SEMINAIRE

Equations aux Dérivées Partielles

2005-2006

Nils Dencker
On the solvability of pseudodifferential operators
Séminaire É. D. P. (2005-2006), Exposé n ${ }^{\circ}$ I, 27 p.
<http://sedp.cedram.org/item?id=SEDP_2005-2006
\qquad A1_0>

U.M.R. 7640 du C.N.R.S.
F-91128 PALAISEAU CEDEX
Fax : 33 (0)1 69334949
Tél : 33 (0)1 69334999

cedram

ON THE SOLVABILITY OF PSEUDODIFFERENTIAL OPERATORS

NILS DENCKER

1. Introduction

In this paper we shall study the question of local solvability of a classical pseudodifferential operator $P \in \Psi_{c l}^{m}(M)$ on a C^{∞} manifold M. Thus, we assume that the symbol of P is an asymptotic sum of homogeneous terms, and that $p=\sigma(P)$ is the homogeneous principal symbol of P. We shall also assume that P is of principal type, which means that the Hamilton vector field H_{p} and the radial vector field are linearly independent when $p=0$, thus $d p \neq 0$ when $p=0$.

Local solvability of P at a compact set $K \subseteq M$ means that the equation

$$
\begin{equation*}
P u=v \tag{1.1}
\end{equation*}
$$

has a local solution $u \in \mathcal{D}^{\prime}(M)$ in a neighborhood of K for any $v \in C^{\infty}(M)$ in a set of finite codimension. One can also define microlocal solvability at any compactly based cone $K \subset T^{*} M$, see [11, Definition 26.4.3]. Hans Lewy's famous counterexample [21] from 1957 showed that not all smooth linear differential operators are solvable. It was conjectured by Nirenberg and Treves [23] in 1970 that local solvability of principal type pseudodifferential operators is equivalent to condition (Ψ), which means that
(1.2) $\operatorname{Im}(a p)$ does not change sign from - to +
along the oriented bicharacteristics of $\operatorname{Re}(a p)$
for any $0 \neq a \in C^{\infty}\left(T^{*} M\right)$. The oriented bicharacteristics are the positive flow-outs of the Hamilton vector field $H_{\operatorname{Re}(a p)} \neq 0$ on $\operatorname{Re}(a p)=0$ (also called semi-bicharacteristics). Condition (1.2) is invariant under multiplication of p with non-vanishing factors, and conjugation of P with elliptic Fourier integral operators, see [11, Lemma 26.4.10].

The necessity of (Ψ) for local solvability of pseudodifferential operators was proved by Moyer [22] in 1978 for the two dimensional case, and by Hörmander [10] in 1981 for the general case. In the analytic category, the sufficiency of condition (Ψ) for solvability of microdifferential operators acting on microfunctions was proved by Trépreau [24] in 1984 (see also [12, Chapter VII]). The sufficiency of condition (Ψ) for solvability of pseudodifferential operators in two dimensions was proved by Lerner [15] in 1988, leaving the higher dimensional case open.

For differential operators, condition (Ψ) is equivalent to condition (P), which rules out any sign changes of $\operatorname{Im}(a p)$ along the bicharacteristics of $\operatorname{Re}(a p)$ for non-vanishing $a \in C^{\infty}\left(T^{*} M\right)$. The sufficiency of (P) for local solvability of pseudodifferential operators was proved in 1970 by Nirenberg and Treves [23] in the case when the principal symbol is real analytic. Beals and Fefferman [1] proved the general case in 1973, by using a new calculus that was later developed by Hörmander into the Weyl calculus.

In all these solvability results, one obtains a priori estimates for the adjoint operator with loss of one derivative (compared with the elliptic case). In 1994 Lerner [16] constructed counterexamples to the sufficiency of (Ψ) for local solvability with loss of one derivative in dimensions greater than two, raising doubts on whether the condition really was sufficient for solvability. But the author proved in 1996 [4] that Lerner's counterexamples are locally solvable with loss of at most two derivatives (compared with the elliptic case). There are several other results giving local solvability under conditions stronger than (Ψ), see [5], [13] and [17]. The Nirenberg-Treves conjecture was finally resolved by the author [8], proving solvability with a loss of two derivatives (compared with the elliptic case). This has been improved to a loss of arbitrarily more than $3 / 2$ derivatives by the author [7]. Recently Lerner [20] has improved the result to a loss of exactly $3 / 2$ derivatives.

In this paper we shall show how the proof of [8] can be adapted to give solvability with a loss of $3 / 2$ derivatives, using some ideas of Lerner [20]. We shall rely on the results of [8] and only emphasize the changes to the proofs. To get local solvability at a point x_{0} we shall also assume a strong form of the non-trapping condition at x_{0} :

$$
\begin{equation*}
p=0 \Longrightarrow \partial_{\xi} p \neq 0 \tag{1.3}
\end{equation*}
$$

This means that all semi-bicharacteristics are transversal to the fiber $T_{x_{0}}^{*} M$, which originally was the condition for principal type of Nirenberg and Treves [23]. Microlocally, we can always obtain (1.3) after a canonical transformation.

Theorem 1.1. If $P \in \Psi_{c l}^{m}(M)$ is of principal type and satisfies condition (Ψ) given by (1.2) microlocally near $\left(x_{0}, \xi_{0}\right) \in T^{*} M$, then we obtain

$$
\begin{equation*}
\|u\| \leq C\left(\left\|P^{*} u\right\|_{(3 / 2-m)}+\|R u\|+\|u\|_{(-1)}\right) \quad u \in C_{0}^{\infty}(M) \tag{1.4}
\end{equation*}
$$

Here $R \in \Psi_{1,0}^{1}(M)$ such that $\left(x_{0}, \xi_{0}\right) \notin$ WF R, which gives microlocal solvability of P at $\left(x_{0}, \xi_{0}\right)$ with a loss of at most $3 / 2$ derivatives. If P satisfies conditions (Ψ) and (1.3) locally near $x_{0} \in M$, then we obtain (1.4) with $x \neq x_{0}$ in WF R, which gives local solvability of P at x_{0} with a loss of at most $3 / 2$ derivatives.

Observe that there are no counterexamples showing a loss of more that $1+\varepsilon$ derivatives, for arbitrarily small ε. The method of proof is essentially the same as in [8], but we shall also use some improvements of Lerner [20] and Hörmander [14].

2. The multiplier estimate

Next, we shall microlocalize and reduce the proof of Theorem 1.1 to the semiclassical multiplier estimate of Proposition 2.5 for a microlocal normal form of the adjoint operator. We shall consider operators

$$
\begin{equation*}
P_{0}=D_{t}+i F\left(t, x, D_{x}\right) \tag{2.1}
\end{equation*}
$$

where $F \in C^{\infty}\left(\mathbf{R}, \Psi_{1,0}^{1}\left(\mathbf{R}^{n}\right)\right)$ has real principal symbol $\sigma(F)=f$. In the following, we shall assume that P_{0} satisfies condition $(\bar{\Psi})$:

$$
\begin{equation*}
f(t, x, \xi)>0 \quad \text { and } s>t \Longrightarrow f(s, x, \xi) \geq 0 \tag{2.2}
\end{equation*}
$$

for any $t, s \in \mathbf{R}$ and $(x, \xi) \in T^{*} \mathbf{R}^{n}$. This means that the L^{2} adjoint P_{0}^{*} satisfies condition (Ψ). Observe that if $\chi \geq 0$ then χf also satisfies (2.2), thus the condition can be localized.

Remark 2.1. We shall also consider symbols $f \in L^{\infty}\left(\mathbf{R}, S_{1,0}^{1}\left(\mathbf{R}^{n}\right)\right)$, that is, $f(t, x, \xi) \in$ $L^{\infty}\left(\mathbf{R} \times T^{*} \mathbf{R}^{n}\right)$ is bounded in $S_{1,0}^{1}\left(\mathbf{R}^{n}\right)$ for almost all t. Then we say that P_{0} satisfies condition $(\bar{\Psi})$ if for every (x, ξ) condition (2.2) holds for almost all $s, t \in \mathbf{R}$. We find that f has a representative satisfying (2.2) for any t, s and (x, ξ) after putting $f(t, x, \xi) \equiv 0$ for t in a countable union of null sets.

In fact, since $(x, \xi) \mapsto f(t, x, \xi)$ is continuous for almost all t it suffices to check (2.2) for (x, ξ) in a countable dense subset of $T^{*} \mathbf{R}^{n}$.

In order to prove Theorem 1.1 we shall make a second microlocalization using the specialized symbol classes of the Weyl calculus, and the Weyl quantization of symbols $a \in \mathcal{S}^{\prime}\left(T^{*} \mathbf{R}^{n}\right)$ defined by:

$$
\left(a^{w} u, v\right)=(2 \pi)^{-n} \iint \exp (i\langle x-y, \xi\rangle) a\left(\frac{x+y}{2}, \xi\right) u(y) \bar{v}(x) d x d y d \xi \quad u, v \in \mathcal{S}\left(\mathbf{R}^{n}\right)
$$

Observe that $\operatorname{Re} a^{w}=(\operatorname{Re} a)^{w}$ is the symmetric part and $i \operatorname{Im} a^{w}=(i \operatorname{Im} a)^{w}$ the antisymmetric part of the operator a^{w}. Also, if $a \in S_{1,0}^{m}\left(\mathbf{R}^{n}\right)$ then $a^{w}\left(x, D_{x}\right)=a\left(x, D_{x}\right)$ modulo $\Psi_{1,0}^{m-1}\left(\mathbf{R}^{n}\right)$ by [11, Theorem 18.5.10].

We recall the definitions of the Weyl calculus: let g_{w} be a Riemannean metric on $T^{*} \mathbf{R}^{n}$, $w=(x, \xi)$, then we say that g is slowly varying if there exists $c>0$ so that $g_{w_{0}}\left(w-w_{0}\right)<c$ implies $g_{w} \cong g_{w_{0}}$, i.e., $1 / C \leq g_{w} / g_{w_{0}} \leq C$. Let σ be the standard symplectic form on
$T^{*} \mathbf{R}^{n}$, and assume $g^{\sigma}(w) \geq g(w)$ where g^{σ} is the dual metric of $w \mapsto g(\sigma(w))$. We say that g is σ temperate if it is slowly varying and

$$
g_{w} \leq C g_{w_{0}}\left(1+g_{w}^{\sigma}\left(w-w_{0}\right)\right)^{N} \quad w, w_{0} \in T^{*} \mathbf{R}^{n}
$$

A positive real valued function $m(w)$ on $T^{*} \mathbf{R}^{n}$ is g continuous if there exists $c>0$ so that $g_{w_{0}}\left(w-w_{0}\right)<c$ implies $m(w) \cong m\left(w_{0}\right)$. We say that m is σ, g temperate if it is g continuous and

$$
m(w) \leq C m\left(w_{0}\right)\left(1+g_{w}^{\sigma}\left(w-w_{0}\right)\right)^{N} \quad w, w_{0} \in T^{*} \mathbf{R}^{n}
$$

If m is σ, g temperate, then m is a weight for g and we can define the symbol classes: $a \in S(m, g)$ if $a \in C^{\infty}\left(T^{*} \mathbf{R}^{n}\right)$ and

$$
\begin{equation*}
|a|_{j}^{g}(w)=\sup _{T_{i} \neq 0} \frac{\left|a^{(j)}\left(w, T_{1}, \ldots, T_{j}\right)\right|}{\prod_{1}^{j} g_{w}\left(T_{i}\right)^{1 / 2}} \leq C_{j} m(w) \quad w \in T^{*} \mathbf{R}^{n} \quad \text { for } j \geq 0 \tag{2.3}
\end{equation*}
$$

which gives the seminorms of $S(m, g)$. If $a \in S(m, g)$ then we say that the corresponding Weyl operator $a^{w} \in \operatorname{Op} S(m, g)$. For more on the Weyl calculus, see [11, Section 18.5].

Definition 2.2. Let m be a weight for the metric g. We say that $a \in S^{+}(m, g)$ if $a \in C^{\infty}\left(T^{*} \mathbf{R}^{n}\right)$ and $|a|_{j}^{g} \leq C_{j} m$ for $j \geq 1$.

Observe that by Taylor's formula we find that

$$
\begin{equation*}
\left|a(w)-a\left(w_{0}\right)\right| \leq C_{1} \sup _{\theta \in[0,1]} g_{w_{\theta}}\left(w-w_{0}\right)^{1 / 2} m\left(w_{\theta}\right) \leq C^{\prime} m\left(w_{0}\right)\left(1+g_{w_{0}}^{\sigma}\left(w-w_{0}\right)\right)^{(3 N+1) / 2} \tag{2.4}
\end{equation*}
$$

where $w_{\theta}=\theta w+(1-\theta) w_{0}$, which implies that $m+|a|$ is a weight for g. Clearly, $a \in S(m+|a|, g)$, so the operator a^{w} is well-defined.

Lemma 2.3. Assume that m_{j} is a weight for $g_{j}=h_{j} g^{\sharp} \leq g^{\sharp}=\left(g^{\sharp}\right)^{\sigma}$ and $a_{j} \in S^{+}\left(m_{j}, g_{j}\right)$, $j=1,2$. Let $g=g_{1}+g_{2}$ and $h^{2}=\sup g_{1} / g_{2}^{\sigma}=\sup g_{2} / g_{1}^{\sigma}=h_{1} h_{2}$, then

$$
\begin{equation*}
a_{1}^{w} a_{2}^{w}-\left(a_{1} a_{2}\right)^{w} \in \operatorname{Op} S\left(m_{1} m_{2} h, g\right) \tag{2.5}
\end{equation*}
$$

We also obtain the usual expansion of (2.5) with terms in $S\left(m_{1} m_{2} h^{k}, g\right), k \geq 1$. We also have that

$$
\begin{equation*}
\operatorname{Re} a_{1}^{w} a_{2}^{w}-\left(a_{1} a_{2}\right)^{w} \in \operatorname{Op} S\left(m_{1} m_{2} h^{2}, g\right) \tag{2.6}
\end{equation*}
$$

if $a_{j} \in C^{\infty}\left(T^{*} \mathbf{R}^{n}\right)$ is real and $\left|a_{j}\right|_{k}^{g_{j}} \leq C_{k} m_{j}, k \geq 2$, for $j=1$, 2. In that case we have $a_{j} \in S\left(m_{j}+\left|a_{j}\right|+\left|a_{j}\right|_{1}^{g_{j}}, g_{j}\right)$.

Proof. As shown after Definition 2.2 we have that $m_{j}+\left|a_{j}\right|$ is a weight for g_{j} and $a_{j} \in$ $S\left(m_{j}+\left|a_{j}\right|, g_{j}\right), j=1,2$. Thus $a_{1}^{w} a_{2}^{w} \in \operatorname{Op} S\left(\left(m_{1}+\left|a_{1}\right|\right)\left(m_{2}+\left|a_{2}\right|\right), g\right)$ is given by Proposition 18.5.5 in [11]. We find that $a_{1}^{w} a_{2}^{w}-\left(a_{1} a_{2}\right)^{w}=a^{w}$ with

$$
a(w)=\left.E\left(\frac{i}{2} \sigma\left(D_{w_{1}}, D_{w_{2}}\right)\right) \frac{i}{2} \sigma\left(\underset{\mathrm{I}-4}{D_{w_{1}}}, D_{w_{2}}\right) a_{1}\left(w_{1}\right) a_{2}\left(w_{2}\right)\right|_{w_{1}=w_{2}=w}
$$

where $E(z)=\left(e^{z}-1\right) / z=\int_{0}^{1} e^{\theta z} d \theta$. Here $\sigma\left(D_{w_{1}}, D_{w_{2}}\right) a_{1}\left(w_{1}\right) a_{2}\left(w_{2}\right) \in S(M H, G)$ where $M\left(w_{1}, w_{2}\right)=m_{1}\left(w_{1}\right) m_{2}\left(w_{2}\right), G_{w_{1}, w_{2}}\left(z_{1}, z_{2}\right)=g_{1, w_{1}}\left(z_{1}\right)+g_{2, w_{2}}\left(z_{2}\right)$ and $H^{2}=\sup G / G^{\sigma}$ so that $H(w, w)=h(w)$. Now the proof of Theorem 18.5.5 in [11] works when $\sigma\left(D_{w_{1}}, D_{w_{2}}\right)$ is replaced by $\theta \sigma\left(D_{w_{1}}, D_{w_{2}}\right)$, uniformly in $0 \leq \theta \leq 1$. By integrating over $\theta \in[0,1]$ we obtain that $a(w)$ has an asymptotic expansion in $S\left(m_{1} m_{2} h^{k}, g\right)$, which proves (2.5). If $\left|a_{j}\right|_{k}^{g_{j}} \leq C_{k} m_{j}, k \geq 2$, then we have by Taylor's formula as in (2.4) that

$$
\begin{array}{r}
\left|a(w)-a\left(w_{0}\right)\right| \leq g_{w_{0}}\left(w-w_{0}\right)^{1 / 2}\left|a_{j}\right|_{1}^{g}\left(w_{0}\right)+C_{1} \sup _{\theta \in[0,1]} g_{w_{\theta}}\left(w-w_{0}\right) m\left(w_{\theta}\right) \\
\leq C^{\prime}\left(\left|a_{j}\right|_{1}^{g}\left(w_{0}\right)+m\left(w_{0}\right)\right)\left(1+g_{w_{0}}^{\sigma}\left(w-w_{0}\right)\right)^{2 N+1} \\
\left|\left\langle T, \partial_{w} a_{j}(w)\right\rangle-\left\langle T, \partial_{w} a_{j}\left(w_{0}\right)\right\rangle\right| \leq C_{2} \sup _{\theta \in[0,1]} g_{w_{\theta}}(T)^{1 / 2} g_{w_{\theta}}\left(w-w_{0}\right)^{1 / 2} m\left(w_{\theta}\right) \\
\leq C_{3} g_{w_{0}}(T)^{1 / 2} m\left(w_{0}\right)\left(1+g_{w_{0}}^{\sigma}\left(w-w_{0}\right)\right)^{(4 N+1) / 2}
\end{array}
$$

thus $m_{j}+\left|a_{j}\right|+\left|a_{j}\right|_{1}^{g_{j}}$ is a weight for g_{j} and clearly $a_{j} \in S\left(m_{j}+\left|a_{j}\right|+\left|a_{j}\right|_{1}^{g_{j}}, g_{j}\right)$. Now if a_{1} and a_{2} are real, then $\operatorname{Re} a_{1}^{w} a_{2}^{w}-\left(a_{1} a_{2}\right)^{w}=a^{w}$ with

$$
a(w)=\operatorname{Re} E\left(\frac{i}{2} \sigma\left(D_{w_{1}}, D_{w_{2}}\right)\right)\left(\frac{i}{2} \sigma\left(D_{w_{1}}, D_{w_{2}}\right)\right)^{2} a_{1}\left(w_{1}\right) a_{2}\left(w_{2}\right) /\left.2\right|_{w_{1}=w_{2}=w}
$$

where $\sigma\left(D_{w_{1}}, D_{w_{2}}\right)^{2} a_{1}\left(w_{1}\right) a_{2}\left(w_{2}\right) \in S\left(M H^{2}, G\right)$, with the same E, M, G and H as before. The proof of (2.6) follows in the same way as the proof of (2.5).

