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ON THE SOLVABILITY OF PSEUDODIFFERENTIAL OPERATORS

NILS DENCKER

1. INTRODUCTION

In this paper we shall study the question of local solvability of a classical pseudodiffer-
ential operator P € W7 (M) on a C* manifold M. Thus, we assume that the symbol of
P is an asymptotic sum of homogeneous terms, and that p = o(P) is the homogeneous
principal symbol of P. We shall also assume that P is of principal type, which means
that the Hamilton vector field H, and the radial vector field are linearly independent
when p = 0, thus dp # 0 when p = 0.

Local solvability of P at a compact set K C M means that the equation

has a local solution u € D'(M) in a neighborhood of K for any v € C*(M) in a set
of finite codimension. One can also define microlocal solvability at any compactly based
cone K C T*M, see [11, Definition 26.4.3]. Hans Lewy’s famous counterexample [21]
from 1957 showed that not all smooth linear differential operators are solvable. It was
conjectured by Nirenberg and Treves [23] in 1970 that local solvability of principal type

pseudodifferential operators is equivalent to condition (V), which means that

(1.2) Im(ap) does not change sign from — to +

along the oriented bicharacteristics of Re(ap)

for any 0 # a € C*(T*M). The oriented bicharacteristics are the positive flow-outs of
the Hamilton vector field Hge(qp) 7 0 on Re(ap) = 0 (also called semi-bicharacteristics).
Condition (1.2) is invariant under multiplication of p with non-vanishing factors, and

conjugation of P with elliptic Fourier integral operators, see [11, Lemma 26.4.10].

The necessity of (W) for local solvability of pseudodifferential operators was proved by
Moyer [22] in 1978 for the two dimensional case, and by Hormander [10] in 1981 for the
general case. In the analytic category, the sufficiency of condition (W) for solvability of
microdifferential operators acting on microfunctions was proved by Trépreau [24] in 1984
(see also [12, Chapter VII]). The sufficiency of condition (V) for solvability of pseudo-
differential operators in two dimensions was proved by Lerner [15] in 1988, leaving the

higher dimensional case open.
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For differential operators, condition (V) is equivalent to condition (P), which rules
out any sign changes of Im(ap) along the bicharacteristics of Re(ap) for non-vanishing
a € C®°(T*M). The sufficiency of (P) for local solvability of pseudodifferential operators
was proved in 1970 by Nirenberg and Treves [23] in the case when the principal symbol
is real analytic. Beals and Fefferman [1] proved the general case in 1973, by using a new
calculus that was later developed by Hormander into the Weyl calculus.

In all these solvability results, one obtains a priori estimates for the adjoint operator
with loss of one derivative (compared with the elliptic case). In 1994 Lerner [16] con-
structed counterexamples to the sufficiency of (¥) for local solvability with loss of one
derivative in dimensions greater than two, raising doubts on whether the condition really
was sufficient for solvability. But the author proved in 1996 [4] that Lerner’s counterex-
amples are locally solvable with loss of at most two derivatives (compared with the elliptic
case). There are several other results giving local solvability under conditions stronger
than (¥), see [5], [13] and [17]. The Nirenberg—Treves conjecture was finally resolved
by the author [8], proving solvability with a loss of two derivatives (compared with the
elliptic case). This has been improved to a loss of arbitrarily more than 3/2 derivatives
by the author [7]. Recently Lerner [20] has improved the result to a loss of exactly 3/2
derivatives.

In this paper we shall show how the proof of [8] can be adapted to give solvability with
a loss of 3/2 derivatives, using some ideas of Lerner [20]. We shall rely on the results
of [8] and only emphasize the changes to the proofs. To get local solvability at a point x

we shall also assume a strong form of the non-trapping condition at z:
(1.3) p=0 = 0p#0.

This means that all semi-bicharacteristics are transversal to the fiber T;; M, which origi-
nally was the condition for principal type of Nirenberg and Treves [23]. Microlocally, we

can always obtain (1.3) after a canonical transformation.

Theorem 1.1. If P € V(M) is of principal type and satisfies condition (V) given
by (1.2) microlocally near (zo,&y) € T*M, then we obtain

(1.4) ul] < C(|P*ull/2—m) + | Rull + [Jull—y)  ue C5°(M).

Here R € Wi (M) such that (xo,&) ¢ WF R, which gives microlocal solvability of P
at (o, &) with a loss of at most 3/2 derivatives. If P satisfies conditions (V) and (1.3)
locally near zo € M, then we obtain (1.4) with x # zo in WF R, which gives local

solvability of P at xo with a loss of at most 3/2 derivatives.
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Observe that there are no counterexamples showing a loss of more that 14 derivatives,
for arbitrarily small €. The method of proof is essentially the same as in [8], but we shall

also use some improvements of Lerner [20] and Hérmander [14].

2. THE MULTIPLIER ESTIMATE

Next, we shall microlocalize and reduce the proof of Theorem 1.1 to the semiclassical
multiplier estimate of Proposition 2.5 for a microlocal normal form of the adjoint operator.

We shall consider operators
(2.1) Py =Dy +iF(t,x,D,)

where F' € C*(R, ¥ ,(R")) has real principal symbol o(F) = f. In the following, we

shall assume that Py satisfies condition (V):
(2.2) ft,z,§) >0 and s >t = f(s,2,§) >0

for any ¢, s € R and (x,£) € T*R™ This means that the L? adjoint P} satisfies
condition (¥). Observe that if y > 0 then yf also satisfies (2.2), thus the condition

can be localized.

Remark 2.1. We shall also consider symbols f € L>®(R, 51170(R”)), that is, f(t,x,§) €
L>®(R x T*R") is bounded in S} (R") for almost all t. Then we say that Py satisfies
condition (V) if for every (x,€) condition (2.2) holds for almost all s, t € R. We find that
f has a representative satisfying (2.2) for any t, s and (x,§) after putting f(t,x,&) =0

for t in a countable union of null sets.

In fact, since (z,€) — f(t,x,&) is continuous for almost all ¢ it suffices to check (2.2)

for (x,€) in a countable dense subset of T*R™.

In order to prove Theorem 1.1 we shall make a second microlocalization using the
specialized symbol classes of the Weyl calculus, and the Weyl quantization of symbols

a € §'(T*R") defined by:

(a"u,v) = (2m)™" // exp (i{z — y,&))a(Z2, &) u(y)v(z) dedyd  u,v € S(R™).

Observe that Rea™ = (Rea)" is the symmetric part and i Im a” = (i Im a)® the antisym-
metric part of the operator a*. Also, if a € STH(R") then a"(xz, D,) = a(z, D,) modulo
U (R™) by [11, Theorem 18.5.10].

We recall the definitions of the Weyl calculus: let g, be a Riemannean metric on T*R",
w = (x,&), then we say that g is slowly varying if there exists ¢ > 0 so that g,,, (w—wp) < ¢

implies g = Guy, 1-€., 1/C < guw/guw, < C. Let o be the standard symplectic form on
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T*R", and assume ¢°(w) > g(w) where g7 is the dual metric of w +— g(o(w)). We say

that g is o temperate if it is slowly varying and
G < Cguy(1+ g% (w — we))Y w, wy € T*R™.

A positive real valued function m(w) on T*R™ is g continuous if there exists ¢ > 0 so
that gu,(w — wp) < ¢ implies m(w) = m(wy). We say that m is o, g temperate if it is

g continuous and
m(w) < Cm(we)(1+ g5 (w —wo))N  w, we € T*R™

If m is 0, g temperate, then m is a weight for g and we can define the symbol classes:
a€ S(m,g)if a € C*(T*R") and

D(w, Ty, ... T;
(2.3) |alf(w) = sup la (1;»)’ = T il <
T,0 1 9w(T)

Cym(w) we T*R" for j >0,

which gives the seminorms of S(m, g). If a € S(m, g) then we say that the corresponding
Weyl operator a® € Op S(m, g). For more on the Weyl calculus, see [11, Section 18.5].

Definition 2.2. Let m be a weight for the metric g. We say that a € S*(m,g) if
a € C*(T*R") and |alf < Cym for j > 1.

Observe that by Taylor’s formula we find that

(24) |a(w)—a(wo)| < Cy sup g, (w—wo)"*m(wy) < C'm(wo)(1+ g5, (w—wp)) N+
0€[0,1]

where wy = 0w + (1 — 6)wy, which implies that m + |a| is a weight for g. Clearly,
a € S(m+lal,g), so the operator a® is well-defined.

