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ON THE SOLVABILITY OF PSEUDODIFFERENTIAL OPERATORS

NILS DENCKER

1. Introduction

In this paper we shall study the question of local solvability of a classical pseudodiffer-

ential operator P ∈ Ψm
cl (M) on a C∞ manifold M . Thus, we assume that the symbol of

P is an asymptotic sum of homogeneous terms, and that p = σ(P ) is the homogeneous

principal symbol of P . We shall also assume that P is of principal type, which means

that the Hamilton vector field Hp and the radial vector field are linearly independent

when p = 0, thus dp 6= 0 when p = 0.

Local solvability of P at a compact set K ⊆M means that the equation

(1.1) Pu = v

has a local solution u ∈ D′(M) in a neighborhood of K for any v ∈ C∞(M) in a set

of finite codimension. One can also define microlocal solvability at any compactly based

cone K ⊂ T ∗M , see [11, Definition 26.4.3]. Hans Lewy’s famous counterexample [21]

from 1957 showed that not all smooth linear differential operators are solvable. It was

conjectured by Nirenberg and Treves [23] in 1970 that local solvability of principal type

pseudodifferential operators is equivalent to condition (Ψ), which means that

(1.2) Im(ap) does not change sign from − to +

along the oriented bicharacteristics of Re(ap)

for any 0 6= a ∈ C∞(T ∗M). The oriented bicharacteristics are the positive flow-outs of

the Hamilton vector field HRe(ap) 6= 0 on Re(ap) = 0 (also called semi-bicharacteristics).

Condition (1.2) is invariant under multiplication of p with non-vanishing factors, and

conjugation of P with elliptic Fourier integral operators, see [11, Lemma 26.4.10].

The necessity of (Ψ) for local solvability of pseudodifferential operators was proved by

Moyer [22] in 1978 for the two dimensional case, and by Hörmander [10] in 1981 for the

general case. In the analytic category, the sufficiency of condition (Ψ) for solvability of

microdifferential operators acting on microfunctions was proved by Trépreau [24] in 1984

(see also [12, Chapter VII]). The sufficiency of condition (Ψ) for solvability of pseudo-

differential operators in two dimensions was proved by Lerner [15] in 1988, leaving the

higher dimensional case open.
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For differential operators, condition (Ψ) is equivalent to condition (P ), which rules

out any sign changes of Im(ap) along the bicharacteristics of Re(ap) for non-vanishing

a ∈ C∞(T ∗M). The sufficiency of (P ) for local solvability of pseudodifferential operators

was proved in 1970 by Nirenberg and Treves [23] in the case when the principal symbol

is real analytic. Beals and Fefferman [1] proved the general case in 1973, by using a new

calculus that was later developed by Hörmander into the Weyl calculus.

In all these solvability results, one obtains a priori estimates for the adjoint operator

with loss of one derivative (compared with the elliptic case). In 1994 Lerner [16] con-

structed counterexamples to the sufficiency of (Ψ) for local solvability with loss of one

derivative in dimensions greater than two, raising doubts on whether the condition really

was sufficient for solvability. But the author proved in 1996 [4] that Lerner’s counterex-

amples are locally solvable with loss of at most two derivatives (compared with the elliptic

case). There are several other results giving local solvability under conditions stronger

than (Ψ), see [5], [13] and [17]. The Nirenberg–Treves conjecture was finally resolved

by the author [8], proving solvability with a loss of two derivatives (compared with the

elliptic case). This has been improved to a loss of arbitrarily more than 3/2 derivatives

by the author [7]. Recently Lerner [20] has improved the result to a loss of exactly 3/2

derivatives.

In this paper we shall show how the proof of [8] can be adapted to give solvability with

a loss of 3/2 derivatives, using some ideas of Lerner [20]. We shall rely on the results

of [8] and only emphasize the changes to the proofs. To get local solvability at a point x0

we shall also assume a strong form of the non-trapping condition at x0:

(1.3) p = 0 =⇒ ∂ξp 6= 0.

This means that all semi-bicharacteristics are transversal to the fiber T ∗
x0
M , which origi-

nally was the condition for principal type of Nirenberg and Treves [23]. Microlocally, we

can always obtain (1.3) after a canonical transformation.

Theorem 1.1. If P ∈ Ψm
cl (M) is of principal type and satisfies condition (Ψ) given

by (1.2) microlocally near (x0, ξ0) ∈ T ∗M , then we obtain

(1.4) ‖u‖ ≤ C(‖P ∗u‖(3/2−m) + ‖Ru‖ + ‖u‖(−1)) u ∈ C∞
0 (M).

Here R ∈ Ψ1
1,0(M) such that (x0, ξ0) /∈ WFR, which gives microlocal solvability of P

at (x0, ξ0) with a loss of at most 3/2 derivatives. If P satisfies conditions (Ψ) and (1.3)

locally near x0 ∈ M , then we obtain (1.4) with x 6= x0 in WFR, which gives local

solvability of P at x0 with a loss of at most 3/2 derivatives.
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Observe that there are no counterexamples showing a loss of more that 1+ε derivatives,

for arbitrarily small ε. The method of proof is essentially the same as in [8], but we shall

also use some improvements of Lerner [20] and Hörmander [14].

2. The multiplier estimate

Next, we shall microlocalize and reduce the proof of Theorem 1.1 to the semiclassical

multiplier estimate of Proposition 2.5 for a microlocal normal form of the adjoint operator.

We shall consider operators

(2.1) P0 = Dt + iF (t, x,Dx)

where F ∈ C∞(R,Ψ1
1,0(R

n)) has real principal symbol σ(F ) = f . In the following, we

shall assume that P0 satisfies condition (Ψ):

(2.2) f(t, x, ξ) > 0 and s > t =⇒ f(s, x, ξ) ≥ 0

for any t, s ∈ R and (x, ξ) ∈ T ∗Rn. This means that the L2 adjoint P ∗
0 satisfies

condition (Ψ). Observe that if χ ≥ 0 then χf also satisfies (2.2), thus the condition

can be localized.

Remark 2.1. We shall also consider symbols f ∈ L∞(R, S1
1,0(R

n)), that is, f(t, x, ξ) ∈
L∞(R × T ∗Rn) is bounded in S1

1,0(R
n) for almost all t. Then we say that P0 satisfies

condition (Ψ) if for every (x, ξ) condition (2.2) holds for almost all s, t ∈ R. We find that

f has a representative satisfying (2.2) for any t, s and (x, ξ) after putting f(t, x, ξ) ≡ 0

for t in a countable union of null sets.

In fact, since (x, ξ) 7→ f(t, x, ξ) is continuous for almost all t it suffices to check (2.2)

for (x, ξ) in a countable dense subset of T ∗Rn.

In order to prove Theorem 1.1 we shall make a second microlocalization using the

specialized symbol classes of the Weyl calculus, and the Weyl quantization of symbols

a ∈ S ′(T ∗Rn) defined by:

(awu, v) = (2π)−n

∫∫
exp (i〈x− y, ξ〉)a

(
x+y

2
, ξ
)
u(y)v(x) dxdydξ u, v ∈ S(Rn).

Observe that Re aw = (Re a)w is the symmetric part and i Im aw = (i Im a)w the antisym-

metric part of the operator aw. Also, if a ∈ Sm
1,0(R

n) then aw(x,Dx) = a(x,Dx) modulo

Ψm−1
1,0 (Rn) by [11, Theorem 18.5.10].

We recall the definitions of the Weyl calculus: let gw be a Riemannean metric on T ∗Rn,

w = (x, ξ), then we say that g is slowly varying if there exists c > 0 so that gw0
(w−w0) < c

implies gw
∼= gw0

, i.e., 1/C ≤ gw/gw0
≤ C. Let σ be the standard symplectic form on
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T ∗Rn, and assume gσ(w) ≥ g(w) where gσ is the dual metric of w 7→ g(σ(w)). We say

that g is σ temperate if it is slowly varying and

gw ≤ Cgw0
(1 + gσ

w(w − w0))
N w, w0 ∈ T ∗Rn.

A positive real valued function m(w) on T ∗Rn is g continuous if there exists c > 0 so

that gw0
(w − w0) < c implies m(w) ∼= m(w0). We say that m is σ, g temperate if it is

g continuous and

m(w) ≤ Cm(w0)(1 + gσ
w(w − w0))

N w, w0 ∈ T ∗Rn.

If m is σ, g temperate, then m is a weight for g and we can define the symbol classes:

a ∈ S(m, g) if a ∈ C∞(T ∗Rn) and

(2.3) |a|gj (w) = sup
Ti 6=0

|a(j)(w, T1, . . . , Tj)|∏j
1 gw(Ti)1/2

≤ Cjm(w) w ∈ T ∗Rn for j ≥ 0,

which gives the seminorms of S(m, g). If a ∈ S(m, g) then we say that the corresponding

Weyl operator aw ∈ OpS(m, g). For more on the Weyl calculus, see [11, Section 18.5].

Definition 2.2. Let m be a weight for the metric g. We say that a ∈ S+(m, g) if

a ∈ C∞(T ∗Rn) and |a|gj ≤ Cjm for j ≥ 1.

Observe that by Taylor’s formula we find that

(2.4) |a(w)−a(w0)| ≤ C1 sup
θ∈[0,1]

gwθ
(w−w0)

1/2m(wθ) ≤ C ′m(w0)(1+gσ
w0

(w−w0))
(3N+1)/2

where wθ = θw + (1 − θ)w0, which implies that m + |a| is a weight for g. Clearly,

a ∈ S(m+ |a|, g), so the operator aw is well-defined.

Lemma 2.3. Assume that mj is a weight for gj = hjg
] ≤ g] = (g])σ and aj ∈ S+(mj , gj),

j = 1, 2. Let g = g1 + g2 and h2 = sup g1/g
σ
2 = sup g2/g

σ
1 = h1h2, then

(2.5) aw
1 a

w
2 − (a1a2)

w ∈ OpS(m1m2h, g).

We also obtain the usual expansion of (2.5) with terms in S(m1m2h
k, g), k ≥ 1. We also

have that

(2.6) Re aw
1 a

w
2 − (a1a2)

w ∈ OpS(m1m2h
2, g).

if aj ∈ C∞(T ∗Rn) is real and |aj |gj

k ≤ Ckmj, k ≥ 2, for j = 1, 2. In that case we have

aj ∈ S(mj + |aj | + |aj|gj

1 , gj).