Remark 2.4. The conclusions of Lemma 2.3 also hold if a_{1} has values in $\mathcal{L}\left(B_{1}, B_{2}\right)$ and a_{2} in B_{1} where B_{1} and B_{2} are Banach spaces, then $a_{1}^{w} a_{2}^{w}$ has values in B_{2}.

Let $\|u\|$ be the L^{2} norm on \mathbf{R}^{n+1}, and (u, v) the corresponding sesquilinear inner product. As before, we say that $f \in L^{\infty}(\mathbf{R}, S(m, g))$ if $f(t, x, \xi)$ is measurable and bounded in $S(m, g)$ for almost all t. The following is the semiclassical estimate that we shall prove in this note.

Proposition 2.5. Assume that $P_{0}=D_{t}+i f^{w}\left(t, x, D_{x}\right)$, with real $f \in L^{\infty}\left(\mathbf{R}, S\left(h^{-1}, h g^{\sharp}\right)\right)$ satisfying condition $(\bar{\Psi})$ given by (2.2), here $0<h \leq 1$ and $g^{\sharp}=\left(g^{\sharp}\right)^{\sigma}$ are constant. Then there exists $T_{0}>0$ and real valued symbols $b_{T}(t, x, \xi) \in L^{\infty}\left(\mathbf{R}, S\left(h^{-1 / 2}, g^{\sharp}\right) \bigcap S^{+}\left(1, g^{\sharp}\right)\right)$ uniformly for $0<T \leq T_{0}$, so that

$$
\begin{equation*}
h^{1 / 2}\left(\left\|b_{T}^{w} u\right\|^{2}+\|u\|^{2}\right) \leq C_{0} T \operatorname{Im}\left(P_{0} u, b_{T}^{w} u\right) \tag{2.7}
\end{equation*}
$$

for $u(t, x) \in \mathcal{S}\left(\mathbf{R} \times \mathbf{R}^{n}\right)$ having support where $|t| \leq T$. The constants C_{0}, T_{0} and the seminorms of b_{T} only depend on the seminorms of f in $L^{\infty}\left(\mathbf{R}, S\left(h^{-1}, h g^{\sharp}\right)\right)$.

Observe that it follows from (2.7) by the Cauchy-Schwarz inequality that

$$
\|u\| \leq C T h^{-1 / 2}\left\|P_{0} u\right\|
$$

which will give a loss of $3 / 2$ derivatives after microlocalization. In fact, by microlocalizing near $\left(x_{0}, \xi_{0}\right)$, letting $h^{-1}=\left\langle\xi_{0}\right\rangle=1+\left|\xi_{0}\right|$ and doing a symplectic dilation: $(x, \xi) \mapsto$ $\left(h^{-1 / 2} x, h^{1 / 2} \xi\right)$, we find that $S_{1,0}^{k}=S\left(h^{-k}, h g^{\sharp}\right)$ and $S_{1 / 2,1 / 2}^{k}=S\left(h^{-k}, g^{\sharp}\right),\left(g^{\sharp}\right)^{\sigma}=g^{\sharp}$, $k \in \mathbf{R}$. Proposition 2.5 will be proved at the end of Section 6.

There are two difficulties present in estimates of the type (2.7). The first is that b_{T} is not C^{∞} in the t variables, therefore one has to be careful not to involve b_{T}^{w} in the calculus with symbols in all the variables. We shall avoid this problem by using tensor products of operators and the Cauchy-Schwarz inequality. The second difficulty lies in the fact that $\left|b_{T}\right| \gg h^{1 / 2}$, so it is not obvious that lower order terms and cut-off errors can be controlled. To resolve this difficulty, we recall Lemma 2.6 from [8].

Lemma 2.6. The estimate (2.7) can be perturbed with terms in $L^{\infty}\left(\mathbf{R}, S\left(1, h g^{\sharp}\right)\right)$ in the symbol of P_{0} for small enough T, by changing b_{T} (satisfying the same conditions). Thus it can be microlocalized: if $\phi(w) \in S\left(1, h g^{\sharp}\right)$ is real valued and independent of t, then we have

$$
\begin{equation*}
\operatorname{Im}\left(P_{0} \phi^{w} u, b_{T}^{w} \phi^{w} u\right) \leq \operatorname{Im}\left(P_{0} u, \phi^{w} b_{T}^{w} \phi^{w} u\right)+C h^{1 / 2}\|u\|^{2} \tag{2.8}
\end{equation*}
$$

where $\phi^{w} b_{T}^{w} \phi^{w}$ satisfies the same conditions as b_{T}^{w}.

In the following, we shall use the norms:

$$
\begin{equation*}
\|u\|_{s}=\left\|\left\langle D_{x}\right\rangle^{s} u\right\|, \tag{2.9}
\end{equation*}
$$

and we shall prove an estimate for the microlocal normal form of the adjoint operator.
Corollary 2.7. Assume that $P_{0}=D_{t}+i F^{w}\left(t, x, D_{x}\right)$, with $F^{w} \in L^{\infty}\left(\mathbf{R}, \Psi_{1,0}^{1}\left(\mathbf{R}^{n}\right)\right)$ having real principal symbol f satisfying condition $(\bar{\Psi})$ given by (2.2). Then there exists $T_{0}>$ 0 and real valued symbols $b_{T}(t, x, \xi) \in L^{\infty}\left(\mathbf{R}, S_{1 / 2,1 / 2}^{1}\left(\mathbf{R}^{n}\right)\right)$ with homogeneous gradient $\nabla b_{T}=\left(\partial_{x} b_{T},|\xi| \partial_{\xi} b_{T}\right) \in L^{\infty}\left(\mathbf{R}, S_{1 / 2,1 / 2}^{1}\left(\mathbf{R}^{n}\right)\right)$ uniformly for $0<T \leq T_{0}$, such that

$$
\begin{equation*}
\left\|b_{T}^{w} u\right\|_{-1 / 2}^{2}+\|u\|^{2} \leq C_{0}\left(T \operatorname{Im}\left(P_{0} u, b_{T}^{w} u\right)+\|u\|_{-1}^{2}\right) \tag{2.10}
\end{equation*}
$$

for $u \in \mathcal{S}\left(\mathbf{R}^{n+1}\right)$ having support where $|t| \leq T$. The constants T_{0}, C_{0} and the seminorms of b_{T} only depend on the seminorms of F in $L^{\infty}\left(\mathbf{R}, S_{1,0}^{1}\left(\mathbf{R}^{n}\right)\right)$.

Since $\nabla b_{T} \in L^{\infty}\left(\mathbf{R}, S_{1 / 2,1 / 2}^{1}\right)$ we find that the commutators of b_{T}^{w} with operators in $L^{\infty}\left(\mathbf{R}, \Psi_{1,0}^{0}\right)$ are in $L^{\infty}\left(\mathbf{R}, \Psi_{1 / 2,1 / 2}^{0}\right)$. This will make it possible to localize the estimate. The idea to use the first term in (2.7) and (2.10) is due to Lerner [20].

Proof of that Proposition 2.5 gives Corollary 2.7. Choose real symbols $\left\{\phi_{j}(x, \xi)\right\}_{j}$ and $\left\{\psi_{j}(x, \xi)\right\}_{j} \in S_{1,0}^{0}\left(\mathbf{R}^{n}\right)$ having values in ℓ^{2}, such that $\sum_{j} \phi_{j}^{2}=1, \psi_{j} \phi_{j}=\phi_{j}$ and $\psi_{j} \geq 0$. We may assume that the supports are small enough so that $\langle\xi\rangle \cong\left\langle\xi_{j}\right\rangle$ in $\operatorname{supp} \psi_{j}$ for some ξ_{j}, and that there is a fixed bound on number of overlapping supports. Then,
after doing a symplectic dilation $(y, \eta)=\left(x\left\langle\xi_{j}\right\rangle^{1 / 2}, \xi /\left\langle\xi_{j}\right\rangle^{1 / 2}\right)$ we obtain that $S_{1,0}^{m}\left(\mathbf{R}^{n}\right)=$ $S\left(h_{j}^{-m}, h_{j} g^{\sharp}\right)$ and $S_{1 / 2,1 / 2}^{m}\left(\mathbf{R}^{n}\right)=S\left(h_{j}^{-m}, g^{\sharp}\right)$ in $\operatorname{supp} \psi_{j}, m \in \mathbf{R}$, where $h_{j}=\left\langle\xi_{j}\right\rangle^{-1} \leq 1$ and $g^{\sharp}(d y, d \eta)=|d y|^{2}+|d \eta|^{2}$.

By using the calculus in the y variables we find $\phi_{j}^{w} P_{0}=\phi_{j}^{w} P_{0 j}$ modulo Op $S\left(h_{j}, h_{j} g^{\sharp}\right)$, where

$$
P_{0 j}=D_{t}+i\left(\psi_{j} F\right)^{w}\left(t, y, D_{y}\right)=D_{t}+i f_{j}^{w}\left(t, y, D_{y}\right)+r_{j}^{w}\left(t, y, D_{y}\right)
$$

with $f_{j}=\psi_{j} f \in L^{\infty}\left(\mathbf{R}, S\left(h_{j}^{-1}, h_{j} g^{\sharp}\right)\right)$ satisfying (2.2), and $r_{j} \in L^{\infty}\left(\mathbf{R}, S\left(1, h_{j} g^{\sharp}\right)\right)$ uniformly in j. Then, by using Proposition 2.5 and Lemma 2.6 for $P_{0 j}$ we obtain real valued symbols $b_{j, T}(t, y, \eta) \in L^{\infty}\left(\mathbf{R}, S\left(h_{j}^{-1 / 2}, g^{\sharp}\right) \bigcap S^{+}\left(1, g^{\sharp}\right)\right)$ uniformly for $0<T \ll 1$, such that

$$
\begin{equation*}
\left\|b_{j, T}^{w} \phi_{j}^{w} u\right\|^{2}+\left\|\phi_{j}^{w} u\right\|^{2} \leq C_{0} T\left(h_{j}^{-1 / 2} \operatorname{Im}\left(P_{0} u, \phi_{j}^{w} b_{j, T}^{w} \phi_{j}^{w} u\right)+\|u\|^{2}\right) \quad \forall j \tag{2.11}
\end{equation*}
$$

for $u \in \mathcal{S}$ having support where $|t| \leq T$. By substituting $\psi_{j}^{w} u$ in (2.11) we obtain that

$$
\begin{equation*}
\left\|b_{j, T}^{w} \phi_{j}^{w} \psi_{j}^{w} u\right\|^{2}+\left\|\phi_{j}^{w} \psi_{j}^{w} u\right\|^{2} \leq C_{0} T\left(h_{j}^{-1 / 2} \operatorname{Im}\left(P_{0} \psi_{j}^{w} u, \phi_{j}^{w} b_{j, T}^{w} \phi_{j}^{w} \psi_{j}^{w} u\right)+\left\|\psi_{j}^{w} u\right\|^{2}\right) \tag{2.12}
\end{equation*}
$$

for $u \in \mathcal{S}$ having support where $|t| \leq T$. Here

$$
h_{j}^{-1 / 2} \operatorname{Im}\left(P_{0} \psi_{j}^{w} u, \phi_{j}^{w} b_{j, T}^{w} \phi_{j}^{w} \psi_{j}^{w} u\right)=h_{j}^{-1 / 2}\left\langle\left[P_{0}, \psi_{j}^{w}\right] u, \phi_{j}^{w} b_{j, T}^{w} \phi_{j}^{w} \psi_{j}^{w} u\right\rangle+\left\langle P_{0} u, B_{j, T}^{w} u\right\rangle
$$

where $B_{j, T}^{w}=h_{j}^{-1 / 2} \psi_{j}^{w} \phi_{j}^{w} b_{j, T}^{w} \phi_{j}^{w} \psi_{j}^{w} \in \operatorname{Op} S\left(h^{-1}, g^{\sharp}\right)$ is symmetric. Now $\left[P_{0}, \psi_{j}^{w}\right]=\left[F^{w}, \psi_{j}^{w}\right]$ and the calculus give that $\left\{h_{j}^{-1 / 2} b_{j, T}^{w} \phi_{j}^{w}\left[F^{w}, \psi_{j}^{w}\right]\right\}_{j} \in \Psi_{1,0}^{0}\left(\mathbf{R}^{n}\right)$ with values in ℓ^{2} for almost all t, which gives

$$
\sum_{j} h_{j}^{-1 / 2}\left\langle\left[P_{0}, \psi_{j}^{w}\right] u, \phi_{j}^{w} b_{j, T}^{w} \phi_{j}^{w} \psi_{j}^{w} u\right\rangle \leq C\|u\|^{2} .
$$

Now, $\sum_{j} \phi_{j}^{2}=1$ and $\phi_{j} \psi_{j}=\phi_{j}$ so the calculus gives

$$
\|u\|^{2} \leq \sum_{j}\left\|\phi_{j}^{w} \psi_{j}^{w} u\right\|^{2}+C\|u\|_{-1}^{2} .
$$

Let $b_{T}^{w}=\sum_{j} B_{j, T}^{w} \in L^{\infty}\left(\mathbf{R}, \Psi_{1 / 2,1 / 2}^{1}\right)$, then we find by the finite bound on the overlap of the supports that

$$
b_{T}^{w}\left\langle D_{x}\right\rangle^{-1} b_{T}^{w}=\sum_{|j-k| \leq N} B_{j, T}^{w}\left\langle D_{x}\right\rangle^{-1} B_{k, T}^{w} \quad \text { modulo } \Psi^{0}\left(\mathbf{R}^{n}\right)
$$

for some N, thus

$$
\left\|b_{T}^{w} u\right\|_{-1 / 2}^{2}=\left\|\left\langle D_{x}\right\rangle^{-1 / 2} b_{T}^{w} u\right\|^{2} \leq C_{N}\left(\sum_{j}\left\|B_{j, T}^{w} u\right\|_{-1 / 2}^{2}+\|u\|^{2}\right)
$$

We also have $\left\langle D_{x}\right\rangle^{-1 / 2} h_{j}^{-1 / 2} \psi_{j}^{w} \phi_{j}^{w} \in \Psi^{0}\left(\mathbf{R}^{n}\right)$ uniformly which gives

$$
\left\|B_{j, T}^{w} u\right\|_{-1 / 2} \leq C\left\|b_{j, T}^{w} \psi_{j}^{w} \phi_{j}^{w} u\right\| .
$$

Thus, by summing up we obtain

$$
\begin{equation*}
\left\|b_{T}^{w} u\right\|_{-1 / 2}^{2}+\|u\|^{2} \leq C_{1}\left(T\left(\underset{\mathrm{I}-7}{\operatorname{Im}}\left(P_{0} u, b_{T}^{w} u\right)+\|u\|^{2}\right)+\|u\|_{-1}^{2}\right) \tag{2.13}
\end{equation*}
$$

for $u \in \mathcal{S}$ having support where $|t| \leq T$. The homogeneous gradient $\nabla b_{T} \in S_{1 / 2,1 / 2}^{1}$ since $b_{T}=\sum_{j} h_{j}^{-1 / 2} b_{j, T} \phi_{j}^{2} \in S_{1 / 2,1 / 2}^{1}$ modulo $S_{1 / 2,1 / 2}^{0}$, where $\phi_{j} \in S\left(1, h_{j} g^{\sharp}\right)$ is supported where $\langle\xi\rangle \simeq h_{j}^{-1}$ and $b_{j, T} \in S^{+}\left(1, g^{\sharp}\right)$ for almost all t. For small enough T we obtain (2.10) and the corollary.

Proof that Corollary 2.7 gives Theorem 1.1. We shall prove that there exists ϕ and $\psi \in$ $S_{1,0}^{0}\left(T^{*} M\right)$ such that $\phi=1$ in a conical neighborhood of $\left(x_{0}, \xi_{0}\right), \psi=1$ on supp ϕ, and for any $T>0$ there exists $R_{T} \in S_{1,0}^{1}(M)$ with the property that $\mathrm{WF} R_{T}^{w} \bigcap T_{x_{0}}^{*} M=\emptyset$ and

$$
\begin{equation*}
\left\|\phi^{w} u\right\| \leq C_{1}\left(\left\|\psi^{w} P^{*} u\right\|_{(3 / 2-m)}+T\|u\|\right)+\left\|R_{T}^{w} u\right\|+C_{0}\|u\|_{(-1)} \quad u \in C_{0}^{\infty}(M) \tag{2.14}
\end{equation*}
$$

Here $\|u\|_{(s)}$ is the Sobolev norm and the constants are independent of T. Then for small enough T we obtain (1.4) and microlocal solvability, since $\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}(1-\phi)^{w}$. In the case that P satisfies condition (Ψ) and $\partial_{\xi} p \neq 0$ near x_{0} we may choose finitely many $\phi_{j} \in S_{1,0}^{0}(M)$ such that $\sum \phi_{j} \geq 1$ near x_{0} and $\left\|\phi_{j}^{w} u\right\|$ can be estimated by the right hand side of (2.14) for some suitable ψ and R_{T}. By elliptic regularity, we then obtain the estimate (1.4) for small enough T.