Lemma 2.3. Assume that m; is a weight for g; = h;g* < ¢* = (¢*)° and a; € ST(m;, g;),
j=1,2. Let g= g1+ g2 and h* = sup g1/ g3 = sup g2/g7 = hihs, then

(2.5) atay — (a1az)" € Op S(mymah, g).

We also obtain the usual expansion of (2.5) with terms in S(mimah®, g), k > 1. We also
have that

(2.6) Reayay — (aja)” € Op S(mimah?, g).

if a; € C°(T*R") is real and |a;|7’ < Cym;, k > 2, for j =1, 2. In that case we have
a; € S(m; +|a;| +|a;7’, g5)-

Proof. As shown after Definition 2.2 we have that m; + |a;| is a weight for g; and a; €

S(m; + lajl,g;), 7 = 1, 2. Thus a¥’ay € OpS((m1 + |a1])(me + |az|),g) is given by
Proposition 18.5.5 in [11]. We find that a{’ay — (aja2)” = a* with

a(w) = E(%O‘(le, Dw2))%0—(Dw1v Dw2)a1(w1)a2(w2)|
-4
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where E(z) = (¢ —1)/z = fol e df. Here o(D.,, Dy,)a1(w:)asx(wy) € S(MH, G) where
M (w1, we) = my(wy)ma(wa), Guy s (215 22) = 1w, (21) + G2 (22) and H? = sup G/G7 so
that H(w,w) = h(w). Now the proof of Theorem 18.5.5 in [11] works when o (D, , Dy,)
is replaced by 0o (D,,,, D,,), uniformly in 0 < 6 < 1. By integrating over 6 € [0, 1] we
obtain that a(w) has an asymptotic expansion in S(mymyh¥, g), which proves (2.5). If
la;|? < Cymj, k > 2, then we have by Taylor’s formula as in (2.4) that

|a(w) = a(wo)| < guy(w — w0)"?|a; 3 (wo) + Cy Sup Gun (w — wo)m(we)

< C'(|ag|9(wo) + m(wo)) (1 + gg, (w — wg) )N

(T, Owaj(w)) = (T’ Owaj(wo))| < Cy Sup Gun (T)"2 gy (w — wo) > m(wp)
€lo,1

< Oy (T)"*m(wo) (1 + g7, (w — wg)) V172
thus m; + |a;| + |a;|7 is a weight for g; and clearly a; € S(m; + |a;| + |a;]7, ;). Now if

a; and ay are real, then ReaVay — (ajaz)" = a® with

a(w) = Re E(30(Du,, Du,)) (50 (D, Duy)) a1 (wi)as(ws) /2|

w1 =wy=w

where 0(D,,, Dy, )?*a;(wy)az(wq) € S(MH?, @), with the same F, M, G and H as before.
The proof of (2.6) follows in the same way as the proof of (2.5). O

Remark 2.4. The conclusions of Lemma 2.3 also hold if a; has values in L(By, By) and

ay 1 By where By and By are Banach spaces, then atay has values in Bs.

Let [Ju|| be the L? norm on R"™™ and (u,v) the corresponding sesquilinear inner
product. As before, we say that f € L>®(R,S(m,g)) if f(t,x,§) is measurable and
bounded in S(m, g) for almost all t. The following is the semiclassical estimate that we

shall prove in this note.

Proposition 2.5. Assume that Py = Dy+if“(t,z, D,), with real f € L*(R, S(h™!, hg*))
satisfying condition (V) given by (2.2), here 0 < h < 1 and g* = (¢*)? are constant. Then
there exists Ty > 0 and real valued symbols br(t,z,€) € L®(R,S(h~% ¢") N ST(1,4%)
uniformly for 0 <T <'Tj, so that

(2.7) RY2 (|05l + [[ul|?) < CoT Tm (Pou, bu)

for u(t,z) € S(R x R™) having support where |t| < T. The constants Cy, Ty and the
seminorms of by only depend on the seminorms of f in L=(R,S(h™1, hg*)).
Observe that it follows from (2.7) by the Cauchy-Schwarz inequality that

lull < CTh™Y2|| Pyull,
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which will give a loss of 3/2 derivatives after microlocalization. In fact, by microlocalizing
near (zg,&), letting h™! = (&) = 1+ |&]| and doing a symplectic dilation: (z,&)
(h='2x, h1/2%¢), we find that Sf, = S(h™* hg*) and Sf/271/2 = S(h7*, g%, (¢")° = ¢*
k € R. Proposition 2.5 will be proved at the end of Section 6.

There are two difficulties present in estimates of the type (2.7). The first is that by is
not C* in the ¢ variables, therefore one has to be careful not to involve b% in the calculus
with symbols in all the variables. We shall avoid this problem by using tensor products
of operators and the Cauchy-Schwarz inequality. The second difficulty lies in the fact
that |by| > h'/2 so it is not obvious that lower order terms and cut-off errors can be

controlled. To resolve this difficulty, we recall Lemma 2.6 from [§].

Lemma 2.6. The estimate (2.7) can be perturbed with terms in L=(R, S(1, hg*)) in the
symbol of Py for small enough T, by changing br (satisfying the same conditions). Thus
it can be microlocalized: if p(w) € S(1,hg?) is real valued and independent of t, then we

have
(2.8) Im (Py¢"u, by u) < Im (Pou, $“b3¢"u) + Ch?||ul|?

where VbY@ satisfies the same conditions as b}

In the following, we shall use the norms:
(2.9) [ulls = [l (Da)ull,

and we shall prove an estimate for the microlocal normal form of the adjoint operator.

Corollary 2.7. Assume that Py = Dy+iF"(t,z, D), with F* € L>(R, V] ((R")) having
real principal symbol f satisfying condition (V) given by (2.2). Then there exists Ty >
0 and real valued symbols br(t,z,€&) € L¥(R, 511/2’1/2(R”)) with homogeneous gradient

Vbor = (9.br, |£]0:br) € L=(R, 511/2’1/2(R”)) uniformly for 0 < T < Ty, such that
(2.10) 16512 o + llull* < Co(T Tm (Pou, bga) + Jlul[2,)

for u € S(R™1) having support where |t| < T. The constants Ty, Cy and the seminorms
of by only depend on the seminorms of F in L™(R, S| o(R™)).

Since Vbr € L>*(R, 811/271/2) we find that the commutators of b7 with operators in
L*(R,¥},) are in L=(R, ¥}, ). This will make it possible to localize the estimate.
The idea to use the first term in (2.7) and (2.10) is due to Lerner [20].

Proof of that Proposition 2.5 gives Corollary 2.7. Choose real symbols { ¢;(z,{) }; and
{¥j(2,8) }; € S7o(R") having values in (%, such that -, ¢7 = 1, ¥;¢; = ¢; and ¢; > 0.
We may assume that the supports are small enough so that (§) = (§;) in supp); for

some &;, and that there is a fixed bound on number of overlapping supports. Then,
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after doing a symplectic dilation (y,n) = (z(&)"/?,£/(£;)"/?) we obtain that S7(R") =
S(h;™, hjg*) and STlaap(RY) = S(h;™, ¢*) in suppv;, m € R, where h; = (&)~ < 1
and ¢*(dy, dn) = |dyl* + |dn|*.

By using the calculus in the y variables we find ¢ Py = ¢} Fy; modulo Op S(h;, hig*),
where

Poj = Dy +i(yp; F)“(t,y, Dy) = Dy +if’(t,y, Dy) + 77 (t,y, Dy)

with f; = ¢;f € L®(R,S(h; ', hjg")) satisfying (2.2), and r; € L*(R, S(1, hg")) uni-
formly in j. Then, by using Proposition 2.5 and Lemma 2.6 for /4, we obtain real valued

symbols b; r(t,y,n) € L>(R, S(h; 1/2,g YN S*(1, ¢%)) uniformly for 0 < T < 1, such that
(11)  [05rsyull® + llépull® < CoT(h; " Im (Pou, 6357y u) + ul®) - ¥
for u € S having support where |t| < T. By substituting ¢{"u in (2.11) we obtain that
(212) By drull® + @y erull® < CoT(hy " Tm (Pogstu, Y bYrdynu) + (¢ ul|?)
for u € S having support where |t| < T'. Here

hj Im (P01/)‘ U, 925] bj T¢ 1/)j U) = hj ([Po, ¢j Ju, Qb] bj T¢ 1/)]‘ u) + (Pou, Bj,Tu>

where B, = _I/waqﬁwbquSwww € OpS(h™', g*) is symmetric. Now [Py, 9] = [F*, Y]

and the calculus give that { h; Y zbngqS}fJ [F™, w;”] } € ¥ ,(R") with values in £? for almost
J

all ¢, which gives

Zh—m ([Po. v T, 5 b0 5 u) < Cllul.
Now, >~ ¢7 =1 and ¢j1/)j = ¢; so the calculus gives
Jull® < Z 65wy ull? + Cllul,.
Let by = >, B’y € L(R, \IJ}/2 1/2); then we find by the finite bound on the overlap of
the supports that

bp(D,) by = > BYp(Dy)'Bfy  modulo ¥(R")

li—kI<N

for some N, thus
B ul® )5 = [[(Ds) = /2b5ul|* < Cy (Z 1Bzl s + Hqu)