Proof. As shown after Definition 2.2 we have that mj + |aj | is a weight for gj and aj ∈
S(mj + |aj|, gj), j = 1, 2. Thus aw

1 a
w
2 ∈ OpS((m1 + |a1|)(m2 + |a2|), g) is given by

Proposition 18.5.5 in [11]. We find that aw
1 a

w
2 − (a1a2)

w = aw with

a(w) = E( i
2
σ(Dw1

, Dw2
)) i

2
σ(Dw1

, Dw2
)a1(w1)a2(w2)

∣∣
w1=w2=w
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where E(z) = (ez − 1)/z =
∫ 1

0
eθz dθ. Here σ(Dw1

, Dw2
)a1(w1)a2(w2) ∈ S(MH,G) where

M(w1, w2) = m1(w1)m2(w2), Gw1,w2
(z1, z2) = g1,w1

(z1)+g2,w2
(z2) and H2 = sup G/Gσ so

that H(w,w) = h(w). Now the proof of Theorem 18.5.5 in [11] works when σ(Dw1
, Dw2

)

is replaced by θσ(Dw1
, Dw2

), uniformly in 0 ≤ θ ≤ 1. By integrating over θ ∈ [0, 1] we

obtain that a(w) has an asymptotic expansion in S(m1m2h
k, g), which proves (2.5). If

|aj |gj

k ≤ Ckmj , k ≥ 2, then we have by Taylor’s formula as in (2.4) that

|a(w) − a(w0)| ≤ gw0
(w − w0)

1/2|aj |g1(w0) + C1 sup
θ∈[0,1]

gwθ
(w − w0)m(wθ)

≤ C ′(|aj |g1(w0) +m(w0))(1 + gσ
w0

(w − w0))
2N+1

|〈T, ∂waj(w)〉 − 〈T, ∂waj(w0)〉| ≤ C2 sup
θ∈[0,1]

gwθ
(T )1/2gwθ

(w − w0)
1/2m(wθ)

≤ C3gw0
(T )1/2m(w0)(1 + gσ

w0
(w − w0))

(4N+1)/2

thus mj + |aj| + |aj|gj

1 is a weight for gj and clearly aj ∈ S(mj + |aj| + |aj |gj

1 , gj). Now if

a1 and a2 are real, then Re aw
1 a

w
2 − (a1a2)

w = aw with

a(w) = ReE( i
2
σ(Dw1

, Dw2
))( i

2
σ(Dw1

, Dw2
))2a1(w1)a2(w2)/2

∣∣
w1=w2=w

where σ(Dw1
, Dw2

)2a1(w1)a2(w2) ∈ S(MH2, G), with the same E, M , G and H as before.

The proof of (2.6) follows in the same way as the proof of (2.5). �

Remark 2.4. The conclusions of Lemma 2.3 also hold if a1 has values in L(B1, B2) and

a2 in B1 where B1 and B2 are Banach spaces, then aw
1 a

w
2 has values in B2.

Let ‖u‖ be the L2 norm on Rn+1, and (u, v) the corresponding sesquilinear inner

product. As before, we say that f ∈ L∞(R, S(m, g)) if f(t, x, ξ) is measurable and

bounded in S(m, g) for almost all t. The following is the semiclassical estimate that we

shall prove in this note.

Proposition 2.5. Assume that P0 = Dt+if
w(t, x,Dx), with real f ∈ L∞(R, S(h−1, hg]))

satisfying condition (Ψ) given by (2.2), here 0 < h ≤ 1 and g] = (g])σ are constant. Then

there exists T0 > 0 and real valued symbols bT (t, x, ξ) ∈ L∞(R, S(h−1/2, g])
⋂
S+(1, g]))

uniformly for 0 < T ≤ T0, so that

(2.7) h1/2
(
‖bwTu‖2 + ‖u‖2

)
≤ C0T Im (P0u, b

w
Tu)

for u(t, x) ∈ S(R × Rn) having support where |t| ≤ T . The constants C0, T0 and the

seminorms of bT only depend on the seminorms of f in L∞(R, S(h−1, hg])).

Observe that it follows from (2.7) by the Cauchy-Schwarz inequality that

‖u‖ ≤ CTh−1/2‖P0u‖,
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which will give a loss of 3/2 derivatives after microlocalization. In fact, by microlocalizing

near (x0, ξ0), letting h−1 = 〈ξ0〉 = 1 + |ξ0| and doing a symplectic dilation: (x, ξ) 7→
(h−1/2x, h1/2ξ), we find that Sk

1,0 = S(h−k, hg]) and Sk
1/2,1/2 = S(h−k, g]), (g])σ = g],

k ∈ R. Proposition 2.5 will be proved at the end of Section 6.

There are two difficulties present in estimates of the type (2.7). The first is that bT is

not C∞ in the t variables, therefore one has to be careful not to involve bwT in the calculus

with symbols in all the variables. We shall avoid this problem by using tensor products

of operators and the Cauchy-Schwarz inequality. The second difficulty lies in the fact

that |bT | � h1/2, so it is not obvious that lower order terms and cut-off errors can be

controlled. To resolve this difficulty, we recall Lemma 2.6 from [8].

Lemma 2.6. The estimate (2.7) can be perturbed with terms in L∞(R, S(1, hg])) in the

symbol of P0 for small enough T , by changing bT (satisfying the same conditions). Thus

it can be microlocalized: if φ(w) ∈ S(1, hg]) is real valued and independent of t, then we

have

(2.8) Im (P0φ
wu, bwTφ

wu) ≤ Im (P0u, φ
wbwTφ

wu) + Ch1/2‖u‖2

where φwbwTφ
w satisfies the same conditions as bwT .

In the following, we shall use the norms:

(2.9) ‖u‖s = ‖〈Dx〉su‖,

and we shall prove an estimate for the microlocal normal form of the adjoint operator.

Corollary 2.7. Assume that P0 = Dt+iF
w(t, x,Dx), with Fw ∈ L∞(R,Ψ1

1,0(R
n)) having

real principal symbol f satisfying condition (Ψ) given by (2.2). Then there exists T0 >

0 and real valued symbols bT (t, x, ξ) ∈ L∞(R, S1
1/2,1/2(R

n)) with homogeneous gradient

∇bT = (∂xbT , |ξ|∂ξbT ) ∈ L∞(R, S1
1/2,1/2(R

n)) uniformly for 0 < T ≤ T0, such that

(2.10) ‖bwTu‖2
−1/2 + ‖u‖2 ≤ C0(T Im (P0u, b

w
Tu) + ‖u‖2

−1)

for u ∈ S(Rn+1) having support where |t| ≤ T . The constants T0, C0 and the seminorms

of bT only depend on the seminorms of F in L∞(R, S1
1,0(R

n)).

Since ∇bT ∈ L∞(R, S1
1/2,1/2) we find that the commutators of bwT with operators in

L∞(R,Ψ0
1,0) are in L∞(R,Ψ0

1/2,1/2). This will make it possible to localize the estimate.

The idea to use the first term in (2.7) and (2.10) is due to Lerner [20].

Proof of that Proposition 2.5 gives Corollary 2.7. Choose real symbols {φj(x, ξ) }j and

{ψj(x, ξ) }j ∈ S0
1,0(R

n) having values in `2, such that
∑

j φ
2
j = 1, ψjφj = φj and ψj ≥ 0.

We may assume that the supports are small enough so that 〈ξ〉 ∼= 〈ξj〉 in suppψj for

some ξj, and that there is a fixed bound on number of overlapping supports. Then,
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after doing a symplectic dilation (y, η) = (x〈ξj〉1/2, ξ/〈ξj〉1/2) we obtain that Sm
1,0(R

n) =

S(h−m
j , hjg

]) and Sm
1/2,1/2(R

n) = S(h−m
j , g]) in suppψj , m ∈ R, where hj = 〈ξj〉−1 ≤ 1

and g](dy, dη) = |dy|2 + |dη|2.
By using the calculus in the y variables we find φw

j P0 = φw
j P0j modulo OpS(hj, hjg

]),

where

P0j = Dt + i(ψjF )w(t, y,Dy) = Dt + ifw
j (t, y,Dy) + rw

j (t, y,Dy)

with fj = ψjf ∈ L∞(R, S(h−1
j , hjg

])) satisfying (2.2), and rj ∈ L∞(R, S(1, hjg
])) uni-

formly in j. Then, by using Proposition 2.5 and Lemma 2.6 for P0j we obtain real valued

symbols bj,T (t, y, η) ∈ L∞(R, S(h
−1/2
j , g])

⋂
S+(1, g])) uniformly for 0 < T � 1, such that

(2.11) ‖bwj,Tφw
j u‖2 + ‖φw

j u‖2 ≤ C0T (h
−1/2
j Im

(
P0u, φ

w
j b

w
j,Tφ

w
j u
)

+ ‖u‖2) ∀ j

for u ∈ S having support where |t| ≤ T . By substituting ψw
j u in (2.11) we obtain that

(2.12) ‖bwj,Tφw
j ψ

w
j u‖2 + ‖φw

j ψ
w
j u‖2 ≤ C0T (h

−1/2
j Im

(
P0ψ

w
j u, φ

w
j b

w
j,Tφ

w
j ψ

w
j u
)

+ ‖ψw
j u‖2)

for u ∈ S having support where |t| ≤ T . Here

h
−1/2
j Im

(
P0ψ

w
j u, φ

w
j b

w
j,Tφ

w
j ψ

w
j u
)

= h
−1/2
j 〈[P0, ψ

w
j ]u, φw

j b
w
j,Tφ

w
j ψ

w
j u〉 + 〈P0u,B

w
j,Tu〉

where Bw
j,T = h

−1/2
j ψw

j φ
w
j b

w
j,Tφ

w
j ψ

w
j ∈ OpS(h−1, g]) is symmetric. Now [P0, ψ

w
j ] = [Fw, ψw

j ]

and the calculus give that
{
h
−1/2
j bwj,Tφ

w
j [Fw, ψw

j ]
}

j
∈ Ψ0

1,0(R
n) with values in `2 for almost

all t, which gives
∑

j

h
−1/2
j 〈[P0, ψ

w
j ]u, φw

j b
w
j,Tφ

w
j ψ

w
j u〉 ≤ C‖u‖2.

Now,
∑

j φ
2
j = 1 and φjψj = φj so the calculus gives

‖u‖2 ≤
∑

j

‖φw
j ψ

w
j u‖2 + C‖u‖2

−1.

Let bwT =
∑

j B
w
j,T ∈ L∞(R,Ψ1

1/2,1/2), then we find by the finite bound on the overlap of

the supports that

bwT 〈Dx〉−1bwT =
∑

|j−k|≤N

Bw
j,T 〈Dx〉−1Bw

k,T modulo Ψ0(Rn)

for some N , thus

‖bwTu‖2
−1/2 = ‖〈Dx〉−1/2bwTu‖2 ≤ CN

(
∑

j

‖Bw
j,Tu‖2

−1/2 + ‖u‖2

)
.