By multiplying with an elliptic pseudodifferential operator, we may assume that $m=1$. Let $p=\sigma(P)$, then it is clear that it suffices to consider $w_{0}=\left(x_{0}, \xi_{0}\right) \in p^{-1}(0)$, otherwise $P^{*} \in \Psi_{c l}^{1}(M)$ is elliptic near w_{0} and we easily obtain the estimate (2.14). It is clear that we may assume that $\partial_{\xi} \operatorname{Re} p\left(w_{0}\right) \neq 0$, in the microlocal case after a conical transformation. Then, we may use Darboux' theorem and the Malgrange preparation theorem to obtain microlocal coordinates $(t, y ; \tau, \eta) \in T^{*} \mathbf{R}^{n+1}$ so that $w_{0}=\left(0,0 ; 0, \eta_{0}\right), t=0$ on $T_{x_{0}}^{*} M$ and $p=q(\tau-i f)$ in a conical neighborhood of w_{0}, where $f \in C^{\infty}\left(\mathbf{R}, S_{1,0}^{1}\right)$ is real and homogeneous satisfying condition (2.2), and $0 \neq q \in S_{1,0}^{0}$, see Theorem 21.3.6 in [11]. By conjugation with elliptic Fourier integral operators and using the Malgrange preparation theorem successively on lower order terms, we obtain that

$$
\begin{equation*}
P^{*}=Q^{w}\left(D_{t}+i(\chi F)^{w}\right)+R^{w} \tag{2.15}
\end{equation*}
$$

microlocally in a conical neighborhood Γ of w_{0} (see the proof of Theorem 26.4.7 in [11]). Here $Q \in S_{1,0}^{0}\left(\mathbf{R}^{n+1}\right)$ and $R \in S_{1,0}^{1}\left(\mathbf{R}^{n+1}\right)$, such that Q^{w} has principal symbol $q \neq 0$ in Γ and $\Gamma \bigcap$ WF $R^{w}=\emptyset$. Moreover, $\chi(\tau, \eta) \in S_{1,0}^{0}\left(\mathbf{R}^{n+1}\right)$ is equal to 1 in $\Gamma,|\tau| \leq C|\eta|$ in $\operatorname{supp} \chi(\tau, \eta)$, and $F^{w} \in C^{\infty}\left(\mathbf{R}, \Psi_{1,0}^{1}\left(\mathbf{R}^{n}\right)\right)$ has real principal symbol f satisfying (2.2). By cutting off in the t variable we may assume that $f \in L^{\infty}\left(\mathbf{R}, S_{1,0}^{1}\left(\mathbf{R}^{n}\right)\right)$. We shall choose ϕ and ψ so that $\operatorname{supp} \phi \subset \operatorname{supp} \psi \subset \Gamma$ and

$$
\phi(t, y ; \tau, \eta)=\chi_{0}(t, \tau, \eta) \phi_{0}(y, \eta)
$$

where $\chi_{0}(t, \tau, \eta) \in S_{1,0}^{0}\left(\mathbf{R}^{n+1}\right), \phi_{0}(y, \eta) \in S_{1,0}^{0}\left(\mathbf{R}^{n}\right), t \neq 0$ in $\operatorname{supp} \partial_{t} \chi_{0},|\tau| \leq C|\eta|$ in $\operatorname{supp} \chi_{0}$ and $|\tau| \cong|\eta|$ in $\operatorname{supp} \partial_{\tau, \eta} \chi_{0}$.

Since $q \neq 0$ and $R=0$ on $\operatorname{supp} \psi$ it is no restriction to assume that $Q \equiv 1$ and $R \equiv 0$ when proving the estimate (2.14). Now, by Theorem 18.1.35 in [11] we may compose $C^{\infty}\left(\mathbf{R}, \Psi_{1,0}^{m}\left(\mathbf{R}^{n}\right)\right)$ with operators in $\Psi_{1,0}^{k}\left(\mathbf{R}^{n+1}\right)$ having symbols vanishing when $|\tau| \geq c(1+|\eta|)$, and we obtain the usual asymptotic expansion in $\Psi_{1,0}^{m+k-j}\left(\mathbf{R}^{n+1}\right)$ for $j \geq 0$. Since $|\tau| \leq C|\eta|$ in $\operatorname{supp} \phi$ and $\chi=1$ on $\operatorname{supp} \psi$, it suffices to prove (2.14) for $P^{*}=P_{0}=D_{t}+i F^{w}$.

By using Corollary 2.7 on $\phi^{w} u$, we obtain that

$$
\begin{align*}
\left\|b_{T}^{w} \phi^{w} u\right\|_{-1 / 2}^{2}+ & \left\|\phi^{w} u\right\|^{2} \tag{2.16}\\
& \leq C_{0} T\left(\operatorname{Im}\left(\phi^{w} P_{0} u, b_{T}^{w} \phi^{w} u\right)+\operatorname{Im}\left(\left[P_{0}, \phi^{w}\right] u, b_{T}^{w} \phi^{w} u\right)\right)+C_{1}\|u\|_{(-1)}^{2}
\end{align*}
$$

where $b_{T}^{w} \in L^{\infty}\left(\mathbf{R}, \Psi_{1 / 2,1 / 2}^{1}\left(\mathbf{R}^{n}\right)\right)$ is symmetric with $\nabla b_{T} \in L^{\infty}\left(\mathbf{R}, S_{1 / 2,1 / 2}^{1}\left(\mathbf{R}^{n}\right)\right)$. We find $\left[P_{0}, \phi^{w}\right]=-i \partial_{t} \phi^{w}+\{f, \phi\}^{w} \in \Psi_{1,0}^{0}\left(\mathbf{R}^{n+1}\right)$ modulo $\Psi_{1,0}^{-1}\left(\mathbf{R}^{n+1}\right)$ by the expansion. For any $u, v \in \mathcal{S}\left(\mathbf{R}^{n}\right)$ we have that

$$
\begin{equation*}
\left|\left(v, b_{T}^{w} u\right)\right|=\left|\left(\left\langle D_{y}\right\rangle^{1 / 2} v,\left\langle D_{y}\right\rangle^{-1 / 2} b_{T}^{w} u\right)\right| \leq C\left(\|v\|_{(1 / 2)}^{2}+\left\|b_{T}^{w} u\right\|_{-1 / 2}^{2}\right) \tag{2.17}
\end{equation*}
$$

since $\left\|\left\langle D_{y}\right\rangle^{1 / 2} v\right\| \leq\|v\|_{(1 / 2)},\left\langle D_{y}\right\rangle=1+\left|D_{y}\right|$. Now $\phi^{w}=\phi^{w} \psi^{w}$ modulo $\Psi_{1,0}^{-2}\left(\mathbf{R}^{n+1}\right)$, thus we find from (2.17) that

$$
\begin{equation*}
\left|\left(\phi^{w} P_{0} u, b_{T}^{w} \phi^{w} u\right)\right| \leq C\left(\left\|\psi^{w} P_{0} u\right\|_{(1 / 2)}^{2}+\left\|b_{T}^{w} \phi^{w} u\right\|_{-1 / 2}^{2}\right) \tag{2.18}
\end{equation*}
$$

where the last term can be cancelled for small enough T in (2.16). We also have to estimate the commutator term $\operatorname{Im}\left(\left[P_{0}, \phi^{w}\right] u, b_{T}^{w} \phi^{w} u\right)$ in (2.16). Since $\phi=\chi_{0} \phi_{0}$ we find that $\{f, \phi\}=\phi_{0}\left\{f, \chi_{0}\right\}+\chi_{0}\left\{f, \phi_{0}\right\}$, where $\phi_{0}\left\{f, \chi_{0}\right\}=R_{0} \in S_{1,0}^{0}\left(\mathbf{R}^{n+1}\right)$ is supported when $|\tau| \cong|\eta|$ and $\psi=1$. Now $(\tau+i f)^{-1} \in S_{1,0}^{-1}\left(\mathbf{R}^{n+1}\right)$ when $|\tau| \cong|\eta|$, thus by [11, Theorem 18.1.35] we find that $R_{0}^{w}=A_{1}^{w} \psi^{w} P_{0}$ modulo $\Psi_{1,0}^{-1}\left(\mathbf{R}^{n+1}\right)$ where $A_{1}=R_{0}(\tau+$ $i f)^{-1} \in S_{1,0}^{-1}\left(\mathbf{R}^{n+1}\right)$. As before, we find from (2.17) that

$$
\begin{align*}
&\left|\left(R_{0}^{w} u, b_{T}^{w} \phi^{w} u\right)\right| \leq C\left(\left\|R_{0}^{w} u\right\|_{(1 / 2)}^{2}+\left\|b_{T}^{w} \phi^{w} u\right\|_{-1 / 2}^{2}\right) \tag{2.19}\\
& \leq C_{0}\left(\left\|\psi^{w} P_{0} u\right\|_{(-1 / 2)}^{2}+\left\|b_{T}^{w} \phi^{w} u\right\|_{-1 / 2}^{2}\right)
\end{align*}
$$

and $\left|\left(\partial_{t} \phi^{w} u, b_{T}^{w} \phi^{w} u\right)\right| \leq\left\|R_{1}^{w} u\right\|^{2}+\left\|b_{T}^{w} \phi^{w} u\right\|_{-1 / 2}^{2}$ by (2.17), where $R_{1}^{w}=\left\langle D_{y}\right\rangle^{1 / 2} \partial_{t} \phi^{w} \in$ $\Psi_{1,0}^{1 / 2}\left(\mathbf{R}^{n+1}\right)$, thus $t \neq 0$ in WF R_{1}^{w}.

It remains to estimate the term $\operatorname{Im}\left(\left(\left\{f, \phi_{0}\right\} \chi_{0}\right)^{w} u, b_{T}^{w} \phi^{w} u\right)$, where $\left(\left\{f, \phi_{0}\right\} \chi_{0}\right)^{w}=$ $\left\{f, \phi_{0}\right\}^{w} \chi_{0}^{w}$ and $\phi^{w}=\phi_{0}^{w} \chi_{0}^{w}$ modulo $\Psi_{1,0}^{-1}\left(\mathbf{R}^{n+1}\right)$. As in (2.17) we find

$$
\left|\left(R^{w} u, b_{T}^{w} v\right)\right|=\left|\left(\left\langle D_{y}\right\rangle R^{w} u,\left\langle D_{y}\right\rangle^{-1} b_{T}^{w} v\right)\right| \leq C\left(\|u\|^{2}+\|v\|^{2}\right)
$$

for $R \in S_{1,0}^{-1}\left(\mathbf{R}^{n+1}\right)$, thus we find

$$
\left|\operatorname{Im}\left(\left(\left\{f, \phi_{0}\right\} \chi_{0}\right)^{w} u, b_{T}^{w} \phi^{w} u\right)\right| \leq \underset{\mathrm{I}-9}{\operatorname{Im}\left(\left\{f, \phi_{0}\right\}^{w} \chi_{0}^{w} u, b_{T}^{w} \phi_{0}^{w} \chi_{0}^{w} u\right) \mid+C\|u\|^{2} .}
$$

The calculus gives $b_{T}^{w} \phi_{0}^{w}=\left(b_{T} \phi_{0}\right)^{w}$ and $2 i \operatorname{Im}\left(\left(b_{T} \phi_{0}\right)^{w}\left\{f, \phi_{0}\right\}^{w}\right)=\left\{b_{T} \phi_{0},\left\{f, \phi_{0}\right\}\right\}^{w}=0$ modulo $L^{\infty}\left(\mathbf{R}, \Psi_{1 / 2,1 / 2}^{0}\left(\mathbf{R}^{n}\right)\right)$ since $\nabla\left(b_{T} \phi_{0}\right) \in L^{\infty}\left(\mathbf{R}, S_{1 / 2,1 / 2}^{1}\left(\mathbf{R}^{n}\right)\right)$. We obtain

$$
\begin{equation*}
\left|\operatorname{Im}\left(\left\{f, \phi_{0}\right\}^{w} \chi_{0}^{w} u, b_{T}^{w} \phi_{0}^{w} \chi_{0}^{w} u\right)\right| \leq C\left\|\chi_{0}^{w} u\right\|^{2} \leq C^{\prime}\|u\|^{2} \tag{2.20}
\end{equation*}
$$

and the estimate (2.14) for small enough T, which completes the proof of Theorem 1.1.
It remains to prove Proposition 2.5, which will be done at the end of Section 6. The proof involves the construction of a multiplier b_{T}^{w}, and it will occupy most of the remaining part of the paper.

In the following, we let $\|u\|(t)$ be the L^{2} norm of $x \mapsto u(t, x)$ in \mathbf{R}^{n} for fixed t, and $(u, v)(t)$ the corresponding sesquilinear inner product. Let $\mathcal{B}=\mathcal{B}\left(L^{2}\left(\mathbf{R}^{n}\right)\right)$ be the set of bounded operators $L^{2}\left(\mathbf{R}^{n}\right) \mapsto L^{2}\left(\mathbf{R}^{n}\right)$. We shall use operators which depend measurably on t.

Definition 2.8. We say that $t \mapsto A(t)$ is weakly measurable if $A(t) \in \mathcal{B}$ for all t and $t \mapsto A(t) u$ is weakly measurable for every $u \in L^{2}\left(\mathbf{R}^{n}\right)$, i.e., $t \mapsto(A(t) u, v)$ is measurable for any $u, v \in L^{2}\left(\mathbf{R}^{n}\right)$. We say that $A(t) \in L_{\text {loc }}^{\infty}(\mathbf{R}, \mathcal{B})$ if $t \mapsto A(t)$ is weakly measurable and locally bounded in \mathcal{B}.

If $A(t) \in L_{\text {loc }}^{\infty}(\mathbf{R}, \mathcal{B})$, then we find that the function $t \mapsto(A(t) u, v) \in L_{l o c}^{\infty}(\mathbf{R})$ has weak derivative $\frac{d}{d t}(A u, v) \in \mathcal{D}^{\prime}(\mathbf{R})$ for any $u, v \in \mathcal{S}\left(\mathbf{R}^{n}\right)$ given by

$$
\frac{d}{d t}(A u, v)(\phi)=-\int(A(t) u, v) \phi^{\prime}(t) d t \quad \phi(t) \in C_{0}^{\infty}(\mathbf{R})
$$

If $u(t), v(t) \in L_{l o c}^{\infty}\left(\mathbf{R}, L^{2}\left(\mathbf{R}^{n}\right)\right)$ and $A(t) \in L_{l o c}^{\infty}(\mathbf{R}, \mathcal{B})$, then we find $t \mapsto(A(t) u(t), v(t)) \in$ $L_{l o c}^{\infty}(\mathbf{R})$ is measurable. We shall use the following multiplier estimate, which is given by Proposition 2.9 in [8] (see also [15] and [17] for similar estimates).

Proposition 2.9. Let $P_{0}=D_{t}+i F(t)$ with $F(t) \in L_{\text {loc }}^{\infty}(\mathbf{R}, \mathcal{B})$. Assume that $B(t)=$ $B^{*}(t) \in L_{\text {loc }}^{\infty}(\mathbf{R}, \mathcal{B})$, such that

$$
\begin{equation*}
\frac{d}{d t}(B u, u)+2 \operatorname{Re}(B u, F u) \geq(m u, u) \quad \text { in } \mathcal{D}^{\prime}(I) \quad \forall u \in \mathcal{S}\left(\mathbf{R}^{n}\right) \tag{2.21}
\end{equation*}
$$

where $m(t)=m^{*}(t) \in L_{\text {loc }}^{\infty}(\mathbf{R}, \mathcal{B})$ and $I \subseteq \mathbf{R}$ is open. Then we have

$$
\begin{equation*}
\int(m u, u) d t \leq 2 \int \operatorname{Im}(P u, B u) d t \tag{2.22}
\end{equation*}
$$

for $u \in C_{0}^{1}\left(I, \mathcal{S}\left(\mathbf{R}^{n}\right)\right)$.

3. The symbol classes

In this section we shall define the symbol classes we shall use. Assume that $f \in$ $L^{\infty}\left(\mathbf{R}, S\left(h^{-1}, h g^{\sharp}\right)\right)$ satisfies (2.2), here $0<h \leq 1$ and $g^{\sharp}=\left(g^{\sharp}\right)^{\sigma}$ are constant. By changing h we obtain that $\left|\partial_{w} f\right| \leq h^{-1 / 2}$ which we assume in what follows. The results are I-10
uniform in the usual sense, they only depend on the seminorms of f in $L^{\infty}\left(\mathbf{R}, S\left(h^{-1}, h g^{\sharp}\right)\right)$. Let

$$
\begin{align*}
& X_{+}(t)=\left\{w \in T^{*} \mathbf{R}^{n}: \exists s \leq t, f(s, w)>0\right\} \tag{3.1}\\
& X_{-}(t)=\left\{w \in T^{*} \mathbf{R}^{n}: \exists s \geq t, f(s, w)<0\right\} \tag{3.2}
\end{align*}
$$

Clearly, $X_{ \pm}(t)$ are open in $T^{*} \mathbf{R}^{n}, X_{+}(s) \subseteq X_{+}(t)$ and $X_{-}(s) \supseteq X_{-}(t)$ when $s \leq t$. By condition $(\bar{\Psi})$ we obtain that $X_{-}(t) \bigcap X_{+}(t)=\emptyset$ and $\pm f(t, w) \geq 0$ when $w \in X_{ \pm}(t), \forall t$. Let $X_{0}(t)=T^{*} \mathbf{R}^{n} \backslash\left(X_{+}(t) \bigcup X_{-}(t)\right)$ which is closed in $T^{*} \mathbf{R}^{n}$. By the definition of $X_{ \pm}(t)$ we have $f(t, w)=0$ when $w \in X_{0}(t)$. Let

$$
\begin{equation*}
d_{0}\left(t_{0}, w_{0}\right)=\inf \left\{g^{\sharp}\left(w_{0}-z\right)^{1 / 2}: z \in X_{0}\left(t_{0}\right)\right\} \tag{3.3}
\end{equation*}
$$

be is the g^{\sharp} distance in $T^{*} \mathbf{R}^{n}$ to $X_{0}\left(t_{0}\right)$ for fixed t_{0}, it is equal to $+\infty$ in the case that $X_{0}\left(t_{0}\right)=\emptyset$.

Definition 3.1. We define the signed distance function $\delta_{0}(t, w)$ by

$$
\begin{equation*}
\delta_{0}=\operatorname{sgn}(f) \min \left(d_{0}, h^{-1 / 2}\right), \tag{3.4}
\end{equation*}
$$

where d_{0} is given by (3.3) and

$$
\operatorname{sgn}(f)(t, w)=\left\{\begin{align*}
\pm 1, & w \in X_{ \pm}(t) \tag{3.5}\\
0, & w \in X_{0}(t)
\end{align*}\right.
$$

so that $\operatorname{sgn}(f) f \geq 0$.
Definition 3.2. We say that $w \mapsto a(w)$ is Lipschitz continuous on $T^{*} \mathbf{R}^{n}$ with respect to the metric g^{\sharp} if $|a(w)-a(z)| \leq C g^{\sharp}(w-z)^{1 / 2}$ for any z, w.