We also have (D, )~/ zhjl/ 21/)}”925;9 € UO(R"™) uniformly which gives
1By’ rull-172 < ClI67 745 ¢5 ull.
Thus, by summing up we obtain

(2.13) b7l 5 + llull* < Cy (T(m (Pou, bru) + [lull®) + [Ju]l%,)
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for u € S having support where |t| < T. The homogeneous gradient Vbr € S} /2.1/2 since
br =3, h;l/QbLTqS? € 511/271/2 modulo 59/271/2, where ¢; € S(1, h;g") is supported where
(€) ~ h;' and bjr € ST(1, g%) for almost all £. For small enough 7" we obtain (2.10) and
the corollary. O

Proof that Corollary 2.7 gives Theorem 1.1. We shall prove that there exists ¢ and ¥ €
S?o(T*M) such that ¢ = 1 in a conical neighborhood of (z,&), ¥ = 1 on supp ¢, and
for any T' > 0 there exists Ry € Sj (M) with the property that WF R (T M = () and

(2.14) ¢ ull < Cy ([0 P ull3/2—m) + Tllull) + | Bpull + Collull -y u € Cg°(M).

Here ||ul|(s) is the Sobolev norm and the constants are independent of 7. Then for small
enough 7" we obtain (1.4) and microlocal solvability, since (xg, &) ¢ WF(1 — ¢)*. In the
case that P satisfies condition (V) and J¢p # 0 near xy, we may choose finitely many
¢; € SY (M) such that Y7 ¢; > 1 near o and [|¢¥'ul| can be estimated by the right hand
side of (2.14) for some suitable 1) and Rp. By elliptic regularity, we then obtain the
estimate (1.4) for small enough 7.

By multiplying with an elliptic pseudodifferential operator, we may assume that m = 1.
Let p = o(P), then it is clear that it suffices to consider wy = (9, &) € p~1(0), otherwise
P* € Ul (M) is elliptic near wy and we easily obtain the estimate (2.14). It is clear that
we may assume that J¢ Re p(wg) # 0, in the microlocal case after a conical transformation.
Then, we may use Darboux’ theorem and the Malgrange preparation theorem to obtain
microlocal coordinates (t,y;7,7) € T*R"" so that wy = (0,0;0,7), t = 0 on T M
and p = ¢(7 —if) in a conical neighborhood of wy, where f € C*(R, 51170) is real and
homogeneous satisfying condition (2.2), and 0 # ¢ € S7, see Theorem 21.3.6 in [11]. By
conjugation with elliptic Fourier integral operators and using the Malgrange preparation

theorem successively on lower order terms, we obtain that
(2.15) P =Q"(Dy+i(xF)") + R"

microlocally in a conical neighborhood I' of wy (see the proof of Theorem 26.4.7" in [11]).
Here Q € S7,(R"*") and R € S} (R"*"), such that Q" has principal symbol ¢ # 0 in T
and I'(YWF R* = (. Moreover, x(7,n) € S7o(R""") is equal to 1 in I, |7| < C|n| in
supp x(7,7), and F* € C*°(R, ¥ ,(R")) has real principal symbol f satisfying (2.2). By
cutting off in the ¢ variable we may assume that f € L>(R, S ,(R")). We shall choose ¢
and ¢ so that supp ¢ C suppy C I' and

¢(t7 Y7, 77) - XO(t7 T, 77)¢0(y> 77)

where xo(t,7,1) € SYo(R™™), do(y,n) € STo(R"), t # 0 in supp dixo, |7| < Cln| in

supp xo and |7| = || in supp Oy, Xo.
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Since ¢ # 0 and R = 0 on supp? it is no restriction to assume that ¢) = 1 and
R = 0 when proving the estimate (2.14). Now, by Theorem 18.1.35 in [11] we may
compose C®(R, UT\(R")) with operators in W} ((R"*!) having symbols vanishing when
17| > ¢(1 + |n|), and we obtain the usual asymptotic expansion in W}y MR for
j > 0. Since |7| < C|n| in supp ¢ and y = 1 on supp ¥, it suffices to prove (2.14) for
P* = Py = D, +iF".

By using Corollary 2.7 on ¢"u, we obtain that

(2.16) [lbpe™ull?y /o + [l¢"ull”
< CoT (Im (¢ Pou, by¢™u) + Im ([P, 6" u, bp¢™u)) + Cillullf_y)
where b € L¥(R, ¥} | »(R")) is symmetric with Vbr € L2(R, S} 5 | »(R")). We find

[Py, 0] = —i0,¢" +{ f, ¢ }" € ¥§ o(R"™) modulo ¥y j(R"™) by the expansion. For any
u, v € S(R™) we have that

(2.17) | (v bu) | = | ((Dy)?0, (D)~ 200u) | < C([0llfy o) + [1BFul210)
since [[(Dy)?v| < ||vlly2), (Dy) =1+ |D,|. Now ¢* = ¢“4* modulo ¥y g(R"*!), thus

we find from (2.17) that

(2.18) | (6" Pow, bpo™u) | < C([[0" Poullfyjz) + 176" ull2, 2)

where the last term can be cancelled for small enough 7" in (2.16). We also have to

estimate the commutator term Im ([P, ¢*]u, b%¢™u) in (2.16). Since ¢ = xo¢o we find

that { f,¢} = do { f,x0 } +x0{ f, b0}, where ¢o { f, X0} = Ro € S7o(R™") is supported
when |7 2 |p] and ¢ = 1. Now (7 +if)"! € S;g(R™) when |7]| 2 [p|, thus by [11,
Theorem 18.1.35] we find that Ry = AY'¢" Py modulo Wi §(R™™) where Ay = Ro(7 +
if)™! € Sio(R™). As before, we find from (2.17) that

(2.19) [(Ryu, bre u) | < C(|RGully )2 + 076" ull2; )
< CO(HWUPOUH?AQ) + ||b50“¢wu||2—1/2)

and | (9,0 u, b u) | < |[Ryull® + [[bFe* ull®, 5 by (2.17), where RY = (D,)"?0,¢" €
UY/e (R, thus ¢ # 0 in WF RY.

It remains to estimate the term Im (({ f, ¢o } x0)"u, b5¢"w), where ({ f, 0} x0)" =
{f,00}" xiy and ¢" = ¢y xy modulo ¥y j(R™1). As in (2.17) we find

| (R, bpv) | = | ((Dy) R"u, (Dy) byv) | < C([[ull® + [Jv]|*)
for R € S;o(R"*1), thus we find

[T (({ f, @0 } x0)"u, bpe™u) | < [Tm ({ f, do }* x5, bpep xg'w) | + Cllul®
-9



The calculus gives b5¢y = (brgo)®” and 2i Im ((brgo)™ { f,¢0 }*) = {brdo, { f. o } }* =0
modulo L=(R, ¥, | »(R")) since V(br¢o) € L=(R, S} 5, 5(R")). We obtain

(2.20) [ Tm ({ f, @0 }* X0'w. bpg xo w) | < Cllxgull* < Clul?

and the estimate (2.14) for small enough T, which completes the proof of Theorem 1.1. [

It remains to prove Proposition 2.5, which will be done at the end of Section 6. The
proof involves the construction of a multiplier %, and it will occupy most of the remaining

part of the paper.

In the following, we let [|u|/(t) be the L? norm of z +— wu(t,z) in R" for fixed ¢,
and (u,v) (t) the corresponding sesquilinear inner product. Let B = B(L*(R™)) be the
set of bounded operators L*(R™) — L?*(R™). We shall use operators which depend

measurably on ¢.

Definition 2.8. We say that ¢ — A(t) is weakly measurable if A(t) € B for all ¢ and
t — A(t)u is weakly measurable for every u € L*(R"), i.e., t — (A(t)u,v) is measurable
for any u, v € L*(R"). We say that A(t) € L2.(R, B) if t — A(t) is weakly measurable

and locally bounded in B.

If A(t) € L2.(R, B), then we find that the function ¢t — (A(t)u,v) € L2 (R) has weak

loc loc

derivative % (Au,v) € D'(R) for any u, v € S(R") given by

4 (Au, ) (¢) = - / A, v)#(Hdt (1) € C(R).

If u(t), v(t) € L2 (R, L*(R™)) and A(t) € L2 (R, B), then we find ¢ — (A(t)u(t),v(t)) €

loc loc
[,

»* (R) is measurable. We shall use the following multiplier estimate, which is given by

Proposition 2.9 in [8] (see also [15] and [17] for similar estimates).

Proposition 2.9. Let Py = D, + iF(t) with F(t) € L;2,
B*(t) € L2 (R, B), such that

loc

(R,B). Assume that B(t) =

(2.21) 4 (Bu,u) + 2Re (Bu, Fu) > (mu,u) in D'(I) VueSRY)
where m(t) = m*(t) € LS. (R,B) and I C R is open. Then we have

(2.22) /(mu,u) dt < 2/Im (Pu, Bu) dt

foruwe Cy(I,S(R")).

3. THE SYMBOL CLASSES

In this section we shall define the symbol classes we shall use. Assume that f €
L*(R, S(h71 hg?)) satisfies (2.2), here 0 < h < 1 and ¢* = (¢*)° are constant. By

changing h we obtain that |9, f| < h~'/? which we assume in what follows. The results are
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uniform in the usual sense, they only depend on the seminorms of f in L>°(R, S(h~%, hgt)).

Let
(3.1) Xi(t)={weT'R":3s<t, f(s,w)>0}
(3.2) X (t)={weT'R":3s>1t, f(s,w)<0}.

Clearly, X4 (t) are open in T*R", X, (s) C X, (¢) and X_(s) O X_(¢) when s < ¢. By
condition (¥) we obtain that X_(#) (X, (t) = 0 and £f(¢,w) > 0 when w € X.(t), Vt.
Let Xo(t) = T*R™\ (X4 (¢) U X_(t)) which is closed in T*R". By the definition of X (¢)

we have f(t,w) =0 when w € Xy(¢). Let
(3.3) do(to, wo) = inf { g*(wo — 2)"/* : 2z € Xo(to) }

be is the g* distance in T*R™ to Xy(to) for fixed to, it is equal to +o0o in the case that
Xo(to) - @

Definition 3.1. We define the signed distance function dy(¢, w) by
(34) 9 = sgn(f) min(do, A=),

where dj is given by (3.3) and
+1, we Xi(t)
(3.5) sgn(f)(t, w) =
0, w € Xo(t)

so that sgn(f)f > 0.

Definition 3.2. We say that w +— a(w) is Lipschitz continuous on T*R™ with respect to

the metric ¢ if |a(w) — a(z)| < Cg#(w — 2)'/2 for any 2, w.

It is clear that the signed distance function w +— (¢, w) given by Definition 3.1 is
Lipschitz continuous with respect to the metric ¢f, V¢, with Lipschitz constant equal
to 1, see Proposition 3.3 in [8]. We also find that ¢ — do(¢, w) is non-decreasing, 0 < do f,
60| < h™Y2 and |6g| = dy when |6o| < h™1/2.

In the following, we shall treat ¢ as a parameter which we shall suppress, and we shall
denote ' = 0, f and f” = 92 f. We shall also in the following assume that we have

choosen ¢* orthonormal coordinates so that gf(w) = |w|*.

Definition 3.3. Let G| = H,g* where

/']
||+ hVA|f)/2 4 h1/2

(3.6) H Y2 =14 60| +

We have that

(3.7) 1< H 2 <14 |8 + VA f/|V2 < 3h7 12
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since | /| < h=2 and || < h~Y/2. Moreover, |f/| < Hy 2(|f"| + hY4|f/|V2 + h'/2) so by

the Cauchy-Schwarz inequality we obtain

(3.8) £ < 20" Hy P 4 3hP T < G

Definition 3.4. Let
(3.9) M = |fI+|f[H Y 4 |1 H + R

then we have that h'/2 < M < Csh™!.

Proposition 3.5. We find that H, 12 4s Lipschitz continuous, G is o temperate such

that Gy = H¥*GY and

(3.10) H,(w) < CoHi(wo)(1+ Hi(w)g*(w — wo)).

We have that M is a weight for Gy such that f € S(M,Gy) and

(3.11) M(w) < CLM (wo)(1 + Hi(wo)g(w — wo))g/z-

In the case when 1+ |5o(wo)| < Hy ?(wo)/2 we have | f'(wo)| > h'/2,

(312 79 wo)| < Cely (wo) Hy 7 (w) k> 1,

and 1/C < | f/(w)|/|f(wol < C when |w — wo| < cH (o) for some ¢ > 0.

Proof. The Proposition follows from [8, Proposition 3.7] except for the Lipschitz conti-

nuity of H; "/?. Since the first terms of (3.6) are Lipschitz continuous, we only have to

prove that
£/ f"+ B2 P12 + h?) = E/D

is Lipschitz. Since this is a local property, it suffices to prove this when |[Aw| = |w—wy| <

1. Then we have that D(w) = D(wy), in fact D? = h + hY/2|f'| + | f|? so
D*(w) < C(D*(wo) + | f"(wo)|h'? + h) < C'D*(wo)

when |Aw| < 1. We find that

o] - |F) _ Bl 1871 FlulaD)
D D(w) D(wg)| ~ D(w) D(w)D(wp)’
Taylor’s formula gives that

(3.13) |AB| < (If"(w)| + ChY/?)|Aw| < CD(w)

when |Aw| < 1. We shall show that E(w)]AD| < CD(w)D(wy)|Aw|, which is trivial if
E(wp) = 0. Else, we have

[ALFI < ChY2|Aw| < CD?(wo)| Awl/ E(wo) < C'D(wo) D(w)|| Awl/ E(wo)
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when |Aw| < 1 since h'/?2 < D?/E and D(wp) < CD(w). Finally, we have

RYALFT2] < RV AEL/ (1 (wo) 2 + 1 f (w)[?)
< ChY|f'(wo) M2 D (w)| Awl /| f'(wo)| < CD(wo) D(w)|Awl/E(wo)

when |Aw| <1 by (3.13). This completes the proof of Proposition 3.5. O

We obtain the following result from Propositions 3.9 and.10 in [8].

Proposition 3.6. We have that M < CH; ', which gives that f € S(H; ', G1). We also
obtain that

(3.14) 1/C < M/(|f"|H; " + hM?H?) < C.

When |d] < ﬁonl/Q and Hll/2 < Ko for 0 < kg sufficiently small, we find

(3.15) 1/Cy < M/|f|H, Y? < Oy,

There ezists k1 > 0 so that if (0g) =1+ |dg| < “1H1_1/2 then

(3.16) f = apdy

where ki MHY? < o € S(MHll/Q,G’l), which implies that 6y = f /g € S(Hf1/2,G1).

4. THE WEIGHT FUNCTION

In this section, we shall define the weight m; we shall use. Let do(t, w) and Hfl/z(t, w)

be given by Definitions 3.1 and 3.3 for f € L®°(R, S(h™!, hg*)) satisfying condition (¥)
given by (2.2) such that |f’| < h='/2. The weight m; will essentially measure how much
t — 6o(t,w) changes between the minima of t — H,"*(t,w){8(t,w))2, which will give
restrictions on the sign changes of the symbol. As before, we assume that we have choosen
g* orthonormal coordinates so that ¢g*(w) = |w|?, and the results will only depend on the

seminorms of f.
Definition 4.1. For (t,w) € R x T*R™ we let

(41) ml(t,w) = inf { |50(t1,w) - 50(t2,w)|

t1<t<t2

+ max (H, " (ty, w) (8 (tr, w))?, Hy* (ta, w) (8o (t2, w))?) /2 }

where (dg) = 1 + |Jo].

Remark 4.2. When t — 6y(t,w) is constant for fixzed w, we find that t — my(t,w) is
equal to the largest quasi-convex minorant of t — H11/2(t, w){(So(t,w))?/2, i.e., sup;my =

supy; my for compact intervals I C R, see [12, Definition 1.6.3].

The main difference between the present note and [8] is the use of H,' *(8,)2 in the

definition of my instead of H,'*(8,).
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Proposition 4.3. We have that m; € L*(R x T*R"), such that w — my(t,w) is

uniformly Lipschitz continous, Vt, and
(4.2) h2(50)%/6 < my < H{*(60)%/2 < (60) /2.

We may choose t1 < ty < ty so that

(4.3) ‘max (0o(tj, wo)) < 2 min {do(t;, wo)).

and

(4.4) H)? = max(H{?(t1, wo), Hi"* (s, wp))
satisfies

(4.5) H)? < 16ma(to, wo)/ (0o(t;, we))>  forj=0,1, 2.

If my(to, wo) < 0{do(to, wo)) for o0 < 1, then we may choose g* orthonormal coordinates
so that wy = (21,0), |z1] < 2(0(t0, wo)) < 32QH0_1/2, and

(4.6) sgn(wy) f(to,w) >0 when |wy| > (my(to, wo) + H3/2|wl|2)/00
(4.7) 100 (t1, w) — otz w)| < (ma(to, wo) + Hy*Jw — wo|?) /co

when |w| < cngl/Q. The constant cy only depends on the seminorms of f.

Observe that condition (4.6) is not empty when my (to, wo) < 0(do(to, wo)), for o suffi-

ciently small, because of (4.5).

Proof. 1f we let
F(s,t,w) = |6o(s, w) — do(t, w)| + max(H;"*(s, w)(So(s, w))2, Hi'*(t, w){So(t, w))?) /2

then we find that w — F(s,t,w) is uniformly Lipschitz continuous. In fact, it suffices to
show this when |Aw| = |w — wy| < 1, and then Hfl/z and (d) only vary with a fixed
factor. The first term |0g(s,w) — do(t, w)| is obviously uniformly Lipschitz continuous.

We have for fixed t that
A(H(560))| < CU8)2 AH?| + H(80)|Ad))

where H{?(6) < 1 and |AH,?| < CHy|AH;"?| < C’H,|Aw| by Proposition 3.5,
which gives the uniform Lipschitz continuity of F'(s,¢,w). By taking the infimum, we
obtain (4.2) and the uniform Lipschitz continuity of my. In fact, h'/2/3 < H}"* by (3.7)
and since t +— Jdg(t,w) is monotone, we find that ¢ — (dy(t,w)) is quasi-convex. Thus

hY/2 (80 (ty, w0)) /6 < F(s,t,wy) when s <ty < t.
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By approximating the infimum, we may choose t; < ty < t3 so that F(t1,t,wg) <
ma(to, wo) + h'/2/6. Since h'/2/6 < my < H{"*(5,)2/2 by (4.2), we find that

(48) |50(t1, wo) - (50(t2, w0)| < my (to, wo) S <50(t0, w0)>/2 and
(4.9) Hy?(t,w0) (8o (t7,w0))?/2 < 2mu(to,w)  for j =1 and 2.
Since t — dy(t, wp) is monotone, we obtain (4.3) from (4.8), and (4.5) from (4.9) and (4.3).

Next assume that mq(ty,wy) < o(dg(to, wp)) for some 0 < o < 1. Then we find
from (4.5) that

(4.10) 1+ |00(t;, wo)| < 160H, “/*  for j =0, 1, 2.

Choose g* orthonormal coordinates so that wy = 0. Since (dy(;,0)) < 16@Hf1/2(tj,0)
by (4.10), we find from Proposition 3.5 that

W2 <10, f(t,0)] 2 |0 f (8, w)] - for w] < cHyV? < eHTV3(5,0), j =1, 2
when ¢ < 1. Since Hy '/* < 3h™Y/2 we find that f(t;, @;) = 0 for some |@;| < 160H, '/
by (4.10) when ¢ < 1/48 and j = 1, 2. Thus, when 169 < ¢ we obtain that

|£(tj,w)] < Clowf(t;,0)| Hy ' when |w| < cHy /2

and then (3.12) gives f(t;,w) € S(|0uf(t;,0)|Hy /?, Hyg?) since H,"(t;,0) < HY?, j =
1, 2. Choose coordinates z = Hé/ “w, we shall use Proposition 4.3 in [8] with

fi(2) = Hy f(ty, Hy 2) /10 f(t;,0)] € C* for j=1, 2.

Let 6;(z) = H3/2(50(tj, H&l/zz) be the signed distance functions to f;'(0), then [f/(0)| =
1, |0;(0)] < 160 and

161(0) — 02(0)] = £ < Hy*m(to,0) < Hy'*(o(t0,0))/2 < 8o

by (4.8) and (4.10). Thus, for sufficiently small ¢ we may use [8, Proposition 4.3] to
obtain g* orthogonal coordinates (z1,2") so that wy = 2o = (y1,0), |y1| = [61(0)] and

{ sgn(z1)fi(2) 2 0 when |21] > (e + ['[*) /co
101(2) = d2(2)] < (e + |2 — 20]*) /o

when |z| < ¢o. Let 21 = Hy "?y; then |z1| < 2(80(to, 0)) < 320H; "/ by (4.3) and (4.10).
We then obtain (4.6)—(4.7) by condition (¥), since Hgl/Qe < my(to, 0). O

Proposition 4.4. There exists C > 0 such that
(411) ml(t07 w) S le(to, wo)(l + |w - w0|/(50(t0, w0)>)3

thus my is a weight for gt.

Proof. Since my < (§o)/2 we only have to consider the case when

(4.12) mi (to, wo) < 0(do(to,wo))
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for some p > 0. In fact, otherwise we have

mi (to, w) < (0(to, w))/2 < my(to, wo)(1 + |w — wo|/{do(to, wo)))/20
since the Lipschitz continuity of w +— dq(tg, w) gives
(4.13) (0 (t,w)) < (0p(t, wo))(1 4 |w — wpl|/(do(t, wp))) Vt.

If (4.12) is satisfied for ¢ < 1, we may use Proposition 4.3 to obtain ¢; < ¢y < t5 such
that (4.3), (4.5) and (4.7) hold with H)* = max(H,"*(t,,wo), H;'*(t2,wp)).

Now, for fixed wy it suffices to prove (4.11) when
(4.14) lw — wo| < oHy *
for some ¢ > 0. In fact, when |w — wp| > QH(;l/Q we obtain from (4.12) that
|w — wol* /(8o (to, wo))* > 0*Hy "/ {do(to, wo))* > 0*(do(to, wo))* /256mi(to, wo)
> 0%(6o(to, wo)ymy (to, w) /64(50(to, w)ymy(to, wo)

since (0p) > 2my. By (4.13) we obtain that (4.11) is satisfied with C' = 64/0?. Thus in
the following we shall only consider w such that (4.14) is satisfied for p < 1. We find
by (4.5) and (4.7) that

(4.15)  |8o(t1, w) — So(ta, w)| < (my(to, wo) + Hy*Jw — wo|?)/co
< 16m (tg, wo) (1 + |w — wol?/(do(to, wo))?) /co

when |w — wg| < coHy 2 Now G is slowly varying, uniformly in ¢, thus we find for

small enough o > 0 that
H11/2(tj,w) < C’Hll/2(tj,w0) when |w — wy| < QHO_I/2 < QHl_l/2(tj,w0)
for j =1, 2. By (4.13) and (4.3) we obtain that
(4.16)  Hy*(t;, w)(0o(t;, w))? < ACH" (t;,w) (3o (t;, wo))2(1 + |w — wo| / (oo, wo)))?

when j = 1, 2, and |w — wy| < coHo_l/Q. Now H11/2(tj,w0)<50(tj,w0))2 < 16my (to, wo)
by (4.5) for j =1, 2. Thus, by using (4.15), (4.16) and taking the infimum we obtain

ma (to, w) < Coma(to, wo)(1 + |w — wol/(do(to, wo)))”
when |w — wy| < QH(;U2 for p < 1. O

The following result will be important for the proof of Proposition 2.5 in Section 6.

Proposition 4.5. Let M be given by Definition 3.4 and my by Definition 4.1. Then

there exists Cy > 0 such that

(4.17) MHY? < Cymy/(60)2.
I-16



Proof of Proposition 4.5. We shall omit the dependence on t in the proof. Observe that
since h'/2(5)2/6 < m; we find that (4.17) is equivalent to

(4.18) || HL? < Cmy ) (80)°

by Proposition 3.6. First we note that if m; > ¢(dy) > 0, then MHf’/2(50)2 < C{do) <
C'my /c since (dg) < Hl_l/2 and M < CH;' by Proposition 3.6.
Thus, we only have to consider the case m; < 9(dg) at wy for some o > 0 to be chosen

later. Then we may use Proposition 4.3 for o < 1 to choose g* orthonormal coordinates

so that |wg| < 2(dp(wy)) < 32QH(;1/2 and f satisfies (4.6) with

(4.19) W23 < Hy'* < 16my(wo) / (8o(wo))? < 8HY'? (wp)

by (4.5) and (4.2). Thus it suffices to prove the estimate

(4.20) f|H < OHy

at wo. Now it actually suffices to prove (4.20) at w = 0. In fact, (3.10) gives
Hiy(wg) < CoHy(0)(1 4 Hy(wo)|wo|?) < 5CH;(0)

since |wy| < 2(do(wp)) < ZHfl/Q(wo). Thus Taylor’s formula gives
(4.21)
| (wo) | Hy*(wo) < (I£7(0)] + Cshwol) Hy*(wo) < Ci(|£"(0)|HL* (wo) + hY/?)

since |f®)| < C3h'/2. By Definition 3.3 we find that
HP2 2 L |1+ A2 4 1)
> (I 11+ R AL+ B2+ 02,
thus (4.20) follows if we prove
@22) P R 4R S O+ 1P ) Y a0,
Since h'/?/3 < Hé/ ? we obtain (4.22) by the Cauchy-Schwarz inequality if we prove that
(4.23) (0] < C(Hy|£/(0)/2 + h'/2).
Let F(z) = Hof (H, "/?2), then (4.6) gives
sen(z1)F(2) >0 when |z| > e+ |)?/r and |z| <7
where r = ¢y and
e = Hy*mi(wo)/co < 16m3(wp) /co(do(wo))? < 160%/co < co/D
by (4.19) when o < ¢y/4v/5 which we shall assume. Proposition 4.2 in [8] then gives that

PO < Cr (IF(O)l/00 + Hy 1 200) & < o0 < o/ V10
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since ||F® o < C3Hy ?hY2. Observe that |F'(0)] < Cy since Hy> < 8H,*(wo) <
CH{?(0) and | f/(0)] < CH; "?(0). Choose

o0 =<+ AFO) < /VT0
with A\ = ¢o(v/10 — 2)/10y/Cy, then we obtain that
[F"(0)] < Co(|F'(0)] + b2y (wp))
since Hy'/? < 302 and ¢ = Hy*my(wo)/co. If h'/2my(wy) < |F'(0)[V/2 then we
obtain (4.23) since F' = Hy*f" and F” = f". If |F"(0)|*/2 < h/?my (wy), then we find
[/"(0)] < 2Coh*2mi (wo) < 4Camn (wo)/{do(wo)).

Thus (4.18) follows from (4.21) since Hll/Q(wo) < {8o(wp)) ™", which completes the proof
of the proposition. O

The following convexity property of t — m; (¢, w) will be essential for the proof. For a

proof, see the proof of Proposition 5.7 in [8].

Proposition 4.6. Let mq be given by Definition 4.1. Then

(4.24) sup my(t, w) < dg(ta, w) — do(t1, w) + my(t1, w) + my(tz, w) Vw.

t1 <t<ta
Next, we shall construct the pseudo-sign B = g + 09, which we shall use in Section 6

to prove Proposition 2.5 with the multiplier b* = BWick,

Proposition 4.7. Assume that oy is given by Definition 3.1 and my is given by Defi-
nition 4.1. Then for T > 0 there exists real valued or(t,w) € L>®(R x T*R™) with the

property that w +— op(t,w) is uniformly Lipschitz continuous, and

(4.26) T0,(0p + or) > M /2 in D'(R)
when |t| < T.

This follows from Proposition 5.8 in [8]. Since

420 o) = sw (o) = datw) + 5 /:mmw)dr—ml(s?w))

—T<s<t

the uniformly Lipschitz continuity w +— or(t, w) is clear.

5. THE WICK QUANTIZATION

In order to define the multiplier we shall use the Wick quantization. As before, we
shall assume that g = (g*)° and the coordinates chosen so that ¢*(w) = |w|?>. For
a € L>(T*R") we define the Wick quantization:

aWick‘(l,’ D,)u(z) = / a(y, n)z;n(gg7 D, )u(x) dydn u e SR™)
T*R"
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using the orthonormal projections 7, (x, D,) with Weyl symbol

Sya(@,&) =1 "exp(—gH(x — y, £ — 1))
(see [5, Appendix B] or [17, Section 4]). We find that a'"**: S(R") — S’(R") so that
(5.1) a>0 = (a"V"*(z,D,)u,u) >0 ue SR

(a"ik)r = (@) and [|a"*(z, D) || cz2mny) < llallzoo(r<rny, which is the main advan-
tage with the Wick quantization (see [17, Proposition 4.2]). If a;(x, &) € L*(R x T*R™)

depends on a parameter ¢, then we find that

(5.2) /R (ai""%u, u) ¢(t) dt = (AY " u, ) ue SR

where Ay(x,§) = [ ai(x,€)P(t) dt. We obtain from the definition that a"** = af where

(5.3) ap(w) =7" /T*R" a(z) exp(—|w — z|?) dz

is the Gaussian regularization, thus Wick operators with real symbols have real Weyl
symbols.
In the following, we shall assume that G = Hgf < ¢* is a slowly varying metric

satisfying
(5.4) H(w) < CoH (wp)(1 + |w — wp| )™

and m is a weight for G satisfying (5.4) with H replaced by m. This means that G and
m are strongly o temperate in the sense of [2, Definition 7.1]. Recall the symbol class
S*(1, ¢%) given by Definition 2.2. The following result follows from Proposition 6.1 and
Lemma 6.2 in [§].

Proposition 5.1. Assume that a € L®(T*R") such that |a| < Cm, then Vit = q¥
where ag € S(m, g*) is given by (5.3). If a > m we obtain that ag > com for a fized
constant cg > 0. If a € S(m,G) then ag = a modulo symbols in S(mH,G). If |a] < Cm
and a =0 in a fived G ball with center w, then a € S(mHY,G) at w for any N. If a is
Lipschitz continuous then we have ag € ST (1,¢%). If a(t,w) and p(t,w) € L®°(R x T*R")
and Bya(t,w) > p(t,w) in D'(R) for almost allw € T*R", then we find (8;(a"**)u,u) >
(Vi u, u) in D'(R) when u € S(R™).

By localization we find, for example, that if |a| < Cm and a € S(m, G) in a G neighbor-
hood of wy, then ap = a modulo S(mH,G) in a smaller G neighborhood of wy. Observe
that the results are uniform in the metrics and weights. We also have the following result

about the composition of Wick operators.



Proposition 5.2. Assume that a and b € L>*(T*R"). If |a| < my and || < mg, where

m; are weights for g* satisfying (5.4), then

(55) aWickaick — (ab)Wick 4w

with r € S(myma, g*). If a and b are real such that |a| < my and |b"] < my, then
. . 1 Wick

(5.6) Re o"VickpWick — <ab - §a' : b’) + R"

with R € S(mymay, g*).

Observe that since b’ is Lipschitz continuous, a’ - b’ is well defined. Proposition 5.2
essentially follows from Proposition 3.4 in [19] and Lemma A.1.5 in [20] but we shall for

completeness give a proof.

Proof. By Proposition 5.1 we have a"VFpWick = q@p¥ in (5.5) where ag € S(my, g*) and
by € St (my,¢*). By Lemma 2.3 we find aVi*pWi* = (agby)® modulo Op S(mima, g*),

where
(5.7) ao(w)by(w) = 72" // a(w + 21)b(w + z5)e =122 4z dzy.

By using the Taylor formula we find that b(w + 23) = b(w + 21) + r1(w, 21, 22) where
71 (w, 21, 20)] < Cma(w)(1 + |21| + |22])™ by (5.4). Integration in zy then gives (5.5).

For the proof of (5.6) we use that Realb® = (agby)” modulo Op S(mims, g*) by
Lemma 2.3, since ag and by are real and b € S(mq,g*). We use the Taylor formula
again:

b(w+ 2z2) =bw+ 21) + V' (w+ 21) - (29 — 21) + 12w, 21, 29)

where |ry(w, 21, 22)] < Cma(w)(1 + |21] + |22])™. The term with 2z, is odd and gives a
vanishing contribution in (5.7). Since 8. eI’ ~12" = —22 7151 we obtain (5.6) after

an integration by parts, since |ab”| < myms. O

Example 5.3. If a € S(H; '/?, ¢%), o € S(1, %) and b € S(M, G;), then Re a"VickpWick —
(ab)"Vick modulo Op S(MH,"?, g*).

We shall compute the Weyl symbol for the Wick operator (6 + or)"V**, where o7 is
given by Proposition 4.7. In the following we shall suppress the ¢ variable.

Proposition 5.4. Let B = §y+ 09, where dq is given by Definition 3.1 and oq is real valued
and Lipschitz continuous, satisfying |oo| < maq, with my < (d0)/2 given by Definition 4.1.
Then we find
BWick _ puw
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where b = 61 + o1 is real, §; € S(Hfl/Q,gﬁ) NST(1,¢%), and 01 € S(my,g*) (N SH(1,g%).
Also, there exists ko > 0 so that 6, = dy modulo S(Hll/Q,Gl) when (dy) < kol 2. For
any A > 0 we find that |5o| > AH; */* and H,"* < \/3 imply that |B| > \H; "/*/3.

Proof. Let 6Vie = §¥ and ol = o¥. Since |6| < H; %, |oo| < my and the symbols
are real valued, we obtain from Proposition 5.1 that &; € S(H; /%, ¢*) and o, € S(m, ¢°)
are real valued. Since §p and g are uniformly Lipschitz continuous, we find that ¢; and
01 € ST(1, ¢*) by Proposition 5.1.

If (6,) < kHy "/* at wy for sufficiently small x > 0, then we find by the Lipschitz conti-
nuity of §y and the slow variation of Gy that (6g) < CorH, Y2 i a fixed (G1 neighborhood
wy of wy (depending on k). For k < 1 we find that dy € S(Hflﬂ, (1) in w, by Proposi-
tion 3.6, which implies that ¢; = dy modulo S(Hll/Q, G1) near wy by Proposition 5.1 after

localization.

When |§y| > )\Hfl/2 > A > 0 at wy, then we find that
|00] < ma < (80)/2 < (1+ H{"?/N)[do]/2:

We obtain that |go| < 2|60|/3 and |B| > |6o|/3 = AH;"?/3 when H./*> < X/3, which
completes the proof. O

Let m; be given by Definition 4.1, then m, is a weight for ¢* according to Propo-
sition 4.4. We are going to use the symbol classes S(mk, %), k € R. The following

proposition shows that the operator m}"* dominates all operators in Op S(my, g*).

Proposition 5.5. If c € S(my, g*) then there exists a positive constant Cy such that
(5.8) [(c“u, u)| < Co (M *u, u) ue SR).
Here Cy only depends on the seminorms of ¢ € S(my,¢*) and f € L®(R, S(h™, hg)).
Proof. We shall use an argument by Hormander [14]. Let 0 < o <1
(5.9) My (wo) = Sup ma(w)/ (1 + ofw — wol)?
then my; < M, < Cm;/0* and
(5.10) M,(w) < CM,(wo)(1+ olw — wpl)? uniformly in 0 < p <'1
by (4.11) and the triangle inequality. Thus, M, is a weight for g, = ¢®¢*, uniformly in .
Take 0 < x € C°(T*R") such that [..g, X(w)dw > 0 and let

mafw) = " [ xolw = 2)My(2) d

Then by (5.10) we find 1/Cy < m,/M, < Cy, and |0°m,| < Cyol®m, thus m, € S(m,, g,)

uniformly in 0 < ¢ < 1. Let m}" " = pu¥ then Proposition 5.1 gives m,/c < pu, €
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S(my, g,) uniformly in 0 < p < 1 (in fact, this follows directly from (5.3)). Since m; = m,,
we may replace my with m, ** = % in (5.8) for any fixed o > 0.

Let a, = ,ugl/Q € S(mglm, gg) with 0 < p <1 to be chosen later. Since g, is uniformly
o temperate, g,/g = o', m, is uniformly o, g, temperate, and uflﬂ € S(m;ﬂ/Q,gg)
uniformly, the calculus gives that a¥(a,')” = 1+ r¥ where r,/0*> € S(1,¢*) uniformly
for 0 < o < 1. Similarly, we find that a¥u%a? =14 s¥ where s,/0° € S(1, ¢*) uniformly.

We obtain that the L? operator norms
751l eczzy + Isp ez < Co® < 1/2
for sufficiently small . By fixing such a value of ¢ we find that 1/2 < a}pya; <2 and

1 w - w
(5.11) g llull < llag (ag )" ull < 2[lul

-1

,1)“u is an homeomorphism on L?. The estimate (5.8) then follows from

thus u — ay'(a

|<cwa;”(a_

I\w w(  —1\w w w(,,—1\w w( ,,—1\w
o )uag(a, ) u)| < Clpglag(a,”) u, ay (a,”) " u)

which holds since aj cay € Op S(1, g*) is bounded in L?. Observe that the bounds only

depend on the seminorms of ¢ in S(my, ¢*), since ¢ and a, are fixed. U

6. THE LOWER BOUNDS

In this section we shall obtain a proof of Proposition 2.5 by giving lower bounds on
Reb¥ f*, where b% = BJVi* is given by Proposition 5.4. In the following, we shall omit
the ¢ variable and assume the coordinates chosen so that g*(w) = |w|?>. The results will

hold for almost all [t| < T and only depend on the seminorms of f in L>°(R, S(h~%, hgt)).

Proposition 6.1. Let B = dg+ 09, where &g is given by Definition 3.1 and oq is real valued
and Lipschitz continuous, satisfying |oo| < maq, with my < (60)/2 given by Definition 4.1.

Then we have
(6.1) Re (f*B"**u,u) > (C"u,u) VueSRY)
where C € S(my, g).

Proof. We shall localize in T*R"™ with respect to the metric G; = H,g%, and estimate the

localized operators. We shall use the neighborhoods
(6.2) W (€) = {w Cw —wy| < stl/Q(wo) } for wy € T"R".

We may in the following assume that ¢ is small enough so that w +— H;(w) and w — M (w)
only vary with a fixed factor in wy,(¢). Then by the uniform Lipschitz continuity of

w — dp(w) we can find ko > 0 with the following property: for 0 < k < kg there exist
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positive constants ¢, and ¢, so that for any wg € T*R™ we have

(6.3) 00(w)| < kH; Y2 () w € wyylen)  or

(6.4) Bo(w)] > coHy P (w) W € way(En).

In fact, we have by the Lipschitz continuity that |6o(w) — do(wo)| < £.H; "/ (wy) when
W € wyy(ex). Thus, if £, < K we obtain that (6.3) holds when |do(wo)| < xH; *(wp)
and (6.4) holds when |dg(wo)| > ckH; 12 (wp).

By shrinking ko we may assume that M = |f’|H;1/2 when |dy| < /ﬁonl/Q and H11/2 <
ko according to Proposition 3.6. Let xq be given by Proposition 3.6, ko by Proposition 5.4,
and let €, and ¢, be given by (6.3)—(6.4) for £ = min(ko, k1, k2)/2. Using Proposition 5.4
with A = ¢, we find that
(6.5) 1B| > c.Hy ?/3  in wiy(n)
if H? < ¢./3 and (6.4) holds in wy, ().

Choose real symbols {¢;(w) }; and { ¥;(w) }, € S(1, G1) with values in ¢%, such that
Sp? =100 =1y, U; = ¢2 > 0 for some { ¢;(w) }; € S(1,G4) with values in 02 50
that

supp ¢; C wj = wy, (ex).
We have that BVi* = b where b = 6, + 0, is given by Proposition 5.4.

Lemma 6.2. We find that A; = ¥, fb € S(MHl_l/Q,gﬁ) N S*T(M, g*) uniformly in j, and
(6.6) Re(f“b") = waAww“’ modulo Op S(my1, g*).
We have AY = Re f°b* modulo Op S(my, g*) uniformly in j, where f; = U, f.

Proof. Since b € S(H; 2, ¢*) S (1, g¥) we obtain that A e S(MH;'?, ") N SH(M, )

uniformly in j. Proposition 4.5 gives that
(6.7) MHY?(6,)% < Cmy

thus we may ignore terms in Op S(MH>'?(50)2, g*). Now, since b € S(H; 2, ¢), { v He€
S(1,G4) has values in £ and Ay € S(MH;1/2,g) uniformly, we find by Lemma 2.3
and Remark 2.4 that the symbols of f“6", fi’b" and ), ¥i’ Ayvy have expansions in
S(MHI”?, g). Observe that in the domains w; where Hll/2 > ¢ > 0, we find that the
symbols of ), i Ay, f;'b" and b f* are in S(]WH;’/Q7 g*) giving the result in this case.
Thus we may assume H 11 2 < Ky /2 in what follows. We shall consider the neighborhoods

where (6.3) or (6.4) holds.
If (6.4) holds then we find that (&) = H,* so S(MH,?,¢") C S(my,¢") in wj
by (6.7). Since b € ST(1,¢*) and A; € ST(M, g*) we find that the symbols of both f“b®

and >, Y A¥YY are equal to >, YiA, = fb modulo S(MHl/ ,¢%) in w;. We also find
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that the symbol of f}°b* is equal to A; modulo S(MH 11 / 2, g%), which proves the result in
this case.

Next, we consider the case when (6.3) holds with x = min(kg, K1, k2)/2 and Hll/2 <
K2/2 in w;. Then (§) < kol % s0 b = 6, + 0 € S(H,?,G1) + S(my, ¢F) in w; by
Proposition 5.4. We obtain from Lemma 2.3 that the symbol of Re(f“bv" — (fb)") is
in S(MHf/z,Gl) + S(MHymy,g*) C S(my,g*) in w; since M < CH;'. Similarly, we
find that AY = Re fb* modulo S(mq,g¢*). Since A; € S(MHfl/z,Gl) + S(Mmy, g*)
uniformly, we find that the symbol of >, ¥ A¥4¥ is equal to bf modulo S(my, ¢*) in w;,
which proves (6.6) and Lemma 6.2. O

In order to estimate the localized operator we shall use the following

Lemma 6.3. If A; =V, fb then there exists C; € S(my, g*) uniformly, such that

(6.8) (AYu,u) > (C¥u, u) u e SR").

We obtain from (6.6) and (6.8) that

Re (f“b"u,u) > Z (w;’C;-“w;’u, u) + (R"u, u) ue SR

J

where Zj YOy and R € Op S(my, g*), which gives Proposition 6.1. U

Proof of Lemma 6.3. As before we are going to consider the cases when Hll/ >~ 1 or
H!"? < 1, and when (6.3) or (6.4) holds in wj = Wy, (ex) for K = min(ko, K1, k2)/2. When
Hll/2 > ¢ > 0 we find that A; € S(MHfm,gﬁ) C S(my, ¢*) uniformly by (6.7) which gives

the lemma with C; = A; in this case. Thus, we may assume that
(6.9) Hll/2 < kg4 = min(ko, K1, K2, K3)/2 in w;

with k3 = 2¢,/3 so that (6.5) follows from (6.4).

First, we consider the case when (6.3) holds with x = min(ko, K1, k2)/2 and Hll/2 <
k4 < kinwj. Then (§y) < 2/<;Hf1/2 so we obtain from Proposition 3.6 that M = |f’|Hfl/2
and 0y € S(H, 2 G1) in w;. We shall use an argument of Lerner [20]. We have that
b = (0 + 00)Vik = BWick where |go] < my < HY2(5y)%/2 by (4.2). Also, Lemma 6.2
gives A; = Re f* BV modulo Op S(my, ¢).

Take x(t) € C*(R) such that 0 < x(¢) < 1, || > 2 in supp x(¢) and x(¢) = 1 for
|t] > 3. Let xo = x(do), then 2 < |dy| and (do)/|d0] < 3/2 in supp xo, thus

(6.10) 1+ x000/00 = 1 — x0(d0)/2[d0| > 1/4.
Since |dg| < 3 in supp(1 — xo) we find by Proposition 5.4 that

BWick — (50 + XOQO)Wick
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modulo Op S(m1/(ds). g*) € Op S(H'*(d), g) by (4.2). Since |xoeo/do| < 3H,*(d) /4
we find from (5.5) that

BWick = giViekpiVick - modulo Op S(H, (o), ).

where By = 1 + X000/ Proposition 5.1 gives (x000/00)"* € Op S(H 1/2<(50) ) and
oVick = 5 where §; = 6+ with v € S(Hl_l/2,g Y SH(1, ¢*) such that v € S(Hll/2, G1)

in w;. Thus Lemma 2.3 gives
(6.11) BWick — g)Vick gpiVick — gw pWick 4 cw modulo Op S(H 1/2((50) h

where ¢ € S(Hy /%, g%) such that supp c(w; = 0.
We find from Proposition 3.6 that f = «agdg, where /<;1MH11/2 < qp € S(MHll/z, G1),
so o/ € S(MYV2H!* Gy). Let

a; = oy’ ;6 € S(MY2H Y Gy).
Since f; = W, f = ¢ f the calculus gives
(6.12) ay' (o 1/2q§]) = f}’ modulo Op S(M Hy, Gy).
Similarly, we find that f}’c € Op S(MHf/Q,gﬁ) and
(6.13) Re U6 = a%a?  modulo Op S(MH;"*, Gy)
with imaginary part in Op S(MH11/2, G1). We obtain from (6.11) and (6.12) that
(6.14) f“’BWZC’C ]“”((WBWZCIC +c+rY) = fz-”éngViCk + a3 Ry modulo Op S(my, g
where r € S(H;/?(8o), g*) which gives R; = (ag/*¢;)“r* € S(MY2H34(8,), ¢*). Since
Re FB = Re(Re F)B + i[lm F, B]
when B* = B, we find from (6.13) that
(6.15) Re f°65 By " = Re(ay a? By ") modulo Op S(my, g*).
In fact, By = 1+ X000/00 and (x000/60)" ' € Op S(H"*(5y), g*), thus
(@, By ") = [a” (xoe0/00)"" "] € Op S(MH}(85). 5°)
when a € S(MH,"?,Gy). Similarly, since a; € S(MY2H; '/* G}) we find that
(6.16) a¥ay By = af (By " a¥ + s¥) modulo Op S(my, g°)
where s; € S(MY2H3/*(5y), g*). Since By > 1/4 we find from (6.14)—(6.16) that

Re f'BY** > —a¥a? + Rea¥SY  modulo Op S(my, ¢°)

Lo
4
where S; € S(MY2H?/*(5y), g*).

, 1
w o w PWick

Completing the square, we find
(a}” + 25}”)* (a}” + QS;-”) >0 modulo Op S(my, g*)

since (S3)*S¥ € Op S(MHf/2<5O>2,gﬁ). This gives (6.8) and the lemma in this case.
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Finally, we consider the case when H,’> < k; and (6.4) holds in w;. Since |Jp(w)| >
c,inl/Q(w), we find (0g) = H; ' in w;. As before we may ignore terms in S(MHll/Q, g% C
S(MHY?(5)2, %) in w; by (6.7). We find from (6.5) that sgn(f)B > 0 in w;, thus
fiB > 0. Since f; € S(M,G1), we find f}’ = fjWi"k modulo Op S(M H,,G;) by Proposi-
tion 5.1, thus we may replace f;” with fjWi"k. We find from Example 5.3 that

AY = Re f/" "BV = (f;B)V** >0 modulo Op S(MHll/z,gﬁ).
This completes the proof of Lemma 6.3. U

We shall finish the paper by giving a proof of Proposition 2.5.

Proof of Proposition 2.5. Let f € L®(R,S(h™!, hg*)) be real valued satisfying condi-
tion (V) given by (2.2). By changing h, we may assume that |0,f| < h™'/2. Let
Br = 69 + or, where 0y + or is the Lipschitz continuous pseudo-sign for f given by
Proposition 4.7 for 0 < 7' < 1, so that |or| < my < (dp)/2 and

(6.17) (00 + or) = my /2T inD'(]-T,TY).

We put By = 0 when || > T, then that BYi* = b where by(t, w) € L=(R, S(H; "2, ¢)
N ST(1, ¢*)) uniformly by Proposition 5.4. We find by Proposition 5.1 and (6.17) that

(6.18) (0:BY " *u,u) > (mY"**u,u) /2T in D'(]-T,TY)
when u € S(R"). By Proposition 6.1, we find for almost all ¢ € [T, T that
(6.19) Re ((f*B"")| u,u) = (C*(t)u,u) ue SR
with C(t) € S(my, g*) uniformly. Proposition 5.5 gives Cy > 0 so that
(620 [ (C¥(tyu,w) | < Co (mliu, u)
for u e S(R") and [t| < T. We find from (6.18)—(6.20) that
(Db, u) + 2Re (Wu, fu) > (1/2T — 2C5) (my " *u, u) in D'(]-T,TY)
for u € S(R™).

Since |BT| S |50| + my S 3<50>/2 and h1/2<(50>2/6 S my by (42), we find that bT S
S(h=Y4m, 2 g%) so hY/2((6%)% + 1) € Op S(my, g*) and Proposition 5.5 gives

(6:21) Wbl + ) < ) (ml P uu)  ue SRY).
Finally, using Proposition 2.9 with Py = D; + if*(t,z,D,), B = BY* = b% and m =
mYV* /AT we obtain that

ColpL? / 1bu? + [Jul|? dt < / (Y, ) dt < 8T / T (Pyu, b2u) dt

if u € S(R x R") has support where |t| < T < 1/8Cy. This completes the proof of

Proposition 2.5. O
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