 = OA,M,η(1) in the domain

Wη = {z ∈ C : | Im z| ≤M} \
⋃

j

B(λj, η).

Proof. We have

f(z)−1 =
∏

j

(z − λj −Ai

z − λj

)
exp

( Ai

z − λj −Ai

)

=
∏

j

(
1 −

Ai

z − λj

)[
1 +

Ai

z − λj −Ai
+ O

(( Ai

|z − λj −Ai|

)2)]

=
∏

j

(
1 + O

( 1

|z − λj −Ai||z − λj|
+

1

|z − λj −Ai|2

))

=
∏

j

(
1 + O

( 1

|z − λj|2
+

1

|z − λj −Ai|2

))
.

Consequently,

|f(z)|−1 ≤ exp
(∑

j

C

|z − λj −Ai|2

)
exp

(∑

j

C

|z − λj |2

)

=O(1) exp
( ∑

|Re(z−λj)|≤1

C

|z − λj |2
+

∞∑

k=1

∑

k≤|Re(z−λj)|<k+1

C

|z − λj |2

)
= OA,M,η(1),

since |z − λj | > η on Wη. �

To obtain (8), we must show that the function zRχ(z) is not bounded on every line Im z = −α
on which we have no resonances and to repeat the argument of the proof of Theorem 5. To do
this, assume that the operator-valued function zRχ(z) is bounded for Im z = −α < 0. Clearly, this
function is also bounded for Im z = β > 0. Consider in

Dα,β = {z ∈ C : −α ≤ Im z ≤ β}

the holomorphic function g(z) = zRχ(z)fα(z). We know (see [22]) that for

z ∈ Dα,β \
⋃

j

B(λj; η)

we have the estimate
‖zRχ(z)‖ ≤ Cηe

Cη |z|n+1

, η > 0.

By the maximum principle we deduce

‖g(z)‖ ≤ CeC|z|n+1

, ∀z ∈ Dα,β.

An application of the Phragmen-Lindelöf theorem in Dα,β yields ‖g(z)‖ ≤ Bα,β and for z ∈ R we
get

‖zRχ(z)‖ ≤ B′
α,β

which is a contradiction with (3). In the case of two strictly convex disjoint obstacles the hypothesis
(10) follows from the results of C. Gérard [10]. In particular, for every fixed α > 0 the resonances
in the domain Im ≥ −α have multiplicities bounded by an integer mα ∈ N depending only on α.
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On the other hand, it is interesting to mention that the existence of a holomorphic function
F (z) with the properties given in Lemmas 1 and 2 implies a restriction on the distribution of the
zeros of F (z) and hence on that of the resonances. More precisely, if we have

|F (z)| ≤ Cα,β, −α ≤ Im z ≤ β,

|F (z)| ≥ c0 > 0, ∀z ∈ R,

we obtain by the Jensen formula for r0 ∈ R, 0 < R ≤ min{α, β} and 0 < δ < 1 the estimate

]{z ∈ C : F (z) = 0, |z − r0| ≤ δR} ≤
1

log 1
δ

log
Cα,β
c0

and this condition is uniform with respect to r0 and R. Consequently, we get a restriction equivalent
to (10).

In order to cover some cases when we have a different distribution of resonances and (10) fails
it seems convenient to search a function G(z) holomorphic and bounded in the domain

J = {z ∈ C : −α ≤ Im z ≤
C

|z|
}

such that

|G(z)| ≥ c0 > 0, ∀z ∈ R,

provided that the resonances z ∈ Res(−∆D) with Im z ≥ −α are between the zeros of G(z). In fact,
if a such function exists, we may consider g(z) = G(z)zRχ(z) in J and apply the above argument
since zRχ(z) is bounded on the line {z : Im z = C/|z|, |Re z| > C0 > 0, C > 0}. The function

h(z) = e−iAz
2

− 1/2, A > 0

is an example of functions having the first two properties. It is easy to see that h(z) has a sequence
of zeros converging to the real axis. Moreover, the zeros of h(z) have not the property (10).

4. Singularities of the cut-off resolvent χ(U(t) − z)−1χ

In the analysis of the resonances for time-periodic perturbations of the wave equations [3],
[16] the analytic properties of the cut-off resolvent χ(U(T ) − z)−1χ of the monodromy operator
U(T ) = U(T, 0) play an essential role. Here T > 0 is the period of the perturbation and U(t, s)
denotes the propagator of the corresponding problem. For stationary obstacles K we can consider
U(t) instead of U(T ) since the obstacle is periodic with any t > 0. Consider the cut-off resolvent

χ(U(t) − z)−1χ,

where χ ∈ C∞
0 (Ω) is equal to 1 on K. If K is non-trapping, the operator Z(t) is compact for

t ≥ t0 > 0 (see [14]) and this implies that χ(U(t)−z)−1χ for t ≥ t0 has a meromorphic continuation
from

{z ∈ C : |z| > β > 1} to {z ∈ C : |z| ≤ β}.