It is clear that the signed distance function $w \mapsto \delta_{0}(t, w)$ given by Definition 3.1 is Lipschitz continuous with respect to the metric $g^{\sharp}, \forall t$, with Lipschitz constant equal to 1 , see Proposition 3.3 in [8]. We also find that $t \mapsto \delta_{0}(t, w)$ is non-decreasing, $0 \leq \delta_{0} f$, $\left|\delta_{0}\right| \leq h^{-1 / 2}$ and $\left|\delta_{0}\right|=d_{0}$ when $\left|\delta_{0}\right|<h^{-1 / 2}$.

In the following, we shall treat t as a parameter which we shall suppress, and we shall denote $f^{\prime}=\partial_{w} f$ and $f^{\prime \prime}=\partial_{w}^{2} f$. We shall also in the following assume that we have choosen g^{\sharp} orthonormal coordinates so that $g^{\sharp}(w)=|w|^{2}$.

Definition 3.3. Let $G_{1}=H_{1} g^{\sharp}$ where

$$
\begin{equation*}
H_{1}^{-1 / 2}=1+\left|\delta_{0}\right|+\frac{\left|f^{\prime}\right|}{\left|f^{\prime \prime}\right|+h^{1 / 4}\left|f^{\prime}\right|^{1 / 2}+h^{1 / 2}} \tag{3.6}
\end{equation*}
$$

We have that

$$
\begin{equation*}
1 \leq H_{1}^{-1 / 2} \leq 1+\left|\delta_{0}\right|_{\mathrm{I}-11}+h^{-1 / 4}\left|f^{\prime}\right|^{1 / 2} \leq 3 h^{-1 / 2} \tag{3.7}
\end{equation*}
$$

since $\left|f^{\prime}\right| \leq h^{-1 / 2}$ and $\left|\delta_{0}\right| \leq h^{-1 / 2}$. Moreover, $\left|f^{\prime}\right| \leq H_{1}^{-1 / 2}\left(\left|f^{\prime \prime}\right|+h^{1 / 4}\left|f^{\prime}\right|^{1 / 2}+h^{1 / 2}\right)$ so by the Cauchy-Schwarz inequality we obtain

$$
\begin{equation*}
\left|f^{\prime}\right| \leq 2\left|f^{\prime \prime}\right| H_{1}^{-1 / 2}+3 h^{1 / 2} H_{1}^{-1} \leq C_{2} H_{1}^{-1 / 2} \tag{3.8}
\end{equation*}
$$

Definition 3.4. Let

$$
\begin{equation*}
M=|f|+\left|f^{\prime}\right| H_{1}^{-1 / 2}+\left|f^{\prime \prime}\right| H_{1}^{-1}+h^{1 / 2} H_{1}^{-3 / 2} \tag{3.9}
\end{equation*}
$$

then we have that $h^{1 / 2} \leq M \leq C_{3} h^{-1}$.
Proposition 3.5. We find that $H_{1}^{-1 / 2}$ is Lipschitz continuous, G_{1} is σ temperate such that $G_{1}=H_{1}^{2} G_{1}^{\sigma}$ and

$$
\begin{equation*}
H_{1}(w) \leq C_{0} H_{1}\left(w_{0}\right)\left(1+H_{1}(w) g^{\sharp}\left(w-w_{0}\right)\right) . \tag{3.10}
\end{equation*}
$$

We have that M is a weight for G_{1} such that $f \in S\left(M, G_{1}\right)$ and

$$
\begin{equation*}
M(w) \leq C_{1} M\left(w_{0}\right)\left(1+H_{1}\left(w_{0}\right) g^{\sharp}\left(w-w_{0}\right)\right)^{3 / 2} . \tag{3.11}
\end{equation*}
$$

In the case when $1+\left|\delta_{0}\left(w_{0}\right)\right| \leq H_{1}^{-1 / 2}\left(w_{0}\right) / 2$ we have $\left|f^{\prime}\left(w_{0}\right)\right| \geq h^{1 / 2}$,

$$
\begin{equation*}
\left|f^{(k)}\left(w_{0}\right)\right| \leq C_{k}\left|f^{\prime}\left(w_{0}\right)\right| H_{1}^{\frac{k-1}{2}}\left(w_{0}\right) \quad k \geq 1, \tag{3.12}
\end{equation*}
$$

and $1 / C \leq\left|f^{\prime}(w)\right| / \mid f^{\prime}\left(w_{0} \mid \leq C\right.$ when $\left|w-w_{0}\right| \leq c H_{1}^{-1 / 2}\left(w_{0}\right)$ for some $c>0$.
Proof. The Proposition follows from [8, Proposition 3.7] except for the Lipschitz continuity of $H_{1}^{-1 / 2}$. Since the first terms of (3.6) are Lipschitz continuous, we only have to prove that

$$
\left|f^{\prime}\right| /\left(\left|f^{\prime \prime}\right|+h^{1 / 4}\left|f^{\prime}\right|^{1 / 2}+h^{1 / 2}\right)=E / D
$$

is Lipschitz. Since this is a local property, it suffices to prove this when $|\Delta w|=\left|w-w_{0}\right| \leq$ 1. Then we have that $D(w) \cong D\left(w_{0}\right)$, in fact $D^{2} \cong h+h^{1 / 2}\left|f^{\prime}\right|+\left|f^{\prime \prime}\right|^{2}$ so

$$
D^{2}(w) \leq C\left(D^{2}\left(w_{0}\right)+\left|f^{\prime \prime}\left(w_{0}\right)\right| h^{1 / 2}+h\right) \leq C^{\prime} D^{2}\left(w_{0}\right)
$$

when $|\Delta w| \leq 1$. We find that

$$
\left|\Delta \frac{E}{D}\right|=\left|\frac{E(w)}{D(w)}-\frac{E\left(w_{0}\right)}{D\left(w_{0}\right)}\right| \leq \frac{|\Delta E|}{D(w)}+\frac{E\left(w_{0}\right)|\Delta D|}{D(w) D\left(w_{0}\right)} .
$$

Taylor's formula gives that

$$
\begin{equation*}
|\Delta E| \leq\left(\left|f^{\prime \prime}(w)\right|+C h^{1 / 2}\right)|\Delta w| \leq C D(w) \tag{3.13}
\end{equation*}
$$

when $|\Delta w| \leq 1$. We shall show that $E\left(w_{0}\right)|\Delta D| \leq C D(w) D\left(w_{0}\right)|\Delta w|$, which is trivial if $E\left(w_{0}\right)=0$. Else, we have

$$
|\Delta| f^{\prime \prime}| | \leq C h^{1 / 2}|\Delta w| \leq C D^{2}\left(w_{0}\right)\left|\Delta \underset{\mathrm{I}-12}{ } \underset{\sim}{\mid c}\left(w_{0}\right) \leq C^{\prime} D\left(w_{0}\right) D(w)\right||\Delta w| / E\left(w_{0}\right)
$$

when $|\Delta w| \leq 1$ since $h^{1 / 2} \leq D^{2} / E$ and $D\left(w_{0}\right) \leq C D(w)$. Finally, we have

$$
\begin{aligned}
& \left.h^{1 / 4}|\Delta| f^{\prime}\right|^{1 / 2}\left|\leq h^{1 / 4}\right| \Delta E \mid /\left(\left|f^{\prime}\left(w_{0}\right)\right|^{1 / 2}+\left|f^{\prime}(w)\right|^{1 / 2}\right) \\
& \quad \leq C h^{1 / 4}\left|f^{\prime}\left(w_{0}\right)\right|^{1 / 2} D(w)|\Delta w| /\left|f^{\prime}\left(w_{0}\right)\right| \leq C D\left(w_{0}\right) D(w)|\Delta w| / E\left(w_{0}\right)
\end{aligned}
$$

when $|\Delta w| \leq 1$ by (3.13). This completes the proof of Proposition 3.5.
We obtain the following result from Propositions 3.9 and. 10 in [8].
Proposition 3.6. We have that $M \leq C H_{1}^{-1}$, which gives that $f \in S\left(H_{1}^{-1}, G_{1}\right)$. We also obtain that

$$
\begin{equation*}
1 / C \leq M /\left(\left|f^{\prime \prime}\right| H_{1}^{-1}+h^{1 / 2} H_{1}^{-3 / 2}\right) \leq C . \tag{3.14}
\end{equation*}
$$

When $\left|\delta_{0}\right| \leq \kappa_{0} H_{1}^{-1 / 2}$ and $H_{1}^{1 / 2} \leq \kappa_{0}$ for $0<\kappa_{0}$ sufficiently small, we find

$$
\begin{equation*}
1 / C_{1} \leq M /\left|f^{\prime}\right| H_{1}^{-1 / 2} \leq C_{1} . \tag{3.15}
\end{equation*}
$$

There exists $\kappa_{1}>0$ so that if $\left\langle\delta_{0}\right\rangle=1+\left|\delta_{0}\right| \leq \kappa_{1} H_{1}^{-1 / 2}$ then

$$
\begin{equation*}
f=\alpha_{0} \delta_{0} \tag{3.16}
\end{equation*}
$$

where $\kappa_{1} M H^{1 / 2} \leq \alpha_{0} \in S\left(M H_{1}^{1 / 2}, G_{1}\right)$, which implies that $\delta_{0}=f / \alpha_{0} \in S\left(H_{1}^{-1 / 2}, G_{1}\right)$.

4. The Weight function

In this section, we shall define the weight m_{1} we shall use. Let $\delta_{0}(t, w)$ and $H_{1}^{-1 / 2}(t, w)$ be given by Definitions 3.1 and 3.3 for $f \in L^{\infty}\left(\mathbf{R}, S\left(h^{-1}, h g^{\sharp}\right)\right.$) satisfying condition ($\bar{\Psi}$) given by (2.2) such that $\left|f^{\prime}\right| \leq h^{-1 / 2}$. The weight m_{1} will essentially measure how much $t \mapsto \delta_{0}(t, w)$ changes between the minima of $t \mapsto H_{1}^{1 / 2}(t, w)\left\langle\delta_{0}(t, w)\right\rangle^{2}$, which will give restrictions on the sign changes of the symbol. As before, we assume that we have choosen g^{\sharp} orthonormal coordinates so that $g^{\sharp}(w)=|w|^{2}$, and the results will only depend on the seminorms of f.

Definition 4.1. For $(t, w) \in \mathbf{R} \times T^{*} \mathbf{R}^{n}$ we let

$$
\begin{align*}
m_{1}(t, w)=\inf _{t_{1} \leq t \leq t_{2}}\{ & \left|\delta_{0}\left(t_{1}, w\right)-\delta_{0}\left(t_{2}, w\right)\right| \tag{4.1}\\
& \left.\quad+\max \left(H_{1}^{1 / 2}\left(t_{1}, w\right)\left\langle\delta_{0}\left(t_{1}, w\right)\right\rangle^{2}, H_{1}^{1 / 2}\left(t_{2}, w\right)\left\langle\delta_{0}\left(t_{2}, w\right)\right\rangle^{2}\right) / 2\right\}
\end{align*}
$$

where $\left\langle\delta_{0}\right\rangle=1+\left|\delta_{0}\right|$.
Remark 4.2. When $t \mapsto \delta_{0}(t, w)$ is constant for fixed w, we find that $t \mapsto m_{1}(t, w)$ is equal to the largest quasi-convex minorant of $t \mapsto H_{1}^{1 / 2}(t, w)\left\langle\delta_{0}(t, w)\right\rangle^{2} / 2$, i.e., $\sup _{I} m_{1}=$ $\sup _{\partial I} m_{1}$ for compact intervals $I \subset \mathbf{R}$, see [12, Definition 1.6.3].

The main difference between the present note and [8] is the use of $H_{1}^{1 / 2}\left\langle\delta_{0}\right\rangle^{2}$ in the definition of m_{1} instead of $H_{1}^{1 / 2}\left\langle\delta_{0}\right\rangle$.

Proposition 4.3. We have that $m_{1} \in L^{\infty}\left(\mathbf{R} \times T^{*} \mathbf{R}^{n}\right)$, such that $w \mapsto m_{1}(t, w)$ is uniformly Lipschitz continous, $\forall t$, and

$$
\begin{equation*}
h^{1 / 2}\left\langle\delta_{0}\right\rangle^{2} / 6 \leq m_{1} \leq H_{1}^{1 / 2}\left\langle\delta_{0}\right\rangle^{2} / 2 \leq\left\langle\delta_{0}\right\rangle / 2 \tag{4.2}
\end{equation*}
$$

We may choose $t_{1} \leq t_{0} \leq t_{2}$ so that

$$
\begin{equation*}
\max _{j=0,1,2}\left\langle\delta_{0}\left(t_{j}, w_{0}\right)\right\rangle \leq 2 \min _{j=0,1,2}\left\langle\delta_{0}\left(t_{j}, w_{0}\right)\right\rangle . \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{0}^{1 / 2}=\max \left(H_{1}^{1 / 2}\left(t_{1}, w_{0}\right), H_{1}^{1 / 2}\left(t_{2}, w_{0}\right)\right) \tag{4.4}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
H_{0}^{1 / 2}<16 m_{1}\left(t_{0}, w_{0}\right) /\left\langle\delta_{0}\left(t_{j}, w_{0}\right)\right\rangle^{2} \quad \text { for } j=0,1,2 . \tag{4.5}
\end{equation*}
$$

If $m_{1}\left(t_{0}, w_{0}\right) \leq \varrho\left\langle\delta_{0}\left(t_{0}, w_{0}\right)\right\rangle$ for $\varrho \ll 1$, then we may choose g^{\sharp} orthonormal coordinates so that $w_{0}=\left(x_{1}, 0\right),\left|x_{1}\right|<2\left\langle\delta_{0}\left(t_{0}, w_{0}\right)\right\rangle<32 \varrho H_{0}^{-1 / 2}$, and

$$
\begin{align*}
\operatorname{sgn}\left(w_{1}\right) f\left(t_{0}, w\right) & \geq 0 \quad \text { when }\left|w_{1}\right| \geq\left(m_{1}\left(t_{0}, w_{0}\right)+H_{0}^{1 / 2}\left|w^{\prime}\right|^{2}\right) / c_{0} \tag{4.6}\\
\mid \delta_{0}\left(t_{1}, w\right) & -\delta_{0}\left(t_{2}, w\right) \mid \leq\left(m_{1}\left(t_{0}, w_{0}\right)+H_{0}^{1 / 2}\left|w-w_{0}\right|^{2}\right) / c_{0} \tag{4.7}
\end{align*}
$$

when $|w| \leq c_{0} H_{0}^{-1 / 2}$. The constant c_{0} only depends on the seminorms of f.

Observe that condition (4.6) is not empty when $m_{1}\left(t_{0}, w_{0}\right) \leq \varrho\left\langle\delta_{0}\left(t_{0}, w_{0}\right)\right\rangle$, for ϱ sufficiently small, because of (4.5).

Proof. If we let

$$
F(s, t, w)=\left|\delta_{0}(s, w)-\delta_{0}(t, w)\right|+\max \left(H_{1}^{1 / 2}(s, w)\left\langle\delta_{0}(s, w)\right\rangle^{2}, H_{1}^{1 / 2}(t, w)\left\langle\delta_{0}(t, w)\right\rangle^{2}\right) / 2
$$

then we find that $w \mapsto F(s, t, w)$ is uniformly Lipschitz continuous. In fact, it suffices to show this when $|\Delta w|=\left|w-w_{0}\right| \ll 1$, and then $H_{1}^{-1 / 2}$ and $\left\langle\delta_{0}\right\rangle$ only vary with a fixed factor. The first term $\left|\delta_{0}(s, w)-\delta_{0}(t, w)\right|$ is obviously uniformly Lipschitz continuous. We have for fixed t that

$$
\left|\Delta\left(H_{1}^{1 / 2}\left\langle\delta_{0}\right\rangle^{2}\right)\right| \leq C\left(\left\langle\delta_{0}\right\rangle^{2}\left|\Delta H_{1}^{1 / 2}\right|+H_{1}^{1 / 2}\left\langle\delta_{0}\right\rangle\left|\Delta \delta_{0}\right|\right)
$$

where $H_{1}^{1 / 2}\left\langle\delta_{0}\right\rangle \leq 1$ and $\left|\Delta H_{1}^{1 / 2}\right| \leq C H_{1}\left|\Delta H_{1}^{-1 / 2}\right| \leq C^{\prime} H_{1}|\Delta w|$ by Proposition 3.5, which gives the uniform Lipschitz continuity of $F(s, t, w)$. By taking the infimum, we obtain (4.2) and the uniform Lipschitz continuity of m_{1}. In fact, $h^{1 / 2} / 3 \leq H_{1}^{1 / 2}$ by (3.7) and since $t \mapsto \delta_{0}(t, w)$ is monotone, we find that $t \mapsto\left\langle\delta_{0}(t, w)\right\rangle$ is quasi-convex. Thus $h^{1 / 2}\left\langle\delta_{0}\left(t_{0}, w_{0}\right)\right\rangle / 6 \leq F\left(s, t, w_{0}\right)$ when $s \leq \underset{\mathrm{I}-14}{t_{0}} \leq t$.

By approximating the infimum, we may choose $t_{1} \leq t_{0} \leq t_{2}$ so that $F\left(t_{1}, t_{2}, w_{0}\right)<$ $m_{1}\left(t_{0}, w_{0}\right)+h^{1 / 2} / 6$. Since $h^{1 / 2} / 6 \leq m_{1} \leq H_{1}^{1 / 2}\left\langle\delta_{0}\right\rangle^{2} / 2$ by (4.2), we find that

$$
\begin{align*}
& \left|\delta_{0}\left(t_{1}, w_{0}\right)-\delta_{0}\left(t_{2}, w_{0}\right)\right|<m_{1}\left(t_{0}, w_{0}\right) \leq\left\langle\delta_{0}\left(t_{0}, w_{0}\right)\right\rangle / 2 \quad \text { and } \tag{4.8}\\
& H_{1}^{1 / 2}\left(t_{j}, w_{0}\right)\left\langle\delta_{0}\left(t_{j}, w_{0}\right)\right\rangle^{2} / 2<2 m_{1}\left(t_{0}, w_{0}\right) \quad \text { for } j=1 \text { and } 2 . \tag{4.9}
\end{align*}
$$

Since $t \mapsto \delta_{0}\left(t, w_{0}\right)$ is monotone, we obtain (4.3) from (4.8), and (4.5) from (4.9) and (4.3).
Next assume that $m_{1}\left(t_{0}, w_{0}\right) \leq \varrho\left\langle\delta_{0}\left(t_{0}, w_{0}\right)\right\rangle$ for some $0<\varrho \leq 1$. Then we find from (4.5) that

$$
\begin{equation*}
1+\left|\delta_{0}\left(t_{j}, w_{0}\right)\right|<16 \varrho H_{0}^{-1 / 2} \quad \text { for } j=0,1,2 \tag{4.10}
\end{equation*}
$$

Choose g^{\sharp} orthonormal coordinates so that $w_{0}=0$. Since $\left\langle\delta_{0}\left(t_{j}, 0\right)\right\rangle<16 \varrho H_{1}^{-1 / 2}\left(t_{j}, 0\right)$ by (4.10), we find from Proposition 3.5 that

$$
h^{1 / 2} \leq\left|\partial_{w} f\left(t_{j}, 0\right)\right| \cong\left|\partial_{w} f\left(t_{j}, w\right)\right| \quad \text { for }|w| \leq c H_{0}^{-1 / 2} \leq c H_{1}^{-1 / 2}\left(t_{j}, 0\right), j=1,2
$$

when $\varrho \ll 1$. Since $H_{0}^{-1 / 2} \leq 3 h^{-1 / 2}$ we find that $f\left(t_{j}, \widetilde{w}_{j}\right)=0$ for some $\left|\widetilde{w}_{j}\right|<16 \varrho H_{0}^{-1 / 2}$ by (4.10) when $\varrho<1 / 48$ and $j=1,2$. Thus, when $16 \varrho \leq c$ we obtain that

$$
\left|f\left(t_{j}, w\right)\right| \leq C\left|\partial_{w} f\left(t_{j}, 0\right)\right| H_{0}^{-1 / 2} \quad \text { when }|w|<c H_{0}^{-1 / 2}
$$

and then (3.12) gives $f\left(t_{j}, w\right) \in S\left(\left|\partial_{w} f\left(t_{j}, 0\right)\right| H_{0}^{-1 / 2}, H_{0} g^{\sharp}\right)$ since $H_{1}^{1 / 2}\left(t_{j}, 0\right) \leq H_{0}^{1 / 2}, j=$ 1, 2. Choose coordinates $z=H_{0}^{1 / 2} w$, we shall use Proposition 4.3 in [8] with

$$
f_{j}(z)=H_{0}^{1 / 2} f\left(t_{j}, H_{0}^{-1 / 2} z\right) /\left|\partial_{w} f\left(t_{j}, 0\right)\right| \in C^{\infty} \quad \text { for } j=1,2
$$

Let $\delta_{j}(z)=H_{0}^{1 / 2} \delta_{0}\left(t_{j}, H_{0}^{-1 / 2} z\right)$ be the signed distance functions to $f_{j}^{-1}(0)$, then $\left|f_{j}^{\prime}(0)\right|=$ $1,\left|\delta_{j}(0)\right|<16 \varrho$ and

$$
\left|\delta_{1}(0)-\delta_{2}(0)\right|=\varepsilon<H_{0}^{1 / 2} m_{1}\left(t_{0}, 0\right) \leq H_{0}^{1 / 2}\left\langle\delta_{0}\left(t_{0}, 0\right)\right\rangle / 2<8 \varrho
$$

by (4.8) and (4.10). Thus, for sufficiently small ϱ we may use [8, Proposition 4.3] to obtain g^{\sharp} orthogonal coordinates $\left(z_{1}, z^{\prime}\right)$ so that $w_{0}=z_{0}=\left(y_{1}, 0\right),\left|y_{1}\right|=\left|\delta_{1}(0)\right|$ and

$$
\left\{\begin{array}{l}
\operatorname{sgn}\left(z_{1}\right) f_{j}(z) \geq 0 \quad \text { when }\left|z_{1}\right| \geq\left(\varepsilon+\left|z^{\prime}\right|^{2}\right) / c_{0} \\
\left|\delta_{1}(z)-\delta_{2}(z)\right| \leq\left(\varepsilon+\left|z-z_{0}\right|^{2}\right) / c_{0}
\end{array}\right.
$$

when $|z| \leq c_{0}$. Let $x_{1}=H_{0}^{-1 / 2} y_{1}$ then $\left|x_{1}\right|<2\left\langle\delta_{0}\left(t_{0}, 0\right)\right\rangle<32 \varrho H_{0}^{-1 / 2}$ by (4.3) and (4.10). We then obtain (4.6)-(4.7) by condition $(\bar{\Psi})$, since $H_{0}^{-1 / 2} \varepsilon<m_{1}\left(t_{0}, 0\right)$.

Proposition 4.4. There exists $C>0$ such that

$$
\begin{equation*}
m_{1}\left(t_{0}, w\right) \leq C m_{1}\left(t_{0}, w_{0}\right)\left(1+\left|w-w_{0}\right| /\left\langle\delta_{0}\left(t_{0}, w_{0}\right)\right\rangle\right)^{3} \tag{4.11}
\end{equation*}
$$

thus m_{1} is a weight for g^{\sharp}.
Proof. Since $m_{1} \leq\left\langle\delta_{0}\right\rangle / 2$ we only have to consider the case when

$$
\begin{equation*}
m_{1}\left(t_{0}, w_{0}\right) \underset{\mathrm{I}-15}{\varrho}\left\langle\delta_{0}\left(t_{0}, w_{0}\right)\right\rangle \tag{4.12}
\end{equation*}
$$

for some $\varrho>0$. In fact, otherwise we have

$$
m_{1}\left(t_{0}, w\right) \leq\left\langle\delta_{0}\left(t_{0}, w\right)\right\rangle / 2<m_{1}\left(t_{0}, w_{0}\right)\left(1+\left|w-w_{0}\right| /\left\langle\delta_{0}\left(t_{0}, w_{0}\right)\right\rangle\right) / 2 \varrho
$$

since the Lipschitz continuity of $w \mapsto \delta_{0}\left(t_{0}, w\right)$ gives

$$
\begin{equation*}
\left\langle\delta_{0}(t, w)\right\rangle \leq\left\langle\delta_{0}\left(t, w_{0}\right)\right\rangle\left(1+\left|w-w_{0}\right| /\left\langle\delta_{0}\left(t, w_{0}\right)\right\rangle\right) \quad \forall t . \tag{4.13}
\end{equation*}
$$

If (4.12) is satisfied for $\varrho \ll 1$, we may use Proposition 4.3 to obtain $t_{1} \leq t_{0} \leq t_{2}$ such that (4.3), (4.5) and (4.7) hold with $H_{0}^{1 / 2}=\max \left(H_{1}^{1 / 2}\left(t_{1}, w_{0}\right), H_{1}^{1 / 2}\left(t_{2}, w_{0}\right)\right)$.

Now, for fixed w_{0} it suffices to prove (4.11) when

$$
\begin{equation*}
\left|w-w_{0}\right| \leq \varrho H_{0}^{-1 / 2} \tag{4.14}
\end{equation*}
$$

for some $\varrho>0$. In fact, when $\left|w-w_{0}\right|>\varrho H_{0}^{-1 / 2}$ we obtain from (4.12) that

$$
\begin{aligned}
&\left|w-w_{0}\right|^{2} /\left\langle\delta_{0}\left(t_{0}, w_{0}\right)\right\rangle^{2}>\varrho^{2} H_{0}^{-1} /\left\langle\delta_{0}\left(t_{0}, w_{0}\right)\right\rangle^{2}>\varrho^{2}\left\langle\delta_{0}\left(t_{0}, w_{0}\right)\right\rangle^{2} / 256 m_{1}^{2}\left(t_{0}, w_{0}\right) \\
& \geq \varrho^{2}\left\langle\delta_{0}\left(t_{0}, w_{0}\right)\right\rangle m_{1}\left(t_{0}, w\right) / 64\left\langle\delta_{0}\left(t_{0}, w\right)\right\rangle m_{1}\left(t_{0}, w_{0}\right)
\end{aligned}
$$

since $\left\langle\delta_{0}\right\rangle \geq 2 m_{1}$. By (4.13) we obtain that (4.11) is satisfied with $C=64 / \varrho^{2}$. Thus in the following we shall only consider w such that (4.14) is satisfied for $\varrho \ll 1$. We find by (4.5) and (4.7) that

$$
\begin{align*}
\left|\delta_{0}\left(t_{1}, w\right)-\delta_{0}\left(t_{2}, w\right)\right| \leq\left(m_{1}\left(t_{0}, w_{0}\right)\right. & \left.+H_{0}^{1 / 2}\left|w-w_{0}\right|^{2}\right) / c_{0} \tag{4.15}\\
& <16 m_{1}\left(t_{0}, w_{0}\right)\left(1+\left|w-w_{0}\right|^{2} /\left\langle\delta_{0}\left(t_{0}, w_{0}\right)\right\rangle^{2}\right) / c_{0}
\end{align*}
$$

when $\left|w-w_{0}\right| \leq c_{0} H_{0}^{-1 / 2}$. Now G_{1} is slowly varying, uniformly in t, thus we find for small enough $\varrho>0$ that

$$
H_{1}^{1 / 2}\left(t_{j}, w\right) \leq C H_{1}^{1 / 2}\left(t_{j}, w_{0}\right) \quad \text { when }\left|w-w_{0}\right| \leq \varrho H_{0}^{-1 / 2} \leq \varrho H_{1}^{-1 / 2}\left(t_{j}, w_{0}\right)
$$

for $j=1,2$. By (4.13) and (4.3) we obtain that

$$
\begin{equation*}
H_{1}^{1 / 2}\left(t_{j}, w\right)\left\langle\delta_{0}\left(t_{j}, w\right)\right\rangle^{2} \leq 4 C H_{1}^{1 / 2}\left(t_{j}, w_{0}\right)\left\langle\delta_{0}\left(t_{j}, w_{0}\right)\right\rangle^{2}\left(1+\left|w-w_{0}\right| /\left\langle\delta_{0}\left(t_{0}, w_{0}\right)\right\rangle\right)^{2} \tag{4.16}
\end{equation*}
$$

when $j=1,2$, and $\left|w-w_{0}\right| \leq c_{0} H_{0}^{-1 / 2}$. Now $H_{1}^{1 / 2}\left(t_{j}, w_{0}\right)\left\langle\delta_{0}\left(t_{j}, w_{0}\right)\right\rangle^{2}<16 m_{1}\left(t_{0}, w_{0}\right)$ by (4.5) for $j=1,2$. Thus, by using (4.15), (4.16) and taking the infimum we obtain

$$
m_{1}\left(t_{0}, w\right) \leq C_{0} m_{1}\left(t_{0}, w_{0}\right)\left(1+\left|w-w_{0}\right| /\left\langle\delta_{0}\left(t_{0}, w_{0}\right)\right\rangle\right)^{2}
$$

when $\left|w-w_{0}\right| \leq \varrho H_{0}^{-1 / 2}$ for $\varrho \ll 1$.
The following result will be important for the proof of Proposition 2.5 in Section 6.
Proposition 4.5. Let M be given by Definition 3.4 and m_{1} by Definition 4.1. Then there exists $C_{0}>0$ such that

$$
\begin{equation*}
M H_{1}^{3 / 2} \leq \underset{\mathrm{I}-16}{C_{0} m_{1} /\left\langle\delta_{0}\right\rangle^{2} .} \tag{4.17}
\end{equation*}
$$

Proof of Proposition 4.5. We shall omit the dependence on t in the proof. Observe that since $h^{1 / 2}\left\langle\delta_{0}\right\rangle^{2} / 6 \leq m_{1}$ we find that (4.17) is equivalent to

$$
\begin{equation*}
\left|f^{\prime \prime}\right| H_{1}^{1 / 2} \leq C m_{1} /\left\langle\delta_{0}\right\rangle^{2} \tag{4.18}
\end{equation*}
$$

by Proposition 3.6. First we note that if $m_{1} \geq c\left\langle\delta_{0}\right\rangle>0$, then $M H_{1}^{3 / 2}\left\langle\delta_{0}\right\rangle^{2} \leq C\left\langle\delta_{0}\right\rangle \leq$ $C m_{1} / c$ since $\left\langle\delta_{0}\right\rangle \leq H_{1}^{-1 / 2}$ and $M \leq C H_{1}^{-1}$ by Proposition 3.6.

Thus, we only have to consider the case $m_{1} \leq \varrho\left\langle\delta_{0}\right\rangle$ at w_{0} for some $\varrho>0$ to be chosen later. Then we may use Proposition 4.3 for $\varrho \ll 1$ to choose g^{\sharp} orthonormal coordinates so that $\left|w_{0}\right|<2\left\langle\delta_{0}\left(w_{0}\right)\right\rangle<32 \varrho H_{0}^{-1 / 2}$ and f satisfies (4.6) with

$$
\begin{equation*}
h^{1 / 2} / 3 \leq H_{0}^{1 / 2}<16 m_{1}\left(w_{0}\right) /\left\langle\delta_{0}\left(w_{0}\right)\right\rangle^{2} \leq 8 H_{1}^{1 / 2}\left(w_{0}\right) \tag{4.19}
\end{equation*}
$$

by (4.5) and (4.2). Thus it suffices to prove the estimate

$$
\begin{equation*}
\left|f^{\prime \prime}\right| H_{1}^{1 / 2} \leq C H_{0}^{1 / 2} \tag{4.20}
\end{equation*}
$$

at w_{0}. Now it actually suffices to prove (4.20) at $w=0$. In fact, (3.10) gives

$$
H_{1}\left(w_{0}\right) \leq C_{0} H_{1}(0)\left(1+H_{1}\left(w_{0}\right)\left|w_{0}\right|^{2}\right) \leq 5 C_{0} H_{1}(0)
$$

since $\left|w_{0}\right|<2\left\langle\delta_{0}\left(w_{0}\right)\right\rangle \leq 2 H_{1}^{-1 / 2}\left(w_{0}\right)$. Thus Taylor's formula gives

$$
\begin{equation*}
\left|f^{\prime \prime}\left(w_{0}\right)\right| H_{1}^{1 / 2}\left(w_{0}\right) \leq\left(\left|f^{\prime \prime}(0)\right|+C_{3} h^{1 / 2}\left|w_{0}\right|\right) H_{1}^{1 / 2}\left(w_{0}\right) \leq C_{1}\left(\left|f^{\prime \prime}(0)\right| H_{1}^{1 / 2}\left(w_{0}\right)+h^{1 / 2}\right) \tag{4.21}
\end{equation*}
$$

since $\left|f^{(3)}\right| \leq C_{3} h^{1 / 2}$. By Definition 3.3 we find that

$$
\begin{aligned}
H_{1}^{-1 / 2} \geq 1+\left|f^{\prime}\right| /\left(\left|f^{\prime \prime}\right|+h^{1 / 4}\left|f^{\prime}\right|^{1 / 2}+\right. & \left.h^{1 / 2}\right) \\
& \geq\left(\left|f^{\prime}\right|+\left|f^{\prime \prime}\right|+h^{1 / 2}\right) /\left(\left|f^{\prime \prime}\right|+h^{1 / 4}\left|f^{\prime}\right|^{1 / 2}+h^{1 / 2}\right)
\end{aligned}
$$

thus (4.20) follows if we prove

$$
\begin{equation*}
\left|f^{\prime \prime}\right|\left(\left|f^{\prime \prime}\right|+h^{1 / 4}\left|f^{\prime}\right|^{1 / 2}+h^{1 / 2}\right) \leq C\left(\left|f^{\prime}\right|+\left|f^{\prime \prime}\right|+h^{1 / 2}\right) H_{0}^{1 / 2} \quad \text { at } 0 . \tag{4.22}
\end{equation*}
$$

Since $h^{1 / 2} / 3 \leq H_{0}^{1 / 2}$ we obtain (4.22) by the Cauchy-Schwarz inequality if we prove that

$$
\begin{equation*}
\left|f^{\prime \prime}(0)\right| \leq C\left(H_{0}^{1 / 4}\left|f^{\prime}(0)\right|^{1 / 2}+h^{1 / 2}\right) \tag{4.23}
\end{equation*}
$$

Let $F(z)=H_{0} f\left(H_{0}^{-1 / 2} z\right)$, then (4.6) gives

$$
\operatorname{sgn}\left(z_{1}\right) F(z) \geq 0 \quad \text { when }\left|z_{1}\right| \geq \varepsilon+\left|z^{\prime}\right|^{2} / r \text { and }|z| \leq r
$$

where $r=c_{0}$ and

$$
\varepsilon=H_{0}^{1 / 2} m_{1}\left(w_{0}\right) / c_{0} \leq 16 m_{1}^{2}\left(w_{0}\right) / c_{0}\left\langle\delta_{0}\left(w_{0}\right)\right\rangle^{2} \leq 16 \varrho^{2} / c_{0} \leq c_{0} / 5
$$

by (4.19) when $\varrho \leq c_{0} / 4 \sqrt{5}$ which we shall assume. Proposition 4.2 in [8] then gives that

$$
\left|F^{\prime \prime}(0)\right| \leq C_{1}\left(\left|F^{\prime}(0)\right| / \varrho_{0}+H_{0}^{-1 / 2} h^{1 / 2} \varrho_{0}\right) \quad \varepsilon \leq \varrho_{0} \leq c_{0} / \sqrt{10}
$$

since $\left\|F^{(3)}\right\|_{\infty} \leq C_{3} H_{0}^{-1 / 2} h^{1 / 2}$. Observe that $\left|F^{\prime}(0)\right| \leq C_{2}$ since $H_{0}^{1 / 2} \leq 8 H_{1}^{1 / 2}\left(w_{0}\right) \leq$ $C H_{1}^{1 / 2}(0)$ and $\left|f^{\prime}(0)\right| \leq C H_{1}^{-1 / 2}(0)$. Choose

$$
\varrho_{0}=\varepsilon+\lambda\left|F^{\prime}(0)\right|^{1 / 2} \leq c_{0} / \sqrt{10}
$$

with $\lambda=c_{0}(\sqrt{10}-2) / 10 \sqrt{C_{2}}$, then we obtain that

$$
\left|F^{\prime \prime}(0)\right| \leq C_{2}\left(\left|F^{\prime}(0)\right|^{1 / 2}+h^{1 / 2} m_{1}\left(w_{0}\right)\right)
$$

since $H_{0}^{-1 / 2} \leq 3 h^{-1 / 2}$ and $\varepsilon=H_{0}^{1 / 2} m_{1}\left(w_{0}\right) / c_{0}$. If $h^{1 / 2} m_{1}\left(w_{0}\right) \leq\left|F^{\prime}(0)\right|^{1 / 2}$ then we obtain (4.23) since $F^{\prime}=H_{0}^{1 / 2} f^{\prime}$ and $F^{\prime \prime}=f^{\prime \prime}$. If $\left|F^{\prime}(0)\right|^{1 / 2} \leq h^{1 / 2} m_{1}\left(w_{0}\right)$, then we find

$$
\left|f^{\prime \prime}(0)\right| \leq 2 C_{2} h^{1 / 2} m_{1}\left(w_{0}\right) \leq 4 C_{2} m_{1}\left(w_{0}\right) /\left\langle\delta_{0}\left(w_{0}\right)\right\rangle
$$

Thus (4.18) follows from (4.21) since $H_{1}^{1 / 2}\left(w_{0}\right) \leq\left\langle\delta_{0}\left(w_{0}\right)\right\rangle^{-1}$, which completes the proof of the proposition.

The following convexity property of $t \mapsto m_{1}(t, w)$ will be essential for the proof. For a proof, see the proof of Proposition 5.7 in [8].

Proposition 4.6. Let m_{1} be given by Definition 4.1. Then

$$
\begin{equation*}
\sup _{t_{1} \leq t \leq t_{2}} m_{1}(t, w) \leq \delta_{0}\left(t_{2}, w\right)-\delta_{0}\left(t_{1}, w\right)+m_{1}\left(t_{1}, w\right)+m_{1}\left(t_{2}, w\right) \quad \forall w \tag{4.24}
\end{equation*}
$$

Next, we shall construct the pseudo-sign $B=\delta_{0}+\varrho_{0}$, which we shall use in Section 6 to prove Proposition 2.5 with the multiplier $b^{w}=B^{\text {Wick }}$.

Proposition 4.7. Assume that δ_{0} is given by Definition 3.1 and m_{1} is given by Definition 4.1. Then for $T>0$ there exists real valued $\varrho_{T}(t, w) \in L^{\infty}\left(\mathbf{R} \times T^{*} \mathbf{R}^{n}\right)$ with the property that $w \mapsto \varrho_{T}(t, w)$ is uniformly Lipschitz continuous, and

$$
\begin{align*}
& \left|\varrho_{T}\right| \leq m_{1} \tag{4.25}\\
& T \partial_{t}\left(\delta_{0}+\varrho_{T}\right) \geq m_{1} / 2 \quad \text { in } \mathcal{D}^{\prime}(\mathbf{R}) \tag{4.26}
\end{align*}
$$

when $|t|<T$.
This follows from Proposition 5.8 in [8]. Since

$$
\begin{equation*}
\varrho_{T}(t, w)=\sup _{-T \leq s \leq t}\left(\delta_{0}(s, w)-\delta_{0}(t, w)+\frac{1}{2 T} \int_{s}^{t} m_{1}(r, w) d r-m_{1}(s, w)\right) \tag{4.27}
\end{equation*}
$$

the uniformly Lipschitz continuity $w \mapsto \varrho_{T}(t, w)$ is clear.

5. The Wick quantization

In order to define the multiplier we shall use the Wick quantization. As before, we shall assume that $g^{\sharp}=\left(g^{\sharp}\right)^{\sigma}$ and the coordinates chosen so that $g^{\sharp}(w)=|w|^{2}$. For $a \in L^{\infty}\left(T^{*} \mathbf{R}^{n}\right)$ we define the Wick quantization:

$$
a^{W i c k}\left(x, D_{x}\right) u(x)=\int_{T^{*} \mathbf{R}^{n}} a(y, \eta) \sum_{y, \eta}^{w}\left(x, D_{x}\right) u(x) d y d \eta \quad u \in \mathcal{S}\left(\mathbf{R}^{n}\right)
$$

using the orthonormal projections $\Sigma_{y, \eta}^{w}\left(x, D_{x}\right)$ with Weyl symbol

$$
\Sigma_{y, \eta}(x, \xi)=\pi^{-n} \exp \left(-g^{\sharp}(x-y, \xi-\eta)\right)
$$

(see [5, Appendix B] or [17, Section 4]). We find that $a^{\text {Wick }}: \mathcal{S}\left(\mathbf{R}^{n}\right) \mapsto \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$ so that

$$
\begin{equation*}
a \geq 0 \Longrightarrow\left(a^{\text {Wick }}\left(x, D_{x}\right) u, u\right) \geq 0 \quad u \in \mathcal{S}\left(\mathbf{R}^{n}\right) \tag{5.1}
\end{equation*}
$$

$\left(a^{\text {Wick }}\right)^{*}=(\bar{a})^{\text {Wick }}$ and $\left\|a^{\text {Wick }}\left(x, D_{x}\right)\right\|_{\mathcal{L}\left(L^{2}\left(\mathbf{R}^{n}\right)\right)} \leq\|a\|_{L^{\infty}\left(T^{*} \mathbf{R}^{n}\right)}$, which is the main advantage with the Wick quantization (see [17, Proposition 4.2]). If $a_{t}(x, \xi) \in L^{\infty}\left(\mathbf{R} \times T^{*} \mathbf{R}^{n}\right)$ depends on a parameter t, then we find that

$$
\begin{equation*}
\int_{\mathbf{R}}\left(a_{t}^{W i c k} u, u\right) \phi(t) d t=\left(A_{\phi}^{W i c k} u, u\right) \quad u \in \mathcal{S}\left(\mathbf{R}^{n}\right) \tag{5.2}
\end{equation*}
$$

where $A_{\phi}(x, \xi)=\int_{\mathbf{R}} a_{t}(x, \xi) \phi(t) d t$. We obtain from the definition that $a^{W i c k}=a_{0}^{w}$ where

$$
\begin{equation*}
a_{0}(w)=\pi^{-n} \int_{T^{*} \mathbf{R}^{n}} a(z) \exp \left(-|w-z|^{2}\right) d z \tag{5.3}
\end{equation*}
$$

is the Gaussian regularization, thus Wick operators with real symbols have real Weyl symbols.

In the following, we shall assume that $G=H g^{\sharp} \leq g^{\sharp}$ is a slowly varying metric satisfying

$$
\begin{equation*}
H(w) \leq C_{0} H\left(w_{0}\right)\left(1+\left|w-w_{0}\right|\right)^{N_{0}} \tag{5.4}
\end{equation*}
$$

and m is a weight for G satisfying (5.4) with H replaced by m. This means that G and m are strongly σ temperate in the sense of [2, Definition 7.1]. Recall the symbol class $S^{+}\left(1, g^{\sharp}\right)$ given by Definition 2.2. The following result follows from Proposition 6.1 and Lemma 6.2 in [8].

Proposition 5.1. Assume that $a \in L^{\infty}\left(T^{*} \mathbf{R}^{n}\right)$ such that $|a| \leq C m$, then $a^{W i c k}=a_{0}^{w}$ where $a_{0} \in S\left(m, g^{\sharp}\right)$ is given by (5.3). If $a \geq m$ we obtain that $a_{0} \geq c_{0} m$ for a fixed constant $c_{0}>0$. If $a \in S(m, G)$ then $a_{0}=a$ modulo symbols in $S(m H, G)$. If $|a| \leq C m$ and $a=0$ in a fixed G ball with center w, then $a \in S\left(m H^{N}, G\right)$ at w for any N. If a is Lipschitz continuous then we have $a_{0} \in S^{+}\left(1, g^{\sharp}\right)$. If $a(t, w)$ and $\mu(t, w) \in L^{\infty}\left(\mathbf{R} \times T^{*} \mathbf{R}^{n}\right)$ and $\partial_{t} a(t, w) \geq \mu(t, w)$ in $\mathcal{D}^{\prime}(\mathbf{R})$ for almost all $w \in T^{*} \mathbf{R}^{n}$, then we find $\left(\partial_{t}\left(a^{\text {Wick }}\right) u, u\right) \geq$ $\left(\mu^{W i c k} u, u\right)$ in $\mathcal{D}^{\prime}(\mathbf{R})$ when $u \in \mathcal{S}\left(\mathbf{R}^{n}\right)$.

By localization we find, for example, that if $|a| \leq C m$ and $a \in S(m, G)$ in a G neighborhood of w_{0}, then $a_{0}=a$ modulo $S(m H, G)$ in a smaller G neighborhood of w_{0}. Observe that the results are uniform in the metrics and weights. We also have the following result about the composition of Wick operators.

Proposition 5.2. Assume that a and $b \in L^{\infty}\left(T^{*} \mathbf{R}^{n}\right)$. If $|a| \leq m_{1}$ and $\left|b^{\prime}\right| \leq m_{2}$, where m_{j} are weights for g^{\sharp} satisfying (5.4), then

$$
\begin{equation*}
a^{W i c k} b^{W i c k}=(a b)^{W i c k}+r^{w} \tag{5.5}
\end{equation*}
$$

with $r \in S\left(m_{1} m_{2}, g^{\sharp}\right)$. If a and b are real such that $|a| \leq m_{1}$ and $\left|b^{\prime \prime}\right| \leq m_{2}$, then

$$
\begin{equation*}
\operatorname{Re} a^{W i c k} b^{W i c k}=\left(a b-\frac{1}{2} a^{\prime} \cdot b^{\prime}\right)^{W i c k}+R^{w} \tag{5.6}
\end{equation*}
$$

with $R \in S\left(m_{1} m_{2}, g^{\sharp}\right)$.

Observe that since b^{\prime} is Lipschitz continuous, $a^{\prime} \cdot b^{\prime}$ is well defined. Proposition 5.2 essentially follows from Proposition 3.4 in [19] and Lemma A.1.5 in [20] but we shall for completeness give a proof.

Proof. By Proposition 5.1 we have $a^{W i c k} b^{W i c k}=a_{0}^{w} b_{0}^{w}$ in (5.5) where $a_{0} \in S\left(m_{1}, g^{\sharp}\right)$ and $b_{0} \in S^{+}\left(m_{2}, g^{\sharp}\right)$. By Lemma 2.3 we find $a^{\text {Wick }} b^{\text {Wick }}=\left(a_{0} b_{0}\right)^{w}$ modulo Op $S\left(m_{1} m_{2}, g^{\sharp}\right)$, where

$$
\begin{equation*}
a_{0}(w) b_{0}(w)=\pi^{-2 n} \iint a\left(w+z_{1}\right) b\left(w+z_{2}\right) e^{-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}} d z_{1} d z_{2} \tag{5.7}
\end{equation*}
$$

By using the Taylor formula we find that $b\left(w+z_{2}\right)=b\left(w+z_{1}\right)+r_{1}\left(w, z_{1}, z_{2}\right)$ where $\left|r_{1}\left(w, z_{1}, z_{2}\right)\right| \leq C m_{2}(w)\left(1+\left|z_{1}\right|+\left|z_{2}\right|\right)^{N}$ by (5.4). Integration in z_{2} then gives (5.5).

For the proof of (5.6) we use that $\operatorname{Re} a_{0}^{w} b_{0}^{w}=\left(a_{0} b_{0}\right)^{w}$ modulo $\operatorname{Op} S\left(m_{1} m_{2}, g^{\sharp}\right)$ by Lemma 2.3, since a_{0} and b_{0} are real and $b_{0}^{\prime \prime} \in S\left(m_{2}, g^{\sharp}\right)$. We use the Taylor formula again:

$$
b\left(w+z_{2}\right)=b\left(w+z_{1}\right)+b^{\prime}\left(w+z_{1}\right) \cdot\left(z_{2}-z_{1}\right)+r_{2}\left(w, z_{1}, z_{2}\right)
$$

where $\left|r_{2}\left(w, z_{1}, z_{2}\right)\right| \leq C m_{2}(w)\left(1+\left|z_{1}\right|+\left|z_{2}\right|\right)^{N}$. The term with z_{2} is odd and gives a vanishing contribution in (5.7). Since $\partial_{z_{1}} e^{-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}}=-2 z_{1} e^{-\left|z_{1}\right|^{2}}$ we obtain (5.6) after an integration by parts, since $\left|a b^{\prime \prime}\right| \leq m_{1} m_{2}$.

Example 5.3. If $a \in S\left(H_{1}^{-1 / 2}, g^{\sharp}\right), a^{\prime} \in S\left(1, g^{\sharp}\right)$ and $b \in S\left(M, G_{1}\right)$, then $\operatorname{Re} a^{\text {Wick }} b^{W i c k}=$ $(a b)^{W i c k}$ modulo Op $S\left(M H_{1}^{1 / 2}, g^{\sharp}\right)$.

We shall compute the Weyl symbol for the Wick operator $\left(\delta_{0}+\varrho_{T}\right)^{\text {Wick }}$, where ϱ_{T} is given by Proposition 4.7. In the following we shall suppress the t variable.

Proposition 5.4. Let $B=\delta_{0}+\varrho_{0}$, where δ_{0} is given by Definition 3.1 and ϱ_{0} is real valued and Lipschitz continuous, satisfying $\left|\varrho_{0}\right| \leq m_{1}$, with $m_{1} \leq\left\langle\delta_{0}\right\rangle / 2$ given by Definition 4.1. Then we find

$$
B^{W i c k}=b^{w}
$$

where $b=\delta_{1}+\varrho_{1}$ is real, $\delta_{1} \in S\left(H_{1}^{-1 / 2}, g^{\sharp}\right) \bigcap S^{+}\left(1, g^{\sharp}\right)$, and $\varrho_{1} \in S\left(m_{1}, g^{\sharp}\right) \bigcap S^{+}\left(1, g^{\sharp}\right)$. Also, there exists $\kappa_{2}>0$ so that $\delta_{1}=\delta_{0}$ modulo $S\left(H_{1}^{1 / 2}, G_{1}\right)$ when $\left\langle\delta_{0}\right\rangle \leq \kappa_{2} H_{1}^{-1 / 2}$. For any $\lambda>0$ we find that $\left|\delta_{0}\right| \geq \lambda H_{1}^{-1 / 2}$ and $H_{1}^{1 / 2} \leq \lambda / 3$ imply that $|B| \geq \lambda H_{1}^{-1 / 2} / 3$.

Proof. Let $\delta_{0}^{\text {Wick }}=\delta_{1}^{w}$ and $\varrho_{0}^{\text {Wick }}=\varrho_{1}^{w}$. Since $\left|\delta_{0}\right| \leq H_{1}^{-1 / 2},\left|\varrho_{0}\right| \leq m_{1}$ and the symbols are real valued, we obtain from Proposition 5.1 that $\delta_{1} \in S\left(H_{1}^{-1 / 2}, g^{\sharp}\right)$ and $\varrho_{1} \in S\left(m_{1}, g^{\sharp}\right)$ are real valued. Since δ_{0} and ϱ_{0} are uniformly Lipschitz continuous, we find that δ_{1} and $\varrho_{1} \in S^{+}\left(1, g^{\sharp}\right)$ by Proposition 5.1.

If $\left\langle\delta_{0}\right\rangle \leq \kappa H_{1}^{-1 / 2}$ at w_{0} for sufficiently small $\kappa>0$, then we find by the Lipschitz continuity of δ_{0} and the slow variation of G_{1} that $\left\langle\delta_{0}\right\rangle \leq C_{0} \kappa H_{1}^{-1 / 2}$ in a fixed G_{1} neighborhood ω_{κ} of w_{0} (depending on κ). For $\kappa \ll 1$ we find that $\delta_{0} \in S\left(H_{1}^{-1 / 2}, G_{1}\right)$ in ω_{κ} by Proposition 3.6, which implies that $\delta_{1}=\delta_{0}$ modulo $S\left(H_{1}^{1 / 2}, G_{1}\right)$ near w_{0} by Proposition 5.1 after localization.

When $\left|\delta_{0}\right| \geq \lambda H_{1}^{-1 / 2} \geq \lambda>0$ at w_{0}, then we find that

$$
\left|\varrho_{0}\right| \leq m_{1} \leq\left\langle\delta_{0}\right\rangle / 2 \leq\left(1+H_{1}^{1 / 2} / \lambda\right)\left|\delta_{0}\right| / 2
$$

We obtain that $\left|\varrho_{0}\right| \leq 2\left|\delta_{0}\right| / 3$ and $|B| \geq\left|\delta_{0}\right| / 3 \geq \lambda H_{1}^{-1 / 2} / 3$ when $H_{1}^{1 / 2} \leq \lambda / 3$, which completes the proof.

Let m_{1} be given by Definition 4.1, then m_{1} is a weight for g^{\sharp} according to Proposition 4.4. We are going to use the symbol classes $S\left(m_{1}^{k}, g^{\sharp}\right), k \in \mathbf{R}$. The following proposition shows that the operator $m_{1}^{\text {Wick }}$ dominates all operators in $\operatorname{Op} S\left(m_{1}, g^{\sharp}\right)$.

Proposition 5.5. If $c \in S\left(m_{1}, g^{\sharp}\right)$ then there exists a positive constant C_{0} such that

$$
\begin{equation*}
\left|\left\langle c^{w} u, u\right\rangle\right| \leq C_{0}\left(m_{1}^{W i c k} u, u\right) \quad u \in \mathcal{S}\left(\mathbf{R}^{n}\right) \tag{5.8}
\end{equation*}
$$

Here C_{0} only depends on the seminorms of $c \in S\left(m_{1}, g^{\sharp}\right)$ and $f \in L^{\infty}\left(\mathbf{R}, S\left(h^{-1}, h g^{\sharp}\right)\right)$.
Proof. We shall use an argument by Hörmander [14]. Let $0<\varrho \leq 1$

$$
\begin{equation*}
M_{\varrho}\left(w_{0}\right)=\sup _{w} m_{1}(w) /\left(1+\varrho\left|w-w_{0}\right|\right)^{3} \tag{5.9}
\end{equation*}
$$

then $m_{1} \leq M_{\varrho} \leq C m_{1} / \varrho^{3}$ and

$$
\begin{equation*}
M_{\varrho}(w) \leq C M_{\varrho}\left(w_{0}\right)\left(1+\varrho\left|w-w_{0}\right|\right)^{3} \quad \text { uniformly in } 0<\varrho \leq 1 \tag{5.10}
\end{equation*}
$$

by (4.11) and the triangle inequality. Thus, M_{ϱ} is a weight for $g_{\varrho}=\varrho^{2} g^{\sharp}$, uniformly in ϱ. Take $0 \leq \chi \in C_{0}^{\infty}\left(T^{*} \mathbf{R}^{n}\right)$ such that $\int_{T^{*} \mathbf{R}^{n}} \chi(w) d w>0$ and let

$$
m_{\varrho}(w)=\varrho^{-2 n} \int \chi(\varrho(w-z)) M_{\varrho}(z) d z
$$

Then by (5.10) we find $1 / C_{0} \leq m_{\varrho} / M_{\varrho} \leq C_{0}$, and $\left|\partial^{\alpha} m_{\varrho}\right| \leq C_{\alpha} \varrho^{|\alpha|} m_{\varrho}$ thus $m_{\varrho} \in S\left(m_{\varrho}, g_{\varrho}\right)$ uniformly in $0<\varrho \leq 1$. Let $m_{\varrho}^{W i c k}=\underset{\mathrm{I}-21}{\mu_{\varrho}^{w}}$ then Proposition 5.1 gives $m_{\varrho} / c \leq \mu_{\varrho} \in$
$S\left(m_{\varrho}, g_{\varrho}\right)$ uniformly in $0<\varrho \leq 1$ (in fact, this follows directly from (5.3)). Since $m_{1} \cong m_{\varrho}$, we may replace m_{1}^{w} with $m_{\varrho}^{W i c k}=\mu_{\varrho}^{w}$ in (5.8) for any fixed $\varrho>0$.

Let $a_{\varrho}=\mu_{\varrho}^{-1 / 2} \in S\left(m_{\varrho}^{-1 / 2}, g_{\varrho}^{\sharp}\right)$ with $0<\varrho \leq 1$ to be chosen later. Since g_{ϱ} is uniformly σ temperate, $g_{\varrho} / g_{\varrho}^{\sigma}=\varrho^{4}, m_{\varrho}$ is uniformly σ, g_{ϱ} temperate, and $\mu_{\varrho}^{ \pm 1 / 2} \in S\left(m_{\varrho}^{ \pm 1 / 2}, g_{\varrho}\right)$ uniformly, the calculus gives that $a_{\varrho}^{w}\left(a_{\varrho}^{-1}\right)^{w}=1+r_{\varrho}^{w}$ where $r_{\varrho} / \varrho^{2} \in S\left(1, g^{\sharp}\right)$ uniformly for $0<\varrho \leq 1$. Similarly, we find that $a_{\varrho}^{w} \mu_{\varrho}^{w} a_{\varrho}^{w}=1+s_{\varrho}^{w}$ where $s_{\varrho} / \varrho^{2} \in S\left(1, g^{\sharp}\right)$ uniformly. We obtain that the L^{2} operator norms

$$
\left\|r_{\varrho}^{w}\right\|_{\mathcal{L}\left(L^{2}\right)}+\left\|s_{\varrho}^{w}\right\|_{\mathcal{L}\left(L^{2}\right)} \leq C \varrho^{2} \leq 1 / 2
$$

for sufficiently small ϱ. By fixing such a value of ϱ we find that $1 / 2 \leq a_{\varrho}^{w} \mu_{\varrho}^{w} a_{\varrho}^{w} \leq 2$ and

$$
\begin{equation*}
\frac{1}{2}\|u\| \leq\left\|a_{\varrho}^{w}\left(a_{\varrho}^{-1}\right)^{w} u\right\| \leq 2\|u\| \tag{5.11}
\end{equation*}
$$

thus $u \mapsto a_{\varrho}^{w}\left(a_{\varrho}^{-1}\right)^{w} u$ is an homeomorphism on L^{2}. The estimate (5.8) then follows from

$$
\left|\left\langle c^{w} a_{\varrho}^{w}\left(a_{\varrho}^{-1}\right)^{w} u, a_{\varrho}^{w}\left(a_{\varrho}^{-1}\right)^{w} u\right\rangle\right| \leq C\left\langle\mu_{\varrho}^{w} a_{\varrho}^{w}\left(a_{\varrho}^{-1}\right)^{w} u, a_{\varrho}^{w}\left(a_{\varrho}^{-1}\right)^{w} u\right\rangle
$$

which holds since $a_{\varrho}^{w} c^{w} a_{\varrho}^{w} \in \operatorname{Op} S\left(1, g^{\sharp}\right)$ is bounded in L^{2}. Observe that the bounds only depend on the seminorms of c in $S\left(m_{1}, g^{\sharp}\right)$, since ϱ and a_{ϱ} are fixed.

6. The lower bounds

In this section we shall obtain a proof of Proposition 2.5 by giving lower bounds on $\operatorname{Re} b_{T}^{w} f^{w}$, where $b_{T}^{w}=B_{T}^{W i c k}$ is given by Proposition 5.4. In the following, we shall omit the t variable and assume the coordinates chosen so that $g^{\sharp}(w)=|w|^{2}$. The results will hold for almost all $|t| \leq T$ and only depend on the seminorms of f in $L^{\infty}\left(\mathbf{R}, S\left(h^{-1}, h g^{\sharp}\right)\right)$.

Proposition 6.1. Let $B=\delta_{0}+\varrho_{0}$, where δ_{0} is given by Definition 3.1 and ϱ_{0} is real valued and Lipschitz continuous, satisfying $\left|\varrho_{0}\right| \leq m_{1}$, with $m_{1} \leq\left\langle\delta_{0}\right\rangle / 2$ given by Definition 4.1. Then we have

$$
\begin{equation*}
\operatorname{Re}\left(f^{w} B^{W i c k} u, u\right) \geq\left(C^{w} u, u\right) \quad \forall u \in \mathcal{S}\left(\mathbf{R}^{n}\right) \tag{6.1}
\end{equation*}
$$

where $C \in S\left(m_{1}, g^{\sharp}\right)$.

Proof. We shall localize in $T^{*} \mathbf{R}^{n}$ with respect to the metric $G_{1}=H_{1} g^{\sharp}$, and estimate the localized operators. We shall use the neighborhoods

$$
\begin{equation*}
\omega_{w_{0}}(\varepsilon)=\left\{w:\left|w-w_{0}\right|<\varepsilon H_{1}^{-1 / 2}\left(w_{0}\right)\right\} \quad \text { for } w_{0} \in T^{*} \mathbf{R}^{n} \tag{6.2}
\end{equation*}
$$

We may in the following assume that ε is small enough so that $w \mapsto H_{1}(w)$ and $w \mapsto M(w)$ only vary with a fixed factor in $\omega_{w_{0}}(\varepsilon)$. Then by the uniform Lipschitz continuity of $w \mapsto \delta_{0}(w)$ we can find $\kappa_{0}>0$ with the following property: for $0<\kappa \leq \kappa_{0}$ there exist
positive constants c_{κ} and ε_{κ} so that for any $w_{0} \in T^{*} \mathbf{R}^{n}$ we have

$$
\begin{array}{lll}
\left|\delta_{0}(w)\right| \leq \kappa H_{1}^{-1 / 2}(w) & w \in \omega_{w_{0}}\left(\varepsilon_{\kappa}\right) & \text { or } \\
\left|\delta_{0}(w)\right| \geq c_{\kappa} H_{1}^{-1 / 2}(w) & w \in \omega_{w_{0}}\left(\varepsilon_{\kappa}\right) . \tag{6.4}
\end{array}
$$

In fact, we have by the Lipschitz continuity that $\left|\delta_{0}(w)-\delta_{0}\left(w_{0}\right)\right| \leq \varepsilon_{\kappa} H_{1}^{-1 / 2}\left(w_{0}\right)$ when $w \in \omega_{w_{0}}\left(\varepsilon_{\kappa}\right)$. Thus, if $\varepsilon_{\kappa} \ll \kappa$ we obtain that (6.3) holds when $\left|\delta_{0}\left(w_{0}\right)\right| \ll \kappa H_{1}^{-1 / 2}\left(w_{0}\right)$ and (6.4) holds when $\left|\delta_{0}\left(w_{0}\right)\right| \geq c \kappa H_{1}^{-1 / 2}\left(w_{0}\right)$.

By shrinking κ_{0} we may assume that $M \cong\left|f^{\prime}\right| H_{1}^{-1 / 2}$ when $\left|\delta_{0}\right| \leq \kappa_{0} H_{1}^{-1 / 2}$ and $H_{1}^{1 / 2} \leq$ κ_{0} according to Proposition 3.6. Let κ_{1} be given by Proposition 3.6, κ_{2} by Proposition 5.4, and let ε_{κ} and c_{κ} be given by (6.3)-(6.4) for $\kappa=\min \left(\kappa_{0}, \kappa_{1}, \kappa_{2}\right) / 2$. Using Proposition 5.4 with $\lambda=c_{\kappa}$ we find that

$$
\begin{equation*}
|B| \geq c_{\kappa} H_{1}^{-1 / 2} / 3 \quad \text { in } \omega_{w_{0}}\left(\varepsilon_{\kappa}\right) \tag{6.5}
\end{equation*}
$$

if $H_{1}^{1 / 2} \leq c_{\kappa} / 3$ and (6.4) holds in $\omega_{w_{0}}\left(\varepsilon_{\kappa}\right)$.
Choose real symbols $\left\{\psi_{j}(w)\right\}_{j}$ and $\left\{\Psi_{j}(w)\right\}_{j} \in S\left(1, G_{1}\right)$ with values in ℓ^{2}, such that $\sum_{k} \psi_{j}^{2} \equiv 1, \psi_{j} \Psi_{j}=\psi_{j}, \Psi_{j}=\phi_{j}^{2} \geq 0$ for some $\left\{\phi_{j}(w)\right\}_{j} \in S\left(1, G_{1}\right)$ with values in ℓ^{2} so that

$$
\operatorname{supp} \phi_{j} \subseteq \omega_{j}=\omega_{w_{j}}\left(\varepsilon_{\kappa}\right)
$$

We have that $B^{W i c k}=b^{w}$ where $b=\delta_{1}+\varrho_{1}$ is given by Proposition 5.4.
Lemma 6.2. We find that $A_{j}=\Psi_{j} f b \in S\left(M H_{1}^{-1 / 2}, g^{\sharp}\right) \bigcap S^{+}\left(M, g^{\sharp}\right)$ uniformly in j, and

$$
\begin{equation*}
\operatorname{Re}\left(f^{w} b^{w}\right)=\sum_{j} \psi_{j}^{w} A_{j}^{w} \psi_{j}^{w} \quad \text { modulo } \operatorname{Op} S\left(m_{1}, g^{\sharp}\right) . \tag{6.6}
\end{equation*}
$$

We have $A_{j}^{w}=\operatorname{Re} f_{j}^{w} b^{w}$ modulo $\operatorname{Op} S\left(m_{1}, g^{\sharp}\right)$ uniformly in j, where $f_{j}=\Psi_{j} f$.
Proof. Since $b \in S\left(H_{1}^{-1 / 2}, g^{\sharp}\right) \bigcap S^{+}\left(1, g^{\sharp}\right)$ we obtain that $A_{j} \in S\left(M H_{1}^{-1 / 2}, g^{\sharp}\right) \bigcap S^{+}\left(M, g^{\sharp}\right)$ uniformly in j. Proposition 4.5 gives that

$$
\begin{equation*}
M H_{1}^{3 / 2}\left\langle\delta_{0}\right\rangle^{2} \leq C m_{1} \tag{6.7}
\end{equation*}
$$

thus we may ignore terms in $\operatorname{Op} S\left(M H_{1}^{3 / 2}\left\langle\delta_{0}\right\rangle^{2}, g^{\sharp}\right)$. Now, since $b \in S\left(H_{1}^{-1 / 2}, g^{\sharp}\right),\left\{\psi_{k}\right\}_{k} \in$ $S\left(1, G_{1}\right)$ has values in ℓ^{2} and $A_{k} \in S\left(M H_{1}^{-1 / 2}, g^{\sharp}\right)$ uniformly, we find by Lemma 2.3 and Remark 2.4 that the symbols of $f^{w} b^{w}, f_{j}^{w} b^{w}$ and $\sum_{k} \psi_{k}^{w} A_{k}^{w} \psi_{k}^{w}$ have expansions in $S\left(M H_{1}^{j / 2}, g^{\sharp}\right)$. Observe that in the domains ω_{j} where $H_{1}^{1 / 2} \geq c>0$, we find that the symbols of $\sum_{k} \psi_{k}^{w} A_{k}^{w} \psi_{k}^{w}, f_{j}^{w} b^{w}$ and $b^{w} f^{w}$ are in $S\left(M H_{1}^{3 / 2}, g^{\sharp}\right)$ giving the result in this case. Thus we may assume $H_{1}^{1 / 2} \leq \kappa_{2} / 2$ in what follows. We shall consider the neighborhoods where (6.3) or (6.4) holds.

If (6.4) holds then we find that $\left\langle\delta_{0}\right\rangle \cong H_{1}^{-1 / 2}$ so $S\left(M H_{1}^{1 / 2}, g^{\sharp}\right) \subseteq S\left(m_{1}, g^{\sharp}\right)$ in ω_{j} by (6.7). Since $b \in S^{+}\left(1, g^{\sharp}\right)$ and $A_{j} \in S^{+}\left(M, g^{\sharp}\right)$ we find that the symbols of both $f^{w} b^{w}$ and $\sum_{k} \psi_{k}^{w} A_{k}^{w} \psi_{k}^{w}$ are equal to $\sum_{k} \psi_{k}^{2} A_{k}=f b$ modulo $S\left(M H_{1}^{1 / 2}, g^{\sharp}\right)$ in ω_{j}. We also find
that the symbol of $f_{j}^{w} b^{w}$ is equal to A_{j} modulo $S\left(M H_{1}^{1 / 2}, g^{\sharp}\right)$, which proves the result in this case.

Next, we consider the case when (6.3) holds with $\kappa=\min \left(\kappa_{0}, \kappa_{1}, \kappa_{2}\right) / 2$ and $H_{1}^{1 / 2} \leq$ $\kappa_{2} / 2$ in ω_{j}. Then $\left\langle\delta_{0}\right\rangle \leq \kappa_{2} H_{1}^{-1 / 2}$ so $b=\delta_{1}+\varrho_{1} \in S\left(H_{1}^{-1 / 2}, G_{1}\right)+S\left(m_{1}, g^{\sharp}\right)$ in ω_{j} by Proposition 5.4. We obtain from Lemma 2.3 that the symbol of $\operatorname{Re}\left(f^{w} b^{w}-(f b)^{w}\right)$ is in $S\left(M H_{1}^{3 / 2}, G_{1}\right)+S\left(M H_{1} m_{1}, g^{\sharp}\right) \subseteq S\left(m_{1}, g^{\sharp}\right)$ in ω_{j} since $M \leq C H_{1}^{-1}$. Similarly, we find that $A_{j}^{w}=\operatorname{Re} f_{j}^{w} b^{w}$ modulo $S\left(m_{1}, g^{\sharp}\right)$. Since $A_{j} \in S\left(M H_{1}^{-1 / 2}, G_{1}\right)+S\left(M m_{1}, g^{\sharp}\right)$ uniformly, we find that the symbol of $\sum_{k} \psi_{k}^{w} A_{k}^{w} \psi_{k}^{w}$ is equal to bf modulo $S\left(m_{1}, g^{\sharp}\right)$ in ω_{j}, which proves (6.6) and Lemma 6.2.

In order to estimate the localized operator we shall use the following

Lemma 6.3. If $A_{j}=\Psi_{j} f b$ then there exists $C_{j} \in S\left(m_{1}, g^{\sharp}\right)$ uniformly, such that

$$
\begin{equation*}
\left(A_{j}^{w} u, u\right) \geq\left(C_{j}^{w} u, u\right) \quad u \in \mathcal{S}\left(\mathbf{R}^{n}\right) \tag{6.8}
\end{equation*}
$$

We obtain from (6.6) and (6.8) that

$$
\operatorname{Re}\left(f^{w} b^{w} u, u\right) \geq \sum_{j}\left(\psi_{j}^{w} C_{j}^{w} \psi_{j}^{w} u, u\right)+\left(R^{w} u, u\right) \quad u \in \mathcal{S}\left(\mathbf{R}^{n}\right)
$$

where $\sum_{j} \psi_{j}^{w} C_{j}^{w} \psi_{j}^{w}$ and $R^{w} \in \operatorname{Op} S\left(m_{1}, g^{\sharp}\right)$, which gives Proposition 6.1.
Proof of Lemma 6.3. As before we are going to consider the cases when $H_{1}^{1 / 2} \cong 1$ or $H_{1}^{1 / 2} \ll 1$, and when (6.3) or (6.4) holds in $\omega_{j}=\omega_{w_{j}}\left(\varepsilon_{\kappa}\right)$ for $\kappa=\min \left(\kappa_{0}, \kappa_{1}, \kappa_{2}\right) / 2$. When $H_{1}^{1 / 2} \geq c>0$ we find that $A_{j} \in S\left(M H_{1}^{3 / 2}, g^{\sharp}\right) \subseteq S\left(m_{1}, g^{\sharp}\right)$ uniformly by (6.7) which gives the lemma with $C_{j}=A_{j}$ in this case. Thus, we may assume that

$$
\begin{equation*}
H_{1}^{1 / 2} \leq \kappa_{4}=\min \left(\kappa_{0}, \kappa_{1}, \kappa_{2}, \kappa_{3}\right) / 2 \quad \text { in } \omega_{j} \tag{6.9}
\end{equation*}
$$

with $\kappa_{3}=2 c_{\kappa} / 3$ so that (6.5) follows from (6.4).
First, we consider the case when (6.3) holds with $\kappa=\min \left(\kappa_{0}, \kappa_{1}, \kappa_{2}\right) / 2$ and $H_{1}^{1 / 2} \leq$ $\kappa_{4} \leq \kappa$ in ω_{j}. Then $\left\langle\delta_{0}\right\rangle \leq 2 \kappa H_{1}^{-1 / 2}$ so we obtain from Proposition 3.6 that $M \cong\left|f^{\prime}\right| H_{1}^{-1 / 2}$ and $\delta_{0} \in S\left(H_{1}^{-1 / 2}, G_{1}\right)$ in ω_{j}. We shall use an argument of Lerner [20]. We have that $b^{w}=\left(\delta_{0}+\varrho_{0}\right)^{\text {Wick }}=B^{W i c k}$, where $\left|\varrho_{0}\right| \leq m_{1} \leq H^{1 / 2}\left\langle\delta_{0}\right\rangle^{2} / 2$ by (4.2). Also, Lemma 6.2 gives $A_{j}=\operatorname{Re} f_{j}^{w} B^{W i c k}$ modulo $\operatorname{Op} S\left(m_{1}, g^{\sharp}\right)$.

Take $\chi(t) \in C^{\infty}(\mathbf{R})$ such that $0 \leq \chi(t) \leq 1,|t| \geq 2$ in supp $\chi(t)$ and $\chi(t)=1$ for $|t| \geq 3$. Let $\chi_{0}=\chi\left(\delta_{0}\right)$, then $2 \leq\left|\delta_{0}\right|$ and $\left\langle\delta_{0}\right\rangle /\left|\delta_{0}\right| \leq 3 / 2$ in supp χ_{0}, thus

$$
\begin{equation*}
1+\chi_{0} \varrho_{0} / \delta_{0} \geq 1-\chi_{0}\left\langle\delta_{0}\right\rangle / 2\left|\delta_{0}\right| \geq 1 / 4 \tag{6.10}
\end{equation*}
$$

Since $\left|\delta_{0}\right| \leq 3$ in $\operatorname{supp}\left(1-\chi_{0}\right)$ we find by Proposition 5.4 that

$$
B^{W i c k}=\left(\delta_{0}+\chi_{0} \varrho_{0}\right)^{W i c k}
$$

modulo Op $S\left(m_{1} /\left\langle\delta_{0}\right\rangle, g^{\sharp}\right) \subseteq \operatorname{Op} S\left(H^{1 / 2}\left\langle\delta_{0}\right\rangle, g^{\sharp}\right)$ by (4.2). Since $\left|\chi_{0} \varrho_{0} / \delta_{0}\right| \leq 3 H_{1}^{1 / 2}\left\langle\delta_{0}\right\rangle / 4$ we find from (5.5) that

$$
B^{W i c k}=\delta_{0}^{W i c k} B_{0}^{W i c k} \quad \text { modulo Op } S\left(H_{1}^{1 / 2}\left\langle\delta_{0}\right\rangle, g^{\sharp}\right) .
$$

where $B_{0}=1+\chi_{0} \varrho_{0} / \delta_{0}$. Proposition 5.1 gives $\left(\chi_{0} \varrho_{0} / \delta_{0}\right)^{\text {Wick }} \in \operatorname{Op} S\left(H_{1}^{1 / 2}\left\langle\delta_{0}\right\rangle, g^{\sharp}\right)$ and $\delta_{0}^{W i c k}=\delta_{1}^{w}$ where $\delta_{1}=\delta_{0}+\gamma$ with $\gamma \in S\left(H_{1}^{-1 / 2}, g^{\sharp}\right) \bigcap S^{+}\left(1, g^{\sharp}\right)$ such that $\gamma \in S\left(H_{1}^{1 / 2}, G_{1}\right)$ in ω_{j}. Thus Lemma 2.3 gives

$$
\begin{equation*}
B^{W i c k}=\delta_{0}^{W i c k} B_{0}^{W i c k}=\delta_{0}^{w} B_{0}^{W i c k}+c^{w} \quad \text { modulo Op } S\left(H_{1}^{1 / 2}\left\langle\delta_{0}\right\rangle, g^{\sharp}\right) \tag{6.11}
\end{equation*}
$$

where $c \in S\left(H_{1}^{-1 / 2}, g^{\sharp}\right)$ such that $\operatorname{supp} c \bigcap \omega_{j}=\emptyset$.
We find from Proposition 3.6 that $f=\alpha_{0} \delta_{0}$, where $\kappa_{1} M H_{1}^{1 / 2} \leq \alpha_{0} \in S\left(M H_{1}^{1 / 2}, G_{1}\right)$, so $\alpha_{0}^{1 / 2} \in S\left(M^{1 / 2} H_{1}^{1 / 4}, G_{1}\right)$. Let

$$
a_{j}=\alpha_{0}^{1 / 2} \phi_{j} \delta_{0} \in S\left(M^{1 / 2} H_{1}^{-1 / 4}, G_{1}\right)
$$

Since $f_{j}=\Psi_{j} f=\phi_{j}^{2} f$ the calculus gives

$$
\begin{equation*}
a_{j}^{w}\left(\alpha_{0}^{1 / 2} \phi_{j}\right)^{w}=f_{j}^{w} \quad \text { modulo Op } S\left(M H_{1}, G_{1}\right) . \tag{6.12}
\end{equation*}
$$

Similarly, we find that $f_{j}^{w} c^{w} \in \operatorname{Op} S\left(M H_{1}^{3 / 2}, g^{\sharp}\right)$ and

$$
\begin{equation*}
\operatorname{Re} f_{j}^{w} \delta_{0}^{w}=a_{j}^{w} a_{j}^{w} \quad \text { modulo Op } S\left(M H_{1}^{3 / 2}, G_{1}\right) \tag{6.13}
\end{equation*}
$$

with imaginary part in $\operatorname{Op} S\left(M H_{1}^{1 / 2}, G_{1}\right)$. We obtain from (6.11) and (6.12) that
(6.14) $f_{j}^{w} B^{\text {Wick }}=f_{j}^{w}\left(\delta_{0}^{w} B_{0}^{W i c k}+c^{w}+r^{w}\right)=f_{j}^{w} \delta_{0}^{w} B_{0}^{W i c k}+a_{j}^{w} R_{j}^{w} \quad$ modulo Op $S\left(m_{1}, g^{\sharp}\right)$ where $r \in S\left(H_{1}^{1 / 2}\left\langle\delta_{0}\right\rangle, g^{\sharp}\right)$ which gives $R_{j}=\left(\alpha_{0}^{1 / 2} \phi_{j}\right)^{w} r^{w} \in S\left(M^{1 / 2} H^{3 / 4}\left\langle\delta_{0}\right\rangle, g^{\sharp}\right)$. Since

$$
\operatorname{Re} F B=\operatorname{Re}(\operatorname{Re} F) B+i[\operatorname{Im} F, B]
$$

when $B^{*}=B$, we find from (6.13) that

$$
\begin{equation*}
\operatorname{Re} f_{j}^{w} \delta_{0}^{w} B_{0}^{W i c k}=\operatorname{Re}\left(a_{j}^{w} a_{j}^{w} B_{0}^{W i c k}\right) \quad \text { modulo } \operatorname{Op} S\left(m_{1}, g^{\sharp}\right) . \tag{6.15}
\end{equation*}
$$

In fact, $B_{0}=1+\chi_{0} \varrho_{0} / \delta_{0}$ and $\left(\chi_{0} \varrho_{0} / \delta_{0}\right)^{\text {Wick }} \in \mathrm{Op} S\left(H_{1}^{1 / 2}\left\langle\delta_{0}\right\rangle, g^{\sharp}\right)$, thus

$$
\left[a^{w}, B_{0}^{W i c k}\right]=\left[a^{w},\left(\chi_{0} \varrho_{0} / \delta_{0}\right)^{W i c k}\right] \in \operatorname{Op} S\left(M H_{1}^{3 / 2}\left\langle\delta_{0}\right\rangle, g^{\sharp}\right)
$$

when $a \in S\left(M H_{1}^{1 / 2}, G_{1}\right)$. Similarly, since $a_{j} \in S\left(M^{1 / 2} H_{1}^{-1 / 4}, G_{1}\right)$ we find that

$$
\begin{equation*}
a_{j}^{w} a_{j}^{w} B_{0}^{W i c k}=a_{j}^{w}\left(B_{0}^{W i c k} a_{j}^{w}+s_{j}^{w}\right) \quad \text { modulo Op } S\left(m_{1}, g^{\sharp}\right) \tag{6.16}
\end{equation*}
$$

where $s_{j} \in S\left(M^{1 / 2} H^{3 / 4}\left\langle\delta_{0}\right\rangle, g^{\sharp}\right)$. Since $B_{0} \geq 1 / 4$ we find from (6.14)-(6.16) that

$$
\operatorname{Re} f_{j}^{w} B^{W i c k} \geq \frac{1}{4} a_{j}^{w} a_{j}^{w}+\operatorname{Re} a_{j}^{w} S_{j}^{w} \quad \text { modulo } \operatorname{Op} S\left(m_{1}, g^{\sharp}\right)
$$

where $S_{j} \in S\left(M^{1 / 2} H^{3 / 4}\left\langle\delta_{0}\right\rangle, g^{\sharp}\right)$. Completing the square, we find

$$
A_{j}^{w}=\operatorname{Re} f_{j}^{w} B^{W i c k} \geq \frac{1}{4}\left(a_{j}^{w}+2 S_{j}^{w}\right)^{*}\left(a_{j}^{w}+2 S_{j}^{w}\right) \geq 0 \quad \text { modulo Op } S\left(m_{1}, g^{\sharp}\right)
$$

since $\left(S_{j}^{w}\right)^{*} S_{j}^{w} \in \operatorname{Op} S\left(M H_{1}^{3 / 2}\left\langle\delta_{0}\right\rangle^{2}, g^{\sharp}\right)$. This gives (6.8) and the lemma in this case.

Finally, we consider the case when $H_{1}^{1 / 2} \leq \kappa_{4}$ and (6.4) holds in ω_{j}. Since $\left|\delta_{0}(w)\right| \geq$ $c_{\kappa} H_{1}^{-1 / 2}(w)$, we find $\left\langle\delta_{0}\right\rangle \cong H_{1}^{-1 / 2}$ in ω_{j}. As before we may ignore terms in $S\left(M H_{1}^{1 / 2}, g^{\sharp}\right) \subseteq$ $S\left(M H_{1}^{3 / 2}\left\langle\delta_{0}\right\rangle^{2}, g^{\sharp}\right)$ in ω_{j} by (6.7). We find from (6.5) that $\operatorname{sgn}(f) B \geq 0$ in ω_{j}, thus $f_{j} B \geq 0$. Since $f_{j} \in S\left(M, G_{1}\right)$, we find $f_{j}^{w}=f_{j}^{W i c k}$ modulo Op $S\left(M H_{1}, G_{1}\right)$ by Proposition 5.1, thus we may replace f_{j}^{w} with $f_{j}^{\text {Wick }}$. We find from Example 5.3 that

$$
A_{j}^{w}=\operatorname{Re} f_{j}^{W i c k} B^{W i c k}=\left(f_{j} B\right)^{W i c k} \geq 0 \quad \text { modulo Op } S\left(M H_{1}^{1 / 2}, g^{\sharp}\right)
$$

This completes the proof of Lemma 6.3.
We shall finish the paper by giving a proof of Proposition 2.5.
Proof of Proposition 2.5. Let $f \in L^{\infty}\left(\mathbf{R}, S\left(h^{-1}, h g^{\sharp}\right)\right)$ be real valued satisfying condition $(\bar{\Psi})$ given by (2.2). By changing h, we may assume that $\left|\partial_{w} f\right| \leq h^{-1 / 2}$. Let $B_{T}=\delta_{0}+\varrho_{T}$, where $\delta_{0}+\varrho_{T}$ is the Lipschitz continuous pseudo-sign for f given by Proposition 4.7 for $0<T \leq 1$, so that $\left|\varrho_{T}\right| \leq m_{1} \leq\left\langle\delta_{0}\right\rangle / 2$ and

$$
\begin{equation*}
\partial_{t}\left(\delta_{0}+\varrho_{T}\right) \geq m_{1} / 2 T \quad \text { in } \mathcal{D}^{\prime}(]-T, T[) \tag{6.17}
\end{equation*}
$$

We put $B_{T} \equiv 0$ when $|t|>T$, then that $B_{T}^{\text {Wick }}=b_{T}^{w}$ where $b_{T}(t, w) \in L^{\infty}\left(\mathbf{R}, S\left(H_{1}^{-1 / 2}, g^{\sharp}\right)\right.$ $\bigcap S^{+}\left(1, g^{\sharp}\right)$) uniformly by Proposition 5.4. We find by Proposition 5.1 and (6.17) that

$$
\begin{equation*}
\left(\partial_{t} B_{T}^{W i c k} u, u\right) \geq\left(m_{1}^{W i c k} u, u\right) / 2 T \quad \text { in } \mathcal{D}^{\prime}(]-T, T[) \tag{6.18}
\end{equation*}
$$

when $u \in \mathcal{S}\left(\mathbf{R}^{n}\right)$. By Proposition 6.1, we find for almost all $t \in[-T, T]$ that

$$
\begin{equation*}
\operatorname{Re}\left(\left.\left(f^{w} B_{T}^{W i c k}\right)\right|_{t} u, u\right)=\left(C^{w}(t) u, u\right) \quad u \in \mathcal{S}\left(\mathbf{R}^{n}\right) \tag{6.19}
\end{equation*}
$$

with $C(t) \in S\left(m_{1}, g^{\sharp}\right)$ uniformly. Proposition 5.5 gives $C_{0}>0$ so that

$$
\begin{equation*}
\left|\left(C^{w}(t) u, u\right)\right| \leq C_{0}\left(m_{1}^{W i c k} u, u\right) \tag{6.20}
\end{equation*}
$$

for $u \in \mathcal{S}\left(\mathbf{R}^{n}\right)$ and $|t| \leq T$. We find from (6.18)-(6.20) that

$$
\left(\partial_{t} b_{T}^{w} u, u\right)+2 \operatorname{Re}\left(b_{T}^{w} u, f^{w} u\right) \geq\left(1 / 2 T-2 C_{0}\right)\left(m_{1}^{\text {Wick }} u, u\right) \quad \text { in } \mathcal{D}^{\prime}(]-T, T[)
$$

for $u \in \mathcal{S}\left(\mathbf{R}^{n}\right)$.
Since $\left|B_{T}\right| \leq\left|\delta_{0}\right|+m_{1} \leq 3\left\langle\delta_{0}\right\rangle / 2$ and $h^{1 / 2}\left\langle\delta_{0}\right\rangle^{2} / 6 \leq m_{1}$ by (4.2), we find that $b_{T} \in$ $S\left(h^{-1 / 4} m_{1}{ }^{1 / 2}, g^{\sharp}\right)$ so $h^{1 / 2}\left(\left(b_{T}^{w}\right)^{2}+1\right) \in \mathrm{Op} S\left(m_{1}, g^{\sharp}\right)$ and Proposition 5.5 gives

$$
\begin{equation*}
h^{1 / 2}\left(\left\|b_{T}^{w} u\right\|^{2}+\|u\|^{2}\right) \leq C_{1}\left(m_{1}^{\text {Wick }} u, u\right) \quad u \in \mathcal{S}\left(\mathbf{R}^{n}\right) \tag{6.21}
\end{equation*}
$$

Finally, using Proposition 2.9 with $P_{0}=D_{t}+i f^{w}\left(t, x, D_{x}\right), B=B_{T}^{W i c k}=b_{T}^{w}$ and $m=$ $m_{1}^{\text {Wick }} / 4 T$ we obtain that

$$
C_{1}^{-1} h^{1 / 2} \int\left\|b_{T}^{w} u\right\|^{2}+\|u\|^{2} d t \leq \int\left(m_{1}^{\text {Wick }} u, u\right) d t \leq 8 T \int \operatorname{Im}\left(P_{0} u, b_{T}^{w} u\right) d t
$$

if $u \in \mathcal{S}\left(\mathbf{R} \times \mathbf{R}^{n}\right)$ has support where $|t|<T \leq 1 / 8 C_{0}$. This completes the proof of Proposition 2.5.

References

1. Beals, R. and C. Fefferman, On local solvability of linear partial differential equations, Ann. of Math. 97 (1973), 482-498.
2. Bony, J.-M. and J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France 122 (1994), 77-118.
3. Dencker, N., On the propagation of singularities for pseudo-differential operators of principal type, Ark. Mat. 20 (1982), 23-60.
4. \qquad , The solvability of non L^{2} solvable operators, Journées "Equations aux Dérivées Partielles" (Saint-Jean-de-Monts, 1996), Exp. No. X, 11 pp., Ecole Polytech., Palaiseau, 1996.
5. \qquad , A sufficient condition for solvability, International Mathematics Research Notices 1999:12 (1999), 627-659.
6. \qquad , On the sufficiency of condition (ψ), Report 2001:11, Centre for Mathematical Sciences, Lund University.
7. \qquad The solvability of pseudo-differential operators, Phase space analysis of partial differential equations, Vol. I, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2004, 175-200.
8. \qquad , The resolution of the Nirenberg-Treves conjecture, Ann. of Math. 163 (2006), 405-444.
9. Hörmander, L., The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math. 32 (1979), 359-443.
10. \qquad Pseudo-differential operators of principal type, Singularities in boundary value problems (Proc. NATO Adv. Study Inst., Maratea, 1980) NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., 65, Reidel, Dordrecht-Boston, Mass., 1981, 69-96.
11. \qquad , The analysis of linear partial differential operators, vol. I-IV, Springer Verlag, Berlin, 19831985.
12. , Notions of convexity, Birkhäuser, Boston, 1994.
13. \qquad , On the solvability of pseudodifferential equations, Structure of solutions of differential equations (M. Morimoto and T. Kawai, eds.), World Scientific, New Jersey, 1996, 183-213.
14. \qquad , The proof of the Nirenberg-Treves conjecture according to N. Dencker och N. Lerner, Preprint.
15. Lerner, N., Sufficiency of condition (ψ) for local solvability in two dimensions, Ann. of Math. 128 (1988), 243-258.
16. _, Nonsolvability in L^{2} for a first order operator satisfying condition (ψ), Ann. of Math. 139 (1994), 363-393.
17. \qquad , Energy methods via coherent states and advanced pseudo-differential calculus, Multidimensional complex analysis and partial differential equations (P. D. Cordaro, H. Jacobowitz, and S. Gidikin, eds.), Amer. Math. Soc., Providence, R.I., USA, 1997, 177-201.
18. \qquad , Perturbation and energy estimates, Ann. Sci. École Norm. Sup. 31 (1998), 843-886.
19. \qquad , The Wick calculus of pseudo-differential operators and some of its applications. Cubo Mat. Educ. 5 (2003), 213-236.
20. Cutting the loss of derivatives for solvability under condition (Ψ), Preprint.
21. Lewy, H. An example of a smooth linear partial differential equation without solution, Ann. of Math. 66 (1957), 155-158.
22. Moyer, R.D., Local solvability in two dimensions: Necessary conditions for the principal-type case, Mimeographed manuscript, University of Kansas, 1978.
23. Nirenberg, L. and F. Treves, On local solvability of linear partial differential equations. Part I: Necessary conditions, Comm. Pure Appl. Math. 23 (1970), 1-38, Part II: Sufficient conditions, Comm. Pure Appl. Math. 23 (1970), 459-509; Correction, Comm. Pure Appl. Math. 24 (1971), 279-288.
24. Trépreau, J.M., Sur la résolubilité analytique microlocale des opérateurs pseudodifférentiels de type principal, Ph.D. thesis, Université de Reims, 1984.

Centre for Mathematical Sciences, University of Lund, Box 118, S-221 00 Lund, SweDEN

E-mail address: dencker@maths.lth.se