We also have 〈Dx〉−1/2h
−1/2
j ψw

j φ
w
j ∈ Ψ0(Rn) uniformly which gives

‖Bw
j,Tu‖−1/2 ≤ C‖bwj,Tψw

j φ
w
j u‖.

Thus, by summing up we obtain

(2.13) ‖bwTu‖2
−1/2 + ‖u‖2 ≤ C1

(
T (Im (P0u, b

w
Tu) + ‖u‖2) + ‖u‖2

−1

)
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for u ∈ S having support where |t| ≤ T . The homogeneous gradient ∇bT ∈ S1
1/2,1/2 since

bT =
∑

j h
−1/2
j bj,Tφ

2
j ∈ S1

1/2,1/2 modulo S0
1/2,1/2, where φj ∈ S(1, hjg

]) is supported where

〈ξ〉 ' h−1
j and bj,T ∈ S+(1, g]) for almost all t. For small enough T we obtain (2.10) and

the corollary. �

Proof that Corollary 2.7 gives Theorem 1.1. We shall prove that there exists φ and ψ ∈
S0

1,0(T
∗M) such that φ = 1 in a conical neighborhood of (x0, ξ0), ψ = 1 on supp φ, and

for any T > 0 there exists RT ∈ S1
1,0(M) with the property that WFRw

T

⋂
T ∗

x0
M = ∅ and

(2.14) ‖φwu‖ ≤ C1

(
‖ψwP ∗u‖(3/2−m) + T‖u‖

)
+ ‖Rw

T u‖ + C0‖u‖(−1) u ∈ C∞
0 (M).

Here ‖u‖(s) is the Sobolev norm and the constants are independent of T . Then for small

enough T we obtain (1.4) and microlocal solvability, since (x0, ξ0) /∈ WF(1− φ)w. In the

case that P satisfies condition (Ψ) and ∂ξp 6= 0 near x0 we may choose finitely many

φj ∈ S0
1,0(M) such that

∑
φj ≥ 1 near x0 and ‖φw

j u‖ can be estimated by the right hand

side of (2.14) for some suitable ψ and RT . By elliptic regularity, we then obtain the

estimate (1.4) for small enough T .

By multiplying with an elliptic pseudodifferential operator, we may assume thatm = 1.

Let p = σ(P ), then it is clear that it suffices to consider w0 = (x0, ξ0) ∈ p−1(0), otherwise

P ∗ ∈ Ψ1
cl(M) is elliptic near w0 and we easily obtain the estimate (2.14). It is clear that

we may assume that ∂ξ Re p(w0) 6= 0, in the microlocal case after a conical transformation.

Then, we may use Darboux’ theorem and the Malgrange preparation theorem to obtain

microlocal coordinates (t, y; τ, η) ∈ T ∗Rn+1 so that w0 = (0, 0; 0, η0), t = 0 on T ∗
x0
M

and p = q(τ − if) in a conical neighborhood of w0, where f ∈ C∞(R, S1
1,0) is real and

homogeneous satisfying condition (2.2), and 0 6= q ∈ S0
1,0, see Theorem 21.3.6 in [11]. By

conjugation with elliptic Fourier integral operators and using the Malgrange preparation

theorem successively on lower order terms, we obtain that

(2.15) P ∗ = Qw(Dt + i (χF )w) +Rw

microlocally in a conical neighborhood Γ of w0 (see the proof of Theorem 26.4.7′ in [11]).

Here Q ∈ S0
1,0(R

n+1) and R ∈ S1
1,0(R

n+1), such that Qw has principal symbol q 6= 0 in Γ

and Γ
⋂

WFRw = ∅. Moreover, χ(τ, η) ∈ S0
1,0(R

n+1) is equal to 1 in Γ, |τ | ≤ C|η| in

suppχ(τ, η), and Fw ∈ C∞(R,Ψ1
1,0(R

n)) has real principal symbol f satisfying (2.2). By

cutting off in the t variable we may assume that f ∈ L∞(R, S1
1,0(R

n)). We shall choose φ

and ψ so that supp φ ⊂ suppψ ⊂ Γ and

φ(t, y; τ, η) = χ0(t, τ, η)φ0(y, η)

where χ0(t, τ, η) ∈ S0
1,0(R

n+1), φ0(y, η) ∈ S0
1,0(R

n), t 6= 0 in supp ∂tχ0, |τ | ≤ C|η| in

suppχ0 and |τ | ∼= |η| in supp ∂τ,ηχ0.
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Since q 6= 0 and R = 0 on suppψ it is no restriction to assume that Q ≡ 1 and

R ≡ 0 when proving the estimate (2.14). Now, by Theorem 18.1.35 in [11] we may

compose C∞(R,Ψm
1,0(R

n)) with operators in Ψk
1,0(R

n+1) having symbols vanishing when

|τ | ≥ c(1 + |η|), and we obtain the usual asymptotic expansion in Ψm+k−j
1,0 (Rn+1) for

j ≥ 0. Since |τ | ≤ C|η| in suppφ and χ = 1 on suppψ, it suffices to prove (2.14) for

P ∗ = P0 = Dt + iFw.

By using Corollary 2.7 on φwu, we obtain that

(2.16) ‖bwTφwu‖2
−1/2 + ‖φwu‖2

≤ C0T (Im (φwP0u, b
w
Tφ

wu) + Im ([P0, φ
w]u, bwTφ

wu)) + C1‖u‖2
(−1)

where bwT ∈ L∞(R,Ψ1
1/2,1/2(R

n)) is symmetric with ∇bT ∈ L∞(R, S1
1/2,1/2(R

n)). We find

[P0, φ
w] = −i∂tφ

w +{ f, φ }w ∈ Ψ0
1,0(R

n+1) modulo Ψ−1
1,0(R

n+1) by the expansion. For any

u, v ∈ S(Rn) we have that

(2.17) | (v, bwTu) | = |
(
〈Dy〉1/2v, 〈Dy〉−1/2bwTu

)
| ≤ C(‖v‖2

(1/2) + ‖bwTu‖2
−1/2)

since ‖〈Dy〉1/2v‖ ≤ ‖v‖(1/2), 〈Dy〉 = 1 + |Dy|. Now φw = φwψw modulo Ψ−2
1,0(R

n+1), thus

we find from (2.17) that

(2.18) | (φwP0u, b
w
Tφ

wu) | ≤ C(‖ψwP0u‖2
(1/2) + ‖bwTφwu‖2

−1/2)

where the last term can be cancelled for small enough T in (2.16). We also have to

estimate the commutator term Im ([P0, φ
w]u, bwTφ

wu) in (2.16). Since φ = χ0φ0 we find

that { f, φ } = φ0 { f, χ0 }+χ0 { f, φ0 }, where φ0 { f, χ0 } = R0 ∈ S0
1,0(R

n+1) is supported

when |τ | ∼= |η| and ψ = 1. Now (τ + if)−1 ∈ S−1
1,0(R

n+1) when |τ | ∼= |η|, thus by [11,

Theorem 18.1.35] we find that Rw
0 = Aw

1 ψ
wP0 modulo Ψ−1

1,0(R
n+1) where A1 = R0(τ +

if)−1 ∈ S−1
1,0(R

n+1). As before, we find from (2.17) that

(2.19) | (Rw
0 u, b

w
Tφ

wu) | ≤ C(‖Rw
0 u‖2

(1/2) + ‖bwTφwu‖2
−1/2)

≤ C0(‖ψwP0u‖2
(−1/2) + ‖bwTφwu‖2

−1/2)

and | (∂tφ
wu, bwTφ

wu) | ≤ ‖Rw
1 u‖2 + ‖bwTφwu‖2

−1/2 by (2.17), where Rw
1 = 〈Dy〉1/2∂tφ

w ∈
Ψ

1/2
1,0 (Rn+1), thus t 6= 0 in WFRw

1 .

It remains to estimate the term Im (({ f, φ0 }χ0)
wu, bwTφ

wu), where ({ f, φ0 }χ0)
w =

{ f, φ0 }w χw
0 and φw = φw

0 χ
w
0 modulo Ψ−1

1,0(R
n+1). As in (2.17) we find

| (Rwu, bwT v) | = |
(
〈Dy〉Rwu, 〈Dy〉−1bwT v

)
| ≤ C(‖u‖2 + ‖v‖2)

for R ∈ S−1
1,0(R

n+1), thus we find

| Im (({ f, φ0 }χ0)
wu, bwTφ

wu) | ≤ | Im ({ f, φ0 }w χw
0 u, b

w
Tφ

w
0 χ

w
0 u) | + C‖u‖2.
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The calculus gives bwTφ
w
0 = (bTφ0)

w and 2i Im ((bTφ0)
w { f, φ0 }w) = { bTφ0, { f, φ0 } }w = 0

modulo L∞(R,Ψ0
1/2,1/2(R

n)) since ∇(bTφ0) ∈ L∞(R, S1
1/2,1/2(R

n)). We obtain

(2.20) | Im ({ f, φ0 }w χw
0 u, b

w
Tφ

w
0 χ

w
0 u) | ≤ C‖χw

0 u‖2 ≤ C ′‖u‖2

and the estimate (2.14) for small enough T , which completes the proof of Theorem 1.1. �

It remains to prove Proposition 2.5, which will be done at the end of Section 6. The

proof involves the construction of a multiplier bwT , and it will occupy most of the remaining

part of the paper.

In the following, we let ‖u‖(t) be the L2 norm of x 7→ u(t, x) in Rn for fixed t,

and (u, v) (t) the corresponding sesquilinear inner product. Let B = B(L2(Rn)) be the

set of bounded operators L2(Rn) 7→ L2(Rn). We shall use operators which depend

measurably on t.

Definition 2.8. We say that t 7→ A(t) is weakly measurable if A(t) ∈ B for all t and

t 7→ A(t)u is weakly measurable for every u ∈ L2(Rn), i.e., t 7→ (A(t)u, v) is measurable

for any u, v ∈ L2(Rn). We say that A(t) ∈ L∞
loc(R,B) if t 7→ A(t) is weakly measurable

and locally bounded in B.

If A(t) ∈ L∞
loc(R,B), then we find that the function t 7→ (A(t)u, v) ∈ L∞

loc(R) has weak

derivative d
dt

(Au, v) ∈ D′(R) for any u, v ∈ S(Rn) given by

d
dt

(Au, v) (φ) = −
∫

(A(t)u, v)φ′(t) dt φ(t) ∈ C∞
0 (R).

If u(t), v(t) ∈ L∞
loc(R, L

2(Rn)) and A(t) ∈ L∞
loc(R,B), then we find t 7→ (A(t)u(t), v(t)) ∈

L∞
loc(R) is measurable. We shall use the following multiplier estimate, which is given by

Proposition 2.9 in [8] (see also [15] and [17] for similar estimates).