For trapping obstacles satisfying the condition (3) the situation is dramatically different. Let
Ψ ∈ C∞

0 (|x| ≤ b+ 1), Ψ = 1 for |x| ≤ b, where b > a is large and fixed.
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Theorem 7. Assume the condition (3) fulfilled. Then for almost all t ∈]0,∞[ and all z0 ∈ S1 we
have

lim
z→z0, |z|>1

‖Ψ(U(t) − z)−1Ψ‖H→H = +∞,

where H = HD(Ω) ⊕ L2(Ω) is the energy space for (1).

The proof is based on a representation of
∑∞

j=0 z
−j−1Z(jt), |z| > 1 as a sum of terms involving

the cut-off resolvent Ψ
∑∞

j=0 z
−j−1U(jt)Ψ.

Let ψ ∈ C∞
0 (Rn) be a function such that ψ(x) = 1 for |x| ≤ a + 1, ψ(x) = 0 for |x| ≥ a + 2.

Introduce the operator

Lψ(g, h) =
(
0, 〈∇xψ,∇xg〉 + (∆ψ)g

)
.

In particular, we define Lψ(U(t)f) and Lψ(U0(t)f) and will write simply LψU(t) and LψU0(t). It
is easy to see that we have

(1 − ψ)U(t) = U0(t)(1 − ψ) +

∫ t

0
U0(t)LψU(t− s)ds,

U(t)(1 − ψ) = (1 − ψ)U0(t) +

∫ t

0
U(t− s)LψU0(s)ds.

Applying these equalities, we get

U(t) =U(t)ψ + (1 − ψ)U0(t) +

∫ t

0
ψU(t− s)LψU0(s)ds

+

∫ t

0
U0(t− s)(1 − ψ)LψU0(s)ds+

∫ t

0

∫ t−s

0
U0(τ)LψU(t− s− τ)LψU0(s)dsdτ

=ψU(t)ψ + U0(t)ψ(1 − ψ) + (1 − ψ)U0(t) +

∫ t

0
ψU(t− s)LψU0(s)ds

+

∫ t

0
U0(s)LψU(t− s)ψds +

∫ t

0
U0(t− s)(1 − ψ)LψU0(s)ds

+

∫ t

0

∫ t−s

0
U0(τ)LψU(t− s− τ)LψU0(s)dsdτ.

Now let z ∈ C be such that |z| > 1. Let g ∈ C∞
0 (Ba+2) be a cut-off function equal to 1 on Ba+1.

We choose the projectors P b± = P± so that

P±ψ = ψ = ψP±, P±g = g = gP±.
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Next we fix b > 0 and the projectors P± with these properties and note that gLψ = Lψ = Lψg. Let
T0 > 0 be chosen so that P+U0(t)P− = 0 for t ≥ T0. Given a t > 0, we have

(Z(t) − z)−1 = −
∞∑

j=0

z−j−1P+U(jt)P−

=P+ψ(U(t) − z)−1ψP− −
∑

jt≤T0

z−j−1P+U0(jt)ψ(1 − ψ)P−

−
∑

jt≤T0

z−j−1P+(1 − ψ)U0(jt)P−

+

∫ T0

0
P+U0(s)Lψ(U(t) − z)−1ΦU(−s)ψP−ds

+

∫ T0

0
P+ψ(U(t) − z)−1ΦU(−s)LψU0(s)P−ds

−
∑

jt≤T1

∫ min(jt,T0)

0
z−j−1P+U0(jt− s)(1 − ψ)LψU0(s)P−ds

+

∫ T0

0

∫ T0

0
P+U0(τ)Lψ(U(t) − z)−1ΦU(−s− τ)LψU0(s)P−dsdτ +G(z)

with an operator G(z) holomorphic for z 6= 0. Here Φ is a cut-off function with compact support
determined by the finite speed of propagation so that

(1 − Φ)U0(t)g = 0 and (1 − Φ)U(t)g = 0 for |t| ≤ 2T0.

The terms in the above presentation of (Z(t)−z)−1 given by finite sums are holomorphic operators
with respect to z 6= 0. Consequently, if

lim
z→z0,|z|>1

‖Ψ(U(t) − z)−1Ψ‖H→H <∞

exists for Ψ ∈ C∞
0 (x ∈ Rn : |x| ≤ c+ 1) and equal to 1 for |x| ≤ c for some suitably large and fixed

c > 0, we conclude that (Z(t)− z)−1 is not singular at z0 ∈ S1. As we mentioned in Remark 2, this
gives a contradiction with the condition (3) which implies that S1 ⊂ σ(Z(t)) for almost all t ∈ R+.
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