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A WIENER ALGEBRA FOR THE FEFFERMAN-PHONG INEQUALITY

Nicolas Lerner Yoshinori Morimoto

Université de Rennes 1 Kyoto University

This text is a written version of a talk given at the Ecole Polytechnique

PDE seminar on March 21, 2006. A complete version is given in [LM].

1. Introduction and statement of the result

1.1. The Fefferman-Phong inequality. We consider a function a ∈ C∞(R2n) bounded
as well as all its derivatives. The (semi-classical) Fefferman-Phong inequality states that,
if a is a nonnegative function, there exists C such that, for all u ∈ L2(Rn) and all h ∈ (0, 1)

Re〈a(x, hD)u, u〉L2 + Ch2 ‖u‖2
L2 ≥ 0,

or equivalently (with an a priori different constant C)

a(x, hξ)w + Ch2 ≥ 0.

The constants C above depend only a finite number of derivatives of a. Let us ask our
first question:

Q1: How many derivatives of a are needed to control C?

From the proof by Fefferman and Phong ([FP]), it is clear that the number N of derivatives
of a needed to control C should be

N = 4 + ν(n).

Since the proof is using an induction on the dimension, it is not completely obvious to
answer to our question with a reasonably simple ν. We remark that, with a unitary
equivalence,

h−2a(x, hξ)w ≡ h−2a(xh1/2, h1/2ξ)w.

Defining A(x, ξ) = h−2a(xh1/2, h1/2ξ), we see that the following property holds:

(]) A(x, ξ) ≥ 0, A(k) is bounded for k ≥ 4.
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Bony proved in 1998 ([Bo1]) that

(]) =⇒ Aw + C ≥ 0.

Naturally, from the above identities, this implies the Fefferman-Phong inequality. This
result shows a twofold phenomenon:

· Only derivatives with order ≥ 4 are needed.
· The control of these derivatives is quite weak, of type S0

0,0. In particular, the deriva-

tives of large order do not get small (the class S0
0,0 does not have an asymptotic

calculus).

Our second question is

Q2: Is it possible to relax (]) by asking only A(4) ∈ A,

where A is a suitable Banach algebra containing S0
0,0? We shall in fact prove a result

involving a Wiener-type algebra introduced by Sjöstrand in [S1]. To formulate this, we
need first to introduce that algebra.

1.2. The Sjöstrand algebra. Let Z
2n be the standard lattice in R

2n
X and let 1 =

∑

j∈Z2n χ0(X − j), χ0 ∈ C∞
c (R2n), be a partition of unity. We note χj(X) = χ0(X − j).

Definition. Let a ∈ S′(R2n). We shall say that a belongs to A whenever ωa ∈ L1(R2n),
with ωa(Ξ) = supj∈Z2n |F(χja)(Ξ)|. A is a Banach algebra for the multiplication with the
norm ‖a‖A = ‖ωa‖L1(R2n).

The next three lemmas are propositions 1.2.1, 1.2.3 and lemma A.2.1 in [LM].

Lemma 1. We have S0
0,0 ⊂ S0

0,0;2n+1 ⊂ A ⊂ C0(R2n) ∩L∞(R2n), where S0,0;2n+1 is the

set of functions defined on R
2n such that |(∂α

ξ ∂
β
xa)(x, ξ)| ≤ Cαβ for |α| + |β| ≤ 2n + 1.

The algebra A is stable by change of quantization, i.e. for all t real, a ∈ A ⇐⇒ J ta =
exp(2iπtDx ·Dξ)a ∈ A.

We recall that (a1]a2)
w = aw

1 a
w
2 with

(a1]a2)(X) = 22n

∫∫

R2n×R2n

a1(Y1)a2(Y2)e
−4iπ[X−Y1,X−Y2]dY1dY2.

Lemma 2. The bilinear map a1, a2 7→ a1]a2 is defined on A×A and continuous valued
in A, which is a (noncommutative) Banach algebra for ]. The maps a 7→ aw, a(x,D) are
continuous from A to L(L2(Rn)).

Lemma 3. Let b be a function in A and T ∈ R
2n, t ∈ R. Then the functions τT b, bt

defined by τT b(X) = b(X − T ), bt(X) = b(tX) belong to A and

sup
T∈R2n

‖τT b‖A ≤ C ‖b‖A , ‖bt‖A ≤ (1 + |t|)2nC ‖b‖A .

Comments on the Wiener Lemma. The standard Wiener’s lemma states that if a ∈ for
some b ∈ Sjöstrand has proven several types of Wiener lemmas for A ([S2]). First a
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commutative version, saying that if a ∈ A and 1/a is a bounded function, then 1/a
belongs to A. Next, a noncommutative version of the Wiener lemma for the algebra A: if
an operator aw with a ∈ A is invertible as a continuous operator on L2, then the inverse
operator is bw with b ∈ A. In a paper by Gröchenig and Leinert ([GL]), the authors prove
several versions of the noncommutative Wiener lemma, and their definition of the twisted
convolution is indeed very close to (a discrete version of) the composition formula above. It
would be interesting to compare the methods used to prove these noncommutative versions
of the Wiener lemma.

1.3. The main result.

Theorem I. There exists a constant C such that, for all nonnegative functions a defined
on R

2n satisfying a(4) ∈ A, the operator aw is semi-bounded from below and, more precisely,
satisfies

aw + C‖a(4)‖A ≥ 0.

The constant C depends only on the dimension n.

Note that this answers positively to our second question (about relaxing the assumption
on a(4)), and as a byproduct gives the answer 4+2n+ε for the number of derivatives needed
to control C in the Fefferman-Phong inequality. Some results of this type were proven by
Sjöstrand in [S2], namely the standard G̊arding inequality with gain of one derivative for
his class, a ≥ 0, a′′ ∈ A =⇒ a(x, hξ)w + Ch ≥ 0. A version of the Hörmander-Melin
inequality with gain of 6/5 of derivatives (see [H1]) was given by Hérau ([Hé]) who used a
limited regularity on the symbol a, only such that a(3) ∈ A.

2. The Wick calculus

Some basic facts on this calculus can be found in section 2 of [LM] and in [Le].

2.1. Definitions.

Definition. Let Y = (y, η) be a point in R
n × R

n.

(i) The operator ΣY is defined as
[
2ne−2π|·−Y |2

]w
. This is a rank-one orthogonal projec-

tion: ΣY u = (Wu)(Y )τY ϕ with (Wu)(Y ) = 〈u, τY ϕ〉L2 , where ϕ(x) = 2n/4e−π|x|2 and

(τy,ηϕ)(x) = ϕ(x− y)e2iπ〈x−y

2
,η〉.

(ii) Let a be in L∞(R2n). The Wick quantization of a is defined as aWick =
∫

R2n a(Y )ΣY dY.

Lemma 4.
(i) Let a be in L∞(R2n). Then aWick = W ∗aµW and 1Wick = IdL2 where W is the isometric

mapping from L2(Rn) to L2(R2n) given above, and aµ the operator of multiplication
by a in L2(R2n). The operator πH = WW ∗ is the orthogonal projection on a closed
proper subspace H of L2(R2n). We have also

∥
∥aWick

∥
∥
L(L2(Rn))

≤ ‖a‖L∞(R2n) , and

a(X) ≥ 0 for all X implies aWick ≥ 0.
(ii) Moreover aWick = aw + r(a)w with

r(a)(X) =

∫ 1

0

∫

R2n

(1 − θ)a′′(X + θY )Y 2e−2π|Y |22ndY dθ.
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That lemma implies readily the improvement of the G̊arding inequality with gain of
one derivative. Take a ≥ 0 such that a′′ ∈ A: then aw = aWick − r(a)w ≥ −r(a)w, with

r(a)(X) =
∫ 1

0

∫

R2n(1 − θ)a′′(X + θY )Y 2e−2π|Y |22ndY dθ. Since A is stable by translation

(see the lemma 3), we see that r(a) ∈ A and thus r(a)w is bounded on L2(Rn) from the
lemma 2.

2.2. Sharp estimates for the remainders. The next three lemmas are lemmas 2.2.1,
2.3.1, 2.3.3 in [LM].

Lemma 5. Let a be a function defined on R
2n such that the fourth derivatives a(4) belong

to A. Then we have

aw =
(

a−
1

8π
Tr a′′

)Wick

+ ρ0(a
(4))w,

with ρ0(a
(4)) ∈ A: more precisely ‖ρ0(a

(4))‖A ≤ Cn‖a(4)‖A.

One should not expect the quantity a − 1
8π Tr a′′ to be nonnegative: this quantity will

take negative values even in the simplest case a(x, ξ) = x2 + ξ2, so that the positivity of
the quantization expressed by the lemma 4 is far from enough to get our result.

Remark. We note that, from the lemma 5 and the L2 boundedness of operators with
symbols in A, the theorem is reduced to proving

a ≥ 0, a(4) ∈ A =⇒
(

a−
1

8π
Tr a′′

)Wick

+ C ≥ 0.

2.3. Composition formula for the Wick quantization.

Lemma 6. For p, q ∈ L∞(R2n) real-valued with p′′ ∈ L∞(R2n), we have

Re
(
pWickqWick

)
=

(

pq −
1

4π
∇p · ∇q

)Wick

+R, with ‖R‖L(L2) ≤ C(n) ‖p′′‖L∞ ‖q‖L∞ .

Lemma 7. For p measurable real-valued function such that p′′, (p′p′′)′, (pp′′)′′ ∈ L∞, we
have

pWickpWick =

∫ [

p(Z)2 −
1

4π
|∇p(Z)|2

]

ΣZdZ + S,

‖S‖L(L2) ≤ C(n)
(

‖p′′‖
2
L∞ + ‖(p′′p′)′‖L∞ + ‖(pp′′)′′‖L∞

)

.

Further reduction. To get our theorem, we shall prove

a ≥ 0, a(4) ∈ L∞(R2n) =⇒
(

a−
1

8π
Tr a′′

)Wick

+ C ≥ 0.

We leave now the arguments of harmonic analysis and we will use a structure theorem
on nonnegative C3,1 functions as sum of squares of C1,1 functions to write the operator
(

a− 1
8π

Tr a′′
)Wick

as a sum of squares of operators, up to L2-bounded operators, thanks

to the lemmas 6,7.
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3. Sketching the proof of our reduction

3.1. Nonnegative functions as sum of squares.

Theorem II. Let m ∈ N. There exists an integer N and a positive constant C such that
the following property holds. Let a be a nonnegative C3,1 function defined on R

m such that
a(4) ∈ L∞; then we can write

a =
∑

1