Proposition 2.9. Let P0 = Dt + iF (t) with F (t) ∈ L∞
loc(R,B). Assume that B(t) =

B∗(t) ∈ L∞
loc(R,B), such that

(2.21) d
dt

(Bu, u) + 2 Re (Bu, Fu) ≥ (mu, u) in D′(I) ∀ u ∈ S(Rn)

where m(t) = m∗(t) ∈ L∞
loc(R,B) and I ⊆ R is open. Then we have

(2.22)

∫
(mu, u) dt ≤ 2

∫
Im (Pu,Bu) dt

for u ∈ C1
0(I,S(Rn)).

3. The symbol classes

In this section we shall define the symbol classes we shall use. Assume that f ∈
L∞(R, S(h−1, hg])) satisfies (2.2), here 0 < h ≤ 1 and g] = (g])σ are constant. By

changing h we obtain that |∂wf | ≤ h−1/2 which we assume in what follows. The results are
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uniform in the usual sense, they only depend on the seminorms of f in L∞(R, S(h−1, hg])).

Let

X+(t) = {w ∈ T ∗Rn : ∃ s ≤ t, f(s, w) > 0 }(3.1)

X−(t) = {w ∈ T ∗Rn : ∃ s ≥ t, f(s, w) < 0 } .(3.2)

Clearly, X±(t) are open in T ∗Rn, X+(s) ⊆ X+(t) and X−(s) ⊇ X−(t) when s ≤ t. By

condition (Ψ) we obtain that X−(t)
⋂
X+(t) = ∅ and ±f(t, w) ≥ 0 when w ∈ X±(t), ∀ t.

Let X0(t) = T ∗Rn \ (X+(t)
⋃
X−(t)) which is closed in T ∗Rn. By the definition of X±(t)

we have f(t, w) = 0 when w ∈ X0(t). Let

(3.3) d0(t0, w0) = inf
{
g](w0 − z)1/2 : z ∈ X0(t0)

}

be is the g] distance in T ∗Rn to X0(t0) for fixed t0, it is equal to +∞ in the case that

X0(t0) = ∅.

Definition 3.1. We define the signed distance function δ0(t, w) by

(3.4) δ0 = sgn(f) min(d0, h
−1/2),

where d0 is given by (3.3) and

(3.5) sgn(f)(t, w) =

{±1, w ∈ X±(t)

0, w ∈ X0(t)

so that sgn(f)f ≥ 0.

Definition 3.2. We say that w 7→ a(w) is Lipschitz continuous on T ∗Rn with respect to

the metric g] if |a(w) − a(z)| ≤ Cg](w − z)1/2 for any z, w.

It is clear that the signed distance function w 7→ δ0(t, w) given by Definition 3.1 is

Lipschitz continuous with respect to the metric g], ∀ t, with Lipschitz constant equal

to 1, see Proposition 3.3 in [8]. We also find that t 7→ δ0(t, w) is non-decreasing, 0 ≤ δ0f ,

|δ0| ≤ h−1/2 and |δ0| = d0 when |δ0| < h−1/2.

In the following, we shall treat t as a parameter which we shall suppress, and we shall

denote f ′ = ∂wf and f ′′ = ∂2
wf . We shall also in the following assume that we have

choosen g] orthonormal coordinates so that g](w) = |w|2.

Definition 3.3. Let G1 = H1g
] where

(3.6) H
−1/2
1 = 1 + |δ0| +

|f ′|
|f ′′| + h1/4|f ′|1/2 + h1/2

.

We have that

(3.7) 1 ≤ H
−1/2
1 ≤ 1 + |δ0| + h−1/4|f ′|1/2 ≤ 3h−1/2
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since |f ′| ≤ h−1/2 and |δ0| ≤ h−1/2. Moreover, |f ′| ≤ H
−1/2
1 (|f ′′|+h1/4|f ′|1/2 +h1/2) so by

the Cauchy-Schwarz inequality we obtain

(3.8) |f ′| ≤ 2|f ′′|H−1/2
1 + 3h1/2H−1

1 ≤ C2H
−1/2
1 .

Definition 3.4. Let

(3.9) M = |f | + |f ′|H−1/2
1 + |f ′′|H−1

1 + h1/2H
−3/2
1

then we have that h1/2 ≤M ≤ C3h
−1.

Proposition 3.5. We find that H
−1/2
1 is Lipschitz continuous, G1 is σ temperate such

that G1 = H2
1G

σ
1 and

(3.10) H1(w) ≤ C0H1(w0)(1 +H1(w)g](w − w0)).

We have that M is a weight for G1 such that f ∈ S(M,G1) and

(3.11) M(w) ≤ C1M(w0)(1 +H1(w0)g
](w − w0))

3/2.

In the case when 1 + |δ0(w0)| ≤ H
−1/2
1 (w0)/2 we have |f ′(w0)| ≥ h1/2,

(3.12) |f (k)(w0)| ≤ Ck|f ′(w0)|H
k−1

2

1 (w0) k ≥ 1,

and 1/C ≤ |f ′(w)|/|f ′(w0| ≤ C when |w − w0| ≤ cH
−1/2
1 (w0) for some c > 0.

Proof. The Proposition follows from [8, Proposition 3.7] except for the Lipschitz conti-

nuity of H
−1/2
1 . Since the first terms of (3.6) are Lipschitz continuous, we only have to

prove that

|f ′|/(|f ′′| + h1/4|f ′|1/2 + h1/2) = E/D

is Lipschitz. Since this is a local property, it suffices to prove this when |∆w| = |w−w0| ≤
1. Then we have that D(w) ∼= D(w0), in fact D2 ∼= h + h1/2|f ′| + |f ′′|2 so

D2(w) ≤ C(D2(w0) + |f ′′(w0)|h1/2 + h) ≤ C ′D2(w0)

when |∆w| ≤ 1. We find that
∣∣∣∣∆

E

D

∣∣∣∣ =
∣∣∣∣
E(w)

D(w)
− E(w0)

D(w0)

∣∣∣∣ ≤
|∆E|
D(w)

+
E(w0)|∆D|
D(w)D(w0)

.

Taylor’s formula gives that

(3.13) |∆E| ≤ (|f ′′(w)| + Ch1/2)|∆w| ≤ CD(w)

when |∆w| ≤ 1. We shall show that E(w0)|∆D| ≤ CD(w)D(w0)|∆w|, which is trivial if

E(w0) = 0. Else, we have

|∆|f ′′|| ≤ Ch1/2|∆w| ≤ CD2(w0)|∆w|/E(w0) ≤ C ′D(w0)D(w)||∆w|/E(w0)
I–12



when |∆w| ≤ 1 since h1/2 ≤ D2/E and D(w0) ≤ CD(w). Finally, we have

h1/4|∆|f ′|1/2| ≤ h1/4|∆E|/(|f ′(w0)|1/2 + |f ′(w)|1/2)

≤ Ch1/4|f ′(w0)|1/2D(w)|∆w|/|f ′(w0)| ≤ CD(w0)D(w)|∆w|/E(w0)

when |∆w| ≤ 1 by (3.13). This completes the proof of Proposition 3.5. �

We obtain the following result from Propositions 3.9 and.10 in [8].

Proposition 3.6. We have that M ≤ CH−1
1 , which gives that f ∈ S(H−1

1 , G1). We also

obtain that

(3.14) 1/C ≤M/(|f ′′|H−1
1 + h1/2H

−3/2
1 ) ≤ C.

When |δ0| ≤ κ0H
−1/2
1 and H

1/2
1 ≤ κ0 for 0 < κ0 sufficiently small, we find

(3.15) 1/C1 ≤M/|f ′|H−1/2
1 ≤ C1.

There exists κ1 > 0 so that if 〈δ0〉 = 1 + |δ0| ≤ κ1H
−1/2
1 then

(3.16) f = α0δ0

where κ1MH1/2 ≤ α0 ∈ S(MH
1/2
1 , G1), which implies that δ0 = f/α0 ∈ S(H

−1/2
1 , G1).

4. The Weight function

In this section, we shall define the weight m1 we shall use. Let δ0(t, w) and H
−1/2
1 (t, w)

be given by Definitions 3.1 and 3.3 for f ∈ L∞(R, S(h−1, hg])) satisfying condition (Ψ)

given by (2.2) such that |f ′| ≤ h−1/2. The weight m1 will essentially measure how much

t 7→ δ0(t, w) changes between the minima of t 7→ H
1/2
1 (t, w)〈δ0(t, w)〉2, which will give

restrictions on the sign changes of the symbol. As before, we assume that we have choosen

g] orthonormal coordinates so that g](w) = |w|2, and the results will only depend on the

seminorms of f .

Definition 4.1. For (t, w) ∈ R × T ∗Rn we let

(4.1) m1(t, w) = inf
t1≤t≤t2

{
|δ0(t1, w) − δ0(t2, w)|

+ max
(
H

1/2
1 (t1, w)〈δ0(t1, w)〉2, H1/2

1 (t2, w)〈δ0(t2, w)〉2
)
/2
}

where 〈δ0〉 = 1 + |δ0|.

Remark 4.2. When t 7→ δ0(t, w) is constant for fixed w, we find that t 7→ m1(t, w) is

equal to the largest quasi-convex minorant of t 7→ H
1/2
1 (t, w)〈δ0(t, w)〉2/2, i.e., supI m1 =

sup∂I m1 for compact intervals I ⊂ R, see [12, Definition 1.6.3].

The main difference between the present note and [8] is the use of H
1/2
1 〈δ0〉2 in the

definition of m1 instead of H
1/2
1 〈δ0〉.
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Proposition 4.3. We have that m1 ∈ L∞(R × T ∗Rn), such that w 7→ m1(t, w) is

uniformly Lipschitz continous, ∀ t, and

(4.2) h1/2〈δ0〉2/6 ≤ m1 ≤ H
1/2
1 〈δ0〉2/2 ≤ 〈δ0〉/2.

We may choose t1 ≤ t0 ≤ t2 so that

(4.3) max
j=0,1,2

〈δ0(tj, w0)〉 ≤ 2 min
j=0,1,2

〈δ0(tj, w0)〉.

and

(4.4) H
1/2
0 = max(H

1/2
1 (t1, w0), H

1/2
1 (t2, w0))

satisfies

(4.5) H
1/2
0 < 16m1(t0, w0)/〈δ0(tj , w0)〉2 for j = 0, 1, 2.

If m1(t0, w0) ≤ %〈δ0(t0, w0)〉 for % � 1, then we may choose g] orthonormal coordinates

so that w0 = (x1, 0), |x1| < 2〈δ0(t0, w0)〉 < 32%H
−1/2
0 , and

sgn(w1)f(t0, w) ≥ 0 when |w1| ≥ (m1(t0, w0) +H
1/2
0 |w′|2)/c0(4.6)

|δ0(t1, w) − δ0(t2, w)| ≤ (m1(t0, w0) +H
1/2
0 |w − w0|2)/c0(4.7)

when |w| ≤ c0H
−1/2
0 . The constant c0 only depends on the seminorms of f .

Observe that condition (4.6) is not empty when m1(t0, w0) ≤ %〈δ0(t0, w0)〉, for % suffi-

ciently small, because of (4.5).

Proof. If we let

F (s, t, w) = |δ0(s, w) − δ0(t, w)| + max(H
1/2
1 (s, w)〈δ0(s, w)〉2, H1/2

1 (t, w)〈δ0(t, w)〉2)/2

then we find that w 7→ F (s, t, w) is uniformly Lipschitz continuous. In fact, it suffices to

show this when |∆w| = |w − w0| � 1, and then H
−1/2
1 and 〈δ0〉 only vary with a fixed

factor. The first term |δ0(s, w) − δ0(t, w)| is obviously uniformly Lipschitz continuous.

We have for fixed t that

∣∣∣∆(H
1/2
1 〈δ0〉2)

∣∣∣ ≤ C(〈δ0〉2|∆H1/2
1 | +H

1/2
1 〈δ0〉|∆δ0|)

where H
1/2
1 〈δ0〉 ≤ 1 and |∆H1/2

1 | ≤ CH1|∆H−1/2
1 | ≤ C ′H1|∆w| by Proposition 3.5,

which gives the uniform Lipschitz continuity of F (s, t, w). By taking the infimum, we

obtain (4.2) and the uniform Lipschitz continuity of m1. In fact, h1/2/3 ≤ H
1/2
1 by (3.7)

and since t 7→ δ0(t, w) is monotone, we find that t 7→ 〈δ0(t, w)〉 is quasi-convex. Thus

h1/2〈δ0(t0, w0)〉/6 ≤ F (s, t, w0) when s ≤ t0 ≤ t.
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By approximating the infimum, we may choose t1 ≤ t0 ≤ t2 so that F (t1, t2, w0) <

m1(t0, w0) + h1/2/6. Since h1/2/6 ≤ m1 ≤ H
1/2
1 〈δ0〉2/2 by (4.2), we find that

|δ0(t1, w0) − δ0(t2, w0)| < m1(t0, w0) ≤ 〈δ0(t0, w0)〉/2 and(4.8)

H
1/2
1 (tj, w0)〈δ0(tj , w0)〉2/2 < 2m1(t0, w0) for j = 1 and 2.(4.9)

Since t 7→ δ0(t, w0) is monotone, we obtain (4.3) from (4.8), and (4.5) from (4.9) and (4.3).

Next assume that m1(t0, w0) ≤ %〈δ0(t0, w0)〉 for some 0 < % ≤ 1. Then we find

from (4.5) that

(4.10) 1 + |δ0(tj , w0)| < 16%H
−1/2
0 for j = 0, 1, 2.

Choose g] orthonormal coordinates so that w0 = 0. Since 〈δ0(tj, 0)〉 < 16%H
−1/2
1 (tj, 0)

by (4.10), we find from Proposition 3.5 that

h1/2 ≤ |∂wf(tj, 0)| ∼= |∂wf(tj, w)| for |w| ≤ cH
−1/2
0 ≤ cH

−1/2
1 (tj, 0), j = 1, 2

when % � 1. Since H
−1/2
0 ≤ 3h−1/2 we find that f(tj , w̃j) = 0 for some |w̃j| < 16%H

−1/2
0

by (4.10) when % < 1/48 and j = 1, 2. Thus, when 16% ≤ c we obtain that

|f(tj, w)| ≤ C|∂wf(tj, 0)|H−1/2
0 when |w| < cH

−1/2
0

and then (3.12) gives f(tj , w) ∈ S(|∂wf(tj, 0)|H−1/2
0 , H0g

]) since H
1/2
1 (tj , 0) ≤ H

1/2
0 , j =

1, 2. Choose coordinates z = H
1/2
0 w, we shall use Proposition 4.3 in [8] with

fj(z) = H
1/2
0 f(tj, H

−1/2
0 z)/|∂wf(tj , 0)| ∈ C∞ for j = 1, 2.

Let δj(z) = H
1/2
0 δ0(tj , H

−1/2
0 z) be the signed distance functions to f−1

j (0), then |f ′
j(0)| =

1, |δj(0)| < 16% and

|δ1(0) − δ2(0)| = ε < H
1/2
0 m1(t0, 0) ≤ H

1/2
0 〈δ0(t0, 0)〉/2 < 8%

by (4.8) and (4.10). Thus, for sufficiently small % we may use [8, Proposition 4.3] to

obtain g] orthogonal coordinates (z1, z
′) so that w0 = z0 = (y1, 0), |y1| = |δ1(0)| and

{
sgn(z1)fj(z) ≥ 0 when |z1| ≥ (ε+ |z′|2)/c0
|δ1(z) − δ2(z)| ≤ (ε+ |z − z0|2)/c0

when |z| ≤ c0. Let x1 = H
−1/2
0 y1 then |x1| < 2〈δ0(t0, 0)〉 < 32%H

−1/2
0 by (4.3) and (4.10).

We then obtain (4.6)–(4.7) by condition (Ψ), since H
−1/2
0 ε < m1(t0, 0). �

Proposition 4.4. There exists C > 0 such that

(4.11) m1(t0, w) ≤ Cm1(t0, w0)(1 + |w − w0|/〈δ0(t0, w0)〉)3

thus m1 is a weight for g].

Proof. Since m1 ≤ 〈δ0〉/2 we only have to consider the case when

(4.12) m1(t0, w0) ≤ %〈δ0(t0, w0)〉
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for some % > 0. In fact, otherwise we have

m1(t0, w) ≤ 〈δ0(t0, w)〉/2 < m1(t0, w0)(1 + |w − w0|/〈δ0(t0, w0)〉)/2%

since the Lipschitz continuity of w 7→ δ0(t0, w) gives

(4.13) 〈δ0(t, w)〉 ≤ 〈δ0(t, w0)〉(1 + |w − w0|/〈δ0(t, w0)〉) ∀ t.

If (4.12) is satisfied for % � 1, we may use Proposition 4.3 to obtain t1 ≤ t0 ≤ t2 such

that (4.3), (4.5) and (4.7) hold with H
1/2
0 = max(H

1/2
1 (t1, w0), H

1/2
1 (t2, w0)).

Now, for fixed w0 it suffices to prove (4.11) when

(4.14) |w − w0| ≤ %H
−1/2
0

for some % > 0. In fact, when |w − w0| > %H
−1/2
0 we obtain from (4.12) that

|w − w0|2/〈δ0(t0, w0)〉2 > %2H−1
0 /〈δ0(t0, w0)〉2 > %2〈δ0(t0, w0)〉2/256m2

1(t0, w0)

≥ %2〈δ0(t0, w0)〉m1(t0, w)/64〈δ0(t0, w)〉m1(t0, w0)

since 〈δ0〉 ≥ 2m1. By (4.13) we obtain that (4.11) is satisfied with C = 64/%2. Thus in

the following we shall only consider w such that (4.14) is satisfied for % � 1. We find

by (4.5) and (4.7) that

(4.15) |δ0(t1, w) − δ0(t2, w)| ≤ (m1(t0, w0) +H
1/2
0 |w − w0|2)/c0

< 16m1(t0, w0)(1 + |w − w0|2/〈δ0(t0, w0)〉2)/c0

when |w − w0| ≤ c0H
−1/2
0 . Now G1 is slowly varying, uniformly in t, thus we find for

small enough % > 0 that

H
1/2
1 (tj , w) ≤ CH

1/2
1 (tj , w0) when |w − w0| ≤ %H

−1/2
0 ≤ %H

−1/2
1 (tj, w0)

for j = 1, 2. By (4.13) and (4.3) we obtain that

(4.16) H
1/2
1 (tj , w)〈δ0(tj, w)〉2 ≤ 4CH

1/2
1 (tj, w0)〈δ0(tj , w0)〉2(1 + |w − w0|/〈δ0(t0, w0)〉)2

when j = 1, 2, and |w − w0| ≤ c0H
−1/2
0 . Now H

1/2
1 (tj , w0)〈δ0(tj, w0)〉2 < 16m1(t0, w0)

by (4.5) for j = 1, 2. Thus, by using (4.15), (4.16) and taking the infimum we obtain

m1(t0, w) ≤ C0m1(t0, w0)(1 + |w − w0|/〈δ0(t0, w0)〉)2

when |w − w0| ≤ %H
−1/2
0 for %� 1. �

The following result will be important for the proof of Proposition 2.5 in Section 6.

Proposition 4.5. Let M be given by Definition 3.4 and m1 by Definition 4.1. Then

there exists C0 > 0 such that

(4.17) MH
3/2
1 ≤ C0m1/〈δ0〉2.
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Proof of Proposition 4.5. We shall omit the dependence on t in the proof. Observe that

since h1/2〈δ0〉2/6 ≤ m1 we find that (4.17) is equivalent to

(4.18) |f ′′|H1/2
1 ≤ Cm1/〈δ0〉2

by Proposition 3.6. First we note that if m1 ≥ c〈δ0〉 > 0, then MH
3/2
1 〈δ0〉2 ≤ C〈δ0〉 ≤

Cm1/c since 〈δ0〉 ≤ H
−1/2
1 and M ≤ CH−1

1 by Proposition 3.6.

Thus, we only have to consider the case m1 ≤ %〈δ0〉 at w0 for some % > 0 to be chosen

later. Then we may use Proposition 4.3 for % � 1 to choose g] orthonormal coordinates

so that |w0| < 2〈δ0(w0)〉 < 32%H
−1/2
0 and f satisfies (4.6) with

(4.19) h1/2/3 ≤ H
1/2
0 < 16m1(w0)/〈δ0(w0)〉2 ≤ 8H

1/2
1 (w0)

by (4.5) and (4.2). Thus it suffices to prove the estimate

(4.20) |f ′′|H1/2
1 ≤ CH

1/2
0

at w0. Now it actually suffices to prove (4.20) at w = 0. In fact, (3.10) gives

H1(w0) ≤ C0H1(0)(1 +H1(w0)|w0|2) ≤ 5C0H1(0)

since |w0| < 2〈δ0(w0)〉 ≤ 2H
−1/2
1 (w0). Thus Taylor’s formula gives

(4.21)

|f ′′(w0)|H1/2
1 (w0) ≤

(
|f ′′(0)| + C3h

1/2|w0|
)
H

1/2
1 (w0) ≤ C1(|f ′′(0)|H1/2

1 (w0) + h1/2)

since |f (3)| ≤ C3h
1/2. By Definition 3.3 we find that

H
−1/2
1 ≥ 1 + |f ′|/(|f ′′| + h1/4|f ′|1/2 + h1/2)

≥ (|f ′| + |f ′′| + h1/2)/(|f ′′| + h1/4|f ′|1/2 + h1/2),

thus (4.20) follows if we prove

(4.22) |f ′′|(|f ′′| + h1/4|f ′|1/2 + h1/2) ≤ C
(
|f ′| + |f ′′| + h1/2

)
H

1/2
0 at 0.

Since h1/2/3 ≤ H
1/2
0 we obtain (4.22) by the Cauchy-Schwarz inequality if we prove that

(4.23) |f ′′(0)| ≤ C(H
1/4
0 |f ′(0)|1/2 + h1/2).

Let F (z) = H0f(H
−1/2
0 z), then (4.6) gives

sgn(z1)F (z) ≥ 0 when |z1| ≥ ε+ |z′|2/r and |z| ≤ r

where r = c0 and

ε = H
1/2
0 m1(w0)/c0 ≤ 16m2

1(w0)/c0〈δ0(w0)〉2 ≤ 16%2/c0 ≤ c0/5

by (4.19) when % ≤ c0/4
√

5 which we shall assume. Proposition 4.2 in [8] then gives that

|F ′′(0)| ≤ C1

(
|F ′(0)|/%0 +H

−1/2
0 h1/2%0

)
ε ≤ %0 ≤ c0/

√
10
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since ‖F (3)‖∞ ≤ C3H
−1/2
0 h1/2. Observe that |F ′(0)| ≤ C2 since H

1/2
0 ≤ 8H

1/2
1 (w0) ≤

CH
1/2
1 (0) and |f ′(0)| ≤ CH

−1/2
1 (0). Choose

%0 = ε+ λ|F ′(0)|1/2 ≤ c0/
√

10

with λ = c0(
√

10 − 2)/10
√
C2, then we obtain that

|F ′′(0)| ≤ C2(|F ′(0)|1/2 + h1/2m1(w0))

since H
−1/2
0 ≤ 3h−1/2 and ε = H

1/2
0 m1(w0)/c0. If h1/2m1(w0) ≤ |F ′(0)|1/2 then we

obtain (4.23) since F ′ = H
1/2
0 f ′ and F ′′ = f ′′. If |F ′(0)|1/2 ≤ h1/2m1(w0), then we find

|f ′′(0)| ≤ 2C2h
1/2m1(w0) ≤ 4C2m1(w0)/〈δ0(w0)〉.

Thus (4.18) follows from (4.21) since H
1/2
1 (w0) ≤ 〈δ0(w0)〉−1, which completes the proof

of the proposition. �

The following convexity property of t 7→ m1(t, w) will be essential for the proof. For a

proof, see the proof of Proposition 5.7 in [8].

Proposition 4.6. Let m1 be given by Definition 4.1. Then

(4.24) sup
t1≤t≤t2

m1(t, w) ≤ δ0(t2, w) − δ0(t1, w) +m1(t1, w) +m1(t2, w) ∀w.

Next, we shall construct the pseudo-sign B = δ0 + %0, which we shall use in Section 6

to prove Proposition 2.5 with the multiplier bw = BWick.

Proposition 4.7. Assume that δ0 is given by Definition 3.1 and m1 is given by Defi-

nition 4.1. Then for T > 0 there exists real valued %T (t, w) ∈ L∞(R × T ∗Rn) with the

property that w 7→ %T (t, w) is uniformly Lipschitz continuous, and

|%T | ≤ m1(4.25)

T∂t(δ0 + %T ) ≥ m1/2 in D′(R)(4.26)

when |t| < T .

This follows from Proposition 5.8 in [8]. Since

(4.27) %T (t, w) = sup
−T≤s≤t

(
δ0(s, w) − δ0(t, w) +

1

2T

∫ t

s

m1(r, w) dr−m1(s, w)

)

the uniformly Lipschitz continuity w 7→ %T (t, w) is clear.

5. The Wick quantization

In order to define the multiplier we shall use the Wick quantization. As before, we

shall assume that g] = (g])σ and the coordinates chosen so that g](w) = |w|2. For

a ∈ L∞(T ∗Rn) we define the Wick quantization:

aWick(x,Dx)u(x) =

∫

T ∗Rn

a(y, η)Σw
y,η(x,Dx)u(x) dydη u ∈ S(Rn)
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using the orthonormal projections Σw
y,η(x,Dx) with Weyl symbol

Σy,η(x, ξ) = π−n exp(−g](x− y, ξ − η))

(see [5, Appendix B] or [17, Section 4]). We find that aWick: S(Rn) 7→ S ′(Rn) so that

(5.1) a ≥ 0 =⇒
(
aWick(x,Dx)u, u

)
≥ 0 u ∈ S(Rn)

(aWick)∗ = (a)Wick and ‖aWick(x,Dx)‖L(L2(Rn)) ≤ ‖a‖L∞(T ∗Rn), which is the main advan-

tage with the Wick quantization (see [17, Proposition 4.2]). If at(x, ξ) ∈ L∞(R× T ∗Rn)

depends on a parameter t, then we find that

(5.2)

∫

R

(
aWick

t u, u
)
φ(t) dt =

(
AWick

φ u, u
)

u ∈ S(Rn)

where Aφ(x, ξ) =
∫
R
at(x, ξ)φ(t) dt. We obtain from the definition that aWick = aw

0 where

(5.3) a0(w) = π−n

∫

T ∗Rn

a(z) exp(−|w − z|2) dz

is the Gaussian regularization, thus Wick operators with real symbols have real Weyl

symbols.

In the following, we shall assume that G = Hg] ≤ g] is a slowly varying metric

satisfying

(5.4) H(w) ≤ C0H(w0)(1 + |w − w0|)N0

and m is a weight for G satisfying (5.4) with H replaced by m. This means that G and

m are strongly σ temperate in the sense of [2, Definition 7.1]. Recall the symbol class

S+(1, g]) given by Definition 2.2. The following result follows from Proposition 6.1 and

Lemma 6.2 in [8].

Proposition 5.1. Assume that a ∈ L∞(T ∗Rn) such that |a| ≤ Cm, then aWick = aw
0

where a0 ∈ S(m, g]) is given by (5.3). If a ≥ m we obtain that a0 ≥ c0m for a fixed

constant c0 > 0. If a ∈ S(m,G) then a0 = a modulo symbols in S(mH,G). If |a| ≤ Cm

and a = 0 in a fixed G ball with center w, then a ∈ S(mHN , G) at w for any N . If a is

Lipschitz continuous then we have a0 ∈ S+(1, g]). If a(t, w) and µ(t, w) ∈ L∞(R×T ∗Rn)

and ∂ta(t, w) ≥ µ(t, w) in D′(R) for almost all w ∈ T ∗Rn, then we find
(
∂t(a

Wick)u, u
)
≥

(
µWicku, u

)
in D′(R) when u ∈ S(Rn).

By localization we find, for example, that if |a| ≤ Cm and a ∈ S(m,G) in a G neighbor-

hood of w0, then a0 = a modulo S(mH,G) in a smaller G neighborhood of w0. Observe

that the results are uniform in the metrics and weights. We also have the following result

about the composition of Wick operators.
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Proposition 5.2. Assume that a and b ∈ L∞(T ∗Rn). If |a| ≤ m1 and |b′| ≤ m2, where

mj are weights for g] satisfying (5.4), then

(5.5) aWickbWick = (ab)Wick + rw

with r ∈ S(m1m2, g
]). If a and b are real such that |a| ≤ m1 and |b′′| ≤ m2, then

(5.6) Re aWickbWick =

(
ab− 1

2
a′ · b′

)Wick

+ Rw

with R ∈ S(m1m2, g
]).

Observe that since b′ is Lipschitz continuous, a′ · b′ is well defined. Proposition 5.2

essentially follows from Proposition 3.4 in [19] and Lemma A.1.5 in [20] but we shall for

completeness give a proof.

Proof. By Proposition 5.1 we have aWickbWick = aw
0 b

w
0 in (5.5) where a0 ∈ S(m1, g

]) and

b0 ∈ S+(m2, g
]). By Lemma 2.3 we find aWickbWick = (a0b0)

w modulo OpS(m1m2, g
]),

where

(5.7) a0(w)b0(w) = π−2n

∫∫
a(w + z1)b(w + z2)e

−|z1|2−|z2|2 dz1dz2.

By using the Taylor formula we find that b(w + z2) = b(w + z1) + r1(w, z1, z2) where

|r1(w, z1, z2)| ≤ Cm2(w)(1 + |z1| + |z2|)N by (5.4). Integration in z2 then gives (5.5).

For the proof of (5.6) we use that Re aw
0 b

w
0 = (a0b0)

w modulo OpS(m1m2, g
]) by

Lemma 2.3, since a0 and b0 are real and b′′0 ∈ S(m2, g
]). We use the Taylor formula

again:

b(w + z2) = b(w + z1) + b′(w + z1) · (z2 − z1) + r2(w, z1, z2)

where |r2(w, z1, z2)| ≤ Cm2(w)(1 + |z1| + |z2|)N . The term with z2 is odd and gives a

vanishing contribution in (5.7). Since ∂z1
e−|z1|2−|z2|2 = −2z1e

−|z1|2 we obtain (5.6) after

an integration by parts, since |ab′′| ≤ m1m2. �

Example 5.3. If a ∈ S(H
−1/2
1 , g]), a′ ∈ S(1, g]) and b ∈ S(M,G1), then Re aWickbWick =

(ab)Wick modulo OpS(MH
1/2
1 , g]).

We shall compute the Weyl symbol for the Wick operator (δ0 + %T )Wick, where %T is

given by Proposition 4.7. In the following we shall suppress the t variable.

Proposition 5.4. Let B = δ0+%0, where δ0 is given by Definition 3.1 and %0 is real valued

and Lipschitz continuous, satisfying |%0| ≤ m1, with m1 ≤ 〈δ0〉/2 given by Definition 4.1.

Then we find

BWick = bw
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where b = δ1 + %1 is real, δ1 ∈ S(H
−1/2
1 , g])

⋂
S+(1, g]), and %1 ∈ S(m1, g

])
⋂
S+(1, g]).

Also, there exists κ2 > 0 so that δ1 = δ0 modulo S(H
1/2
1 , G1) when 〈δ0〉 ≤ κ2H

−1/2
1 . For

any λ > 0 we find that |δ0| ≥ λH
−1/2
1 and H

1/2
1 ≤ λ/3 imply that |B| ≥ λH

−1/2
1 /3.

Proof. Let δWick
0 = δw

1 and %Wick
0 = %w

1 . Since |δ0| ≤ H
−1/2
1 , |%0| ≤ m1 and the symbols

are real valued, we obtain from Proposition 5.1 that δ1 ∈ S(H
−1/2
1 , g]) and %1 ∈ S(m1, g

])

are real valued. Since δ0 and %0 are uniformly Lipschitz continuous, we find that δ1 and

%1 ∈ S+(1, g]) by Proposition 5.1.

If 〈δ0〉 ≤ κH
−1/2
1 at w0 for sufficiently small κ > 0, then we find by the Lipschitz conti-

nuity of δ0 and the slow variation of G1 that 〈δ0〉 ≤ C0κH
−1/2
1 in a fixed G1 neighborhood

ωκ of w0 (depending on κ). For κ � 1 we find that δ0 ∈ S(H
−1/2
1 , G1) in ωκ by Proposi-

tion 3.6, which implies that δ1 = δ0 modulo S(H
1/2
1 , G1) near w0 by Proposition 5.1 after

localization.

When |δ0| ≥ λH
−1/2
1 ≥ λ > 0 at w0, then we find that

|%0| ≤ m1 ≤ 〈δ0〉/2 ≤ (1 +H
1/2
1 /λ)|δ0|/2.

We obtain that |%0| ≤ 2|δ0|/3 and |B| ≥ |δ0|/3 ≥ λH
−1/2
1 /3 when H

1/2
1 ≤ λ/3, which

completes the proof. �

Let m1 be given by Definition 4.1, then m1 is a weight for g] according to Propo-

sition 4.4. We are going to use the symbol classes S(mk
1, g

]), k ∈ R. The following

proposition shows that the operator mWick
1 dominates all operators in OpS(m1, g

]).

Proposition 5.5. If c ∈ S(m1, g
]) then there exists a positive constant C0 such that

(5.8) |〈cwu, u〉| ≤ C0

(
mWick

1 u, u
)

u ∈ S(Rn).

Here C0 only depends on the seminorms of c ∈ S(m1, g
]) and f ∈ L∞(R, S(h−1, hg])).

Proof. We shall use an argument by Hörmander [14]. Let 0 < % ≤ 1

(5.9) M%(w0) = sup
w
m1(w)/(1 + %|w − w0|)3

then m1 ≤M% ≤ Cm1/%
3 and

(5.10) M%(w) ≤ CM%(w0)(1 + %|w − w0|)3 uniformly in 0 < % ≤ 1

by (4.11) and the triangle inequality. Thus, M% is a weight for g% = %2g], uniformly in %.

Take 0 ≤ χ ∈ C∞
0 (T ∗Rn) such that

∫
T ∗Rn χ(w) dw > 0 and let

m%(w) = %−2n

∫
χ(%(w − z))M%(z) dz.

Then by (5.10) we find 1/C0 ≤ m%/M% ≤ C0, and |∂αm%| ≤ Cα%
|α|m% thusm% ∈ S(m%, g%)

uniformly in 0 < % ≤ 1. Let mWick
% = µw

% then Proposition 5.1 gives m%/c ≤ µ% ∈
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S(m%, g%) uniformly in 0 < % ≤ 1 (in fact, this follows directly from (5.3)). Sincem1
∼= m%,

we may replace mw
1 with mWick

% = µw
% in (5.8) for any fixed % > 0.

Let a% = µ
−1/2
% ∈ S(m

−1/2
% , g]

%) with 0 < % ≤ 1 to be chosen later. Since g% is uniformly

σ temperate, g%/g
σ
% = %4, m% is uniformly σ, g% temperate, and µ

±1/2
% ∈ S(m

±1/2
% , g%)

uniformly, the calculus gives that aw
% (a−1

% )w = 1 + rw
% where r%/%

2 ∈ S(1, g]) uniformly

for 0 < % ≤ 1. Similarly, we find that aw
% µ

w
% a

w
% = 1 + sw

% where s%/%
2 ∈ S(1, g]) uniformly.

We obtain that the L2 operator norms

‖rw
% ‖L(L2) + ‖sw

% ‖L(L2) ≤ C%2 ≤ 1/2

for sufficiently small %. By fixing such a value of % we find that 1/2 ≤ aw
% µ

w
% a

w
% ≤ 2 and

(5.11)
1

2
‖u‖ ≤ ‖aw

% (a−1
% )wu‖ ≤ 2‖u‖

thus u 7→ aw
% (a−1

% )wu is an homeomorphism on L2. The estimate (5.8) then follows from

|〈cwaw
% (a−1

% )wu, aw
% (a−1

% )wu〉| ≤ C〈µw
% a

w
% (a−1

% )wu, aw
% (a−1

% )wu〉

which holds since aw
% c

waw
% ∈ OpS(1, g]) is bounded in L2. Observe that the bounds only

depend on the seminorms of c in S(m1, g
]), since % and a% are fixed. �

6. The lower bounds

In this section we shall obtain a proof of Proposition 2.5 by giving lower bounds on

Re bwT f
w, where bwT = BWick

T is given by Proposition 5.4. In the following, we shall omit

the t variable and assume the coordinates chosen so that g](w) = |w|2. The results will

hold for almost all |t| ≤ T and only depend on the seminorms of f in L∞(R, S(h−1, hg])).

Proposition 6.1. Let B = δ0+%0, where δ0 is given by Definition 3.1 and %0 is real valued

and Lipschitz continuous, satisfying |%0| ≤ m1, with m1 ≤ 〈δ0〉/2 given by Definition 4.1.

Then we have

(6.1) Re
(
fwBWicku, u

)
≥ (Cwu, u) ∀ u ∈ S(Rn)

where C ∈ S(m1, g
]).

Proof. We shall localize in T ∗Rn with respect to the metric G1 = H1g
], and estimate the

localized operators. We shall use the neighborhoods

(6.2) ωw0
(ε) =

{
w : |w − w0| < εH

−1/2
1 (w0)

}
for w0 ∈ T ∗Rn.

We may in the following assume that ε is small enough so that w 7→ H1(w) and w 7→ M(w)

only vary with a fixed factor in ωw0
(ε). Then by the uniform Lipschitz continuity of

w 7→ δ0(w) we can find κ0 > 0 with the following property: for 0 < κ ≤ κ0 there exist
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positive constants cκ and εκ so that for any w0 ∈ T ∗Rn we have

|δ0(w)| ≤ κH
−1/2
1 (w) w ∈ ωw0

(εκ) or(6.3)

|δ0(w)| ≥ cκH
−1/2
1 (w) w ∈ ωw0

(εκ).(6.4)

In fact, we have by the Lipschitz continuity that |δ0(w) − δ0(w0)| ≤ εκH
−1/2
1 (w0) when

w ∈ ωw0
(εκ). Thus, if εκ � κ we obtain that (6.3) holds when |δ0(w0)| � κH

−1/2
1 (w0)

and (6.4) holds when |δ0(w0)| ≥ cκH
−1/2
1 (w0).

By shrinking κ0 we may assume that M ∼= |f ′|H−1/2
1 when |δ0| ≤ κ0H

−1/2
1 and H

1/2
1 ≤

κ0 according to Proposition 3.6. Let κ1 be given by Proposition 3.6, κ2 by Proposition 5.4,

and let εκ and cκ be given by (6.3)–(6.4) for κ = min(κ0, κ1, κ2)/2. Using Proposition 5.4

with λ = cκ we find that

(6.5) |B| ≥ cκH
−1/2
1 /3 in ωw0

(εκ)

if H
1/2
1 ≤ cκ/3 and (6.4) holds in ωw0

(εκ).

Choose real symbols {ψj(w) }j and {Ψj(w) }j ∈ S(1, G1) with values in `2, such that
∑

k ψ
2
j ≡ 1, ψjΨj = ψj, Ψj = φ2

j ≥ 0 for some {φj(w) }j ∈ S(1, G1) with values in `2 so

that

supp φj ⊆ ωj = ωwj
(εκ).

We have that BWick = bw where b = δ1 + %1 is given by Proposition 5.4.

Lemma 6.2. We find that Aj = Ψjfb ∈ S(MH
−1/2
1 , g])

⋂
S+(M, g]) uniformly in j, and

(6.6) Re(fwbw) =
∑

j

ψw
j A

w
j ψ

w
j modulo OpS(m1, g

]).

We have Aw
j = Re fw

j b
w modulo OpS(m1, g

]) uniformly in j, where fj = Ψjf .

Proof. Since b ∈ S(H
−1/2
1 , g])

⋂
S+(1, g]) we obtain thatAj ∈ S(MH

−1/2
1 , g])

⋂
S+(M, g])

uniformly in j. Proposition 4.5 gives that

(6.7) MH
3/2
1 〈δ0〉2 ≤ Cm1

thus we may ignore terms in OpS(MH
3/2
1 〈δ0〉2, g]). Now, since b ∈ S(H

−1/2
1 , g]), {ψk }k ∈

S(1, G1) has values in `2 and Ak ∈ S(MH
−1/2
1 , g]) uniformly, we find by Lemma 2.3

and Remark 2.4 that the symbols of fwbw, fw
j b

w and
∑

k ψ
w
k A

w
k ψ

w
k have expansions in

S(MH
j/2
1 , g]). Observe that in the domains ωj where H

1/2
1 ≥ c > 0, we find that the

symbols of
∑

k ψ
w
k A

w
k ψ

w
k , fw

j b
w and bwfw are in S(MH

3/2
1 , g]) giving the result in this case.

Thus we may assume H
1/2
1 ≤ κ2/2 in what follows. We shall consider the neighborhoods

where (6.3) or (6.4) holds.

If (6.4) holds then we find that 〈δ0〉 ∼= H
−1/2
1 so S(MH

1/2
1 , g]) ⊆ S(m1, g

]) in ωj

by (6.7). Since b ∈ S+(1, g]) and Aj ∈ S+(M, g]) we find that the symbols of both fwbw

and
∑

k ψ
w
k A

w
k ψ

w
k are equal to

∑
k ψ

2
kAk = fb modulo S(MH

1/2
1 , g]) in ωj . We also find
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that the symbol of fw
j b

w is equal to Aj modulo S(MH
1/2
1 , g]), which proves the result in

this case.

Next, we consider the case when (6.3) holds with κ = min(κ0, κ1, κ2)/2 and H
1/2
1 ≤

κ2/2 in ωj. Then 〈δ0〉 ≤ κ2H
−1/2
1 so b = δ1 + %1 ∈ S(H

−1/2
1 , G1) + S(m1, g

]) in ωj by

Proposition 5.4. We obtain from Lemma 2.3 that the symbol of Re(fwbw − (fb)w) is

in S(MH
3/2
1 , G1) + S(MH1m1, g

]) ⊆ S(m1, g
]) in ωj since M ≤ CH−1

1 . Similarly, we

find that Aw
j = Re fw

j b
w modulo S(m1, g

]). Since Aj ∈ S(MH
−1/2
1 , G1) + S(Mm1, g

])

uniformly, we find that the symbol of
∑

k ψ
w
k A

w
k ψ

w
k is equal to bf modulo S(m1, g

]) in ωj ,

which proves (6.6) and Lemma 6.2. �

In order to estimate the localized operator we shall use the following

Lemma 6.3. If Aj = Ψjfb then there exists Cj ∈ S(m1, g
]) uniformly, such that

(6.8)
(
Aw

j u, u
)
≥
(
Cw

j u, u
)

u ∈ S(Rn).

We obtain from (6.6) and (6.8) that

Re (fwbwu, u) ≥
∑

j

(
ψw

j C
w
j ψ

w
j u, u

)
+ (Rwu, u) u ∈ S(Rn)

where
∑

j ψ
w
j C

w
j ψ

w
j and Rw ∈ OpS(m1, g

]), which gives Proposition 6.1. �

Proof of Lemma 6.3. As before we are going to consider the cases when H
1/2
1

∼= 1 or

H
1/2
1 � 1, and when (6.3) or (6.4) holds in ωj = ωwj

(εκ) for κ = min(κ0, κ1, κ2)/2. When

H
1/2
1 ≥ c > 0 we find that Aj ∈ S(MH

3/2
1 , g]) ⊆ S(m1, g

]) uniformly by (6.7) which gives

the lemma with Cj = Aj in this case. Thus, we may assume that

(6.9) H
1/2
1 ≤ κ4 = min(κ0, κ1, κ2, κ3)/2 in ωj

with κ3 = 2cκ/3 so that (6.5) follows from (6.4).

First, we consider the case when (6.3) holds with κ = min(κ0, κ1, κ2)/2 and H
1/2
1 ≤

κ4 ≤ κ in ωj. Then 〈δ0〉 ≤ 2κH
−1/2
1 so we obtain from Proposition 3.6 thatM ∼= |f ′|H−1/2

1

and δ0 ∈ S(H
−1/2
1 , G1) in ωj . We shall use an argument of Lerner [20]. We have that

bw = (δ0 + %0)
Wick = BWick, where |%0| ≤ m1 ≤ H1/2〈δ0〉2/2 by (4.2). Also, Lemma 6.2

gives Aj = Re fw
j B

Wick modulo OpS(m1, g
]).

Take χ(t) ∈ C∞(R) such that 0 ≤ χ(t) ≤ 1, |t| ≥ 2 in suppχ(t) and χ(t) = 1 for

|t| ≥ 3. Let χ0 = χ(δ0), then 2 ≤ |δ0| and 〈δ0〉/|δ0| ≤ 3/2 in suppχ0, thus

(6.10) 1 + χ0%0/δ0 ≥ 1 − χ0〈δ0〉/2|δ0| ≥ 1/4.

Since |δ0| ≤ 3 in supp(1 − χ0) we find by Proposition 5.4 that

BWick = (δ0 + χ0%0)
Wick
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modulo OpS(m1/〈δ0〉, g]) ⊆ OpS(H1/2〈δ0〉, g]) by (4.2). Since |χ0%0/δ0| ≤ 3H
1/2
1 〈δ0〉/4

we find from (5.5) that

BWick = δWick
0 BWick

0 modulo OpS(H
1/2
1 〈δ0〉, g]).

where B0 = 1 + χ0%0/δ0. Proposition 5.1 gives (χ0%0/δ0)
Wick ∈ OpS(H

1/2
1 〈δ0〉, g]) and

δWick
0 = δw

1 where δ1 = δ0 +γ with γ ∈ S(H
−1/2
1 , g])

⋂
S+(1, g]) such that γ ∈ S(H

1/2
1 , G1)

in ωj. Thus Lemma 2.3 gives

(6.11) BWick = δWick
0 BWick

0 = δw
0 B

Wick
0 + cw modulo OpS(H

1/2
1 〈δ0〉, g])

where c ∈ S(H
−1/2
1 , g]) such that supp c

⋂
ωj = ∅.

We find from Proposition 3.6 that f = α0δ0, where κ1MH
1/2
1 ≤ α0 ∈ S(MH

1/2
1 , G1),

so α
1/2
0 ∈ S(M1/2H

1/4
1 , G1). Let

aj = α
1/2
0 φjδ0 ∈ S(M1/2H

−1/4
1 , G1).

Since fj = Ψjf = φ2
jf the calculus gives

(6.12) aw
j (α

1/2
0 φj)

w = fw
j modulo OpS(MH1, G1).

Similarly, we find that fw
j c

w ∈ OpS(MH
3/2
1 , g]) and

(6.13) Re fw
j δ

w
0 = aw

j a
w
j modulo OpS(MH

3/2
1 , G1)

with imaginary part in OpS(MH
1/2
1 , G1). We obtain from (6.11) and (6.12) that

(6.14) fw
j B

Wick = fw
j (δw

0 B
Wick
0 + cw + rw) = fw

j δ
w
0 B

Wick
0 + aw

j R
w
j modulo OpS(m1, g

])

where r ∈ S(H
1/2
1 〈δ0〉, g]) which gives Rj = (α

1/2
0 φj)

wrw ∈ S(M1/2H3/4〈δ0〉, g]). Since

ReFB = Re(ReF )B + i[ImF,B]

when B∗ = B, we find from (6.13) that

(6.15) Re fw
j δ

w
0 B

Wick
0 = Re(aw

j a
w
j B

Wick
0 ) modulo OpS(m1, g

]).

In fact, B0 = 1 + χ0%0/δ0 and (χ0%0/δ0)
Wick ∈ OpS(H

1/2
1 〈δ0〉, g]), thus

[aw, BWick
0 ] = [aw, (χ0%0/δ0)

Wick] ∈ OpS(MH
3/2
1 〈δ0〉, g])

when a ∈ S(MH
1/2
1 , G1). Similarly, since aj ∈ S(M1/2H

−1/4
1 , G1) we find that

(6.16) aw
j a

w
j B

Wick
0 = aw

j (BWick
0 aw

j + sw
j ) modulo OpS(m1, g

])

where sj ∈ S(M1/2H3/4〈δ0〉, g]). Since B0 ≥ 1/4 we find from (6.14)–(6.16) that

Re fw
j B

Wick ≥ 1

4
aw

j a
w
j + Re aw

j S
w
j modulo OpS(m1, g

])

where Sj ∈ S(M1/2H3/4〈δ0〉, g]). Completing the square, we find

Aw
j = Re fw

j B
Wick ≥ 1

4

(
aw

j + 2Sw
j

)∗ (
aw

j + 2Sw
j

)
≥ 0 modulo OpS(m1, g

])

since (Sw
j )∗Sw

j ∈ OpS(MH
3/2
1 〈δ0〉2, g]). This gives (6.8) and the lemma in this case.
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Finally, we consider the case when H
1/2
1 ≤ κ4 and (6.4) holds in ωj. Since |δ0(w)| ≥

cκH
−1/2
1 (w), we find 〈δ0〉 ∼= H

−1/2
1 in ωj. As before we may ignore terms in S(MH

1/2
1 , g]) ⊆

S(MH
3/2
1 〈δ0〉2, g]) in ωj by (6.7). We find from (6.5) that sgn(f)B ≥ 0 in ωj , thus

fjB ≥ 0. Since fj ∈ S(M,G1), we find fw
j = fWick

j modulo OpS(MH1, G1) by Proposi-

tion 5.1, thus we may replace fw
j with fWick

j . We find from Example 5.3 that

Aw
j = Re fWick

j BWick = (fjB)Wick ≥ 0 modulo OpS(MH
1/2
1 , g]).

This completes the proof of Lemma 6.3. �

We shall finish the paper by giving a proof of Proposition 2.5.

Proof of Proposition 2.5. Let f ∈ L∞(R, S(h−1, hg])) be real valued satisfying condi-

tion (Ψ) given by (2.2). By changing h, we may assume that |∂wf | ≤ h−1/2. Let

BT = δ0 + %T , where δ0 + %T is the Lipschitz continuous pseudo-sign for f given by

Proposition 4.7 for 0 < T ≤ 1, so that |%T | ≤ m1 ≤ 〈δ0〉/2 and

(6.17) ∂t(δ0 + %T ) ≥ m1/2T in D′
(
]−T , T [

)
.

We put BT ≡ 0 when |t| > T , then that BWick
T = bwT where bT (t, w) ∈ L∞(R, S(H

−1/2
1 , g])

⋂
S+(1, g])) uniformly by Proposition 5.4. We find by Proposition 5.1 and (6.17) that

(6.18)
(
∂tB

Wick
T u, u

)
≥
(
mWick

1 u, u
)
/2T in D′

(
]−T , T [

)

when u ∈ S(Rn). By Proposition 6.1, we find for almost all t ∈ [−T, T ] that

(6.19) Re
(
(fwBWick

T )
∣∣
t
u, u
)

= (Cw(t)u, u) u ∈ S(Rn)

with C(t) ∈ S(m1, g
]) uniformly. Proposition 5.5 gives C0 > 0 so that

(6.20) | (Cw(t)u, u) | ≤ C0

(
mWick

1 u, u
)

for u ∈ S(Rn) and |t| ≤ T . We find from (6.18)–(6.20) that

(∂tb
w
Tu, u) + 2 Re (bwTu, f

wu) ≥ (1/2T − 2C0)
(
mWick

1 u, u
)

in D′
(
]−T , T [

)

for u ∈ S(Rn).

Since |BT | ≤ |δ0| + m1 ≤ 3〈δ0〉/2 and h1/2〈δ0〉2/6 ≤ m1 by (4.2), we find that bT ∈
S(h−1/4m1

1/2, g]) so h1/2((bwT )2 + 1) ∈ OpS(m1, g
]) and Proposition 5.5 gives

(6.21) h1/2(‖bwTu‖2 + ‖u‖2) ≤ C1

(
mWick

1 u, u
)

u ∈ S(Rn).

Finally, using Proposition 2.9 with P0 = Dt + ifw(t, x,Dx), B = BWick
T = bwT and m =

mWick
1 /4T we obtain that

C−1
1 h1/2

∫
‖bwTu‖2 + ‖u‖2 dt ≤

∫ (
mWick

1 u, u
)
dt ≤ 8T

∫
Im (P0u, b

w
Tu) dt

if u ∈ S(R × Rn) has support where |t| < T ≤ 1/8C0. This completes the proof of

Proposition 2.5. �
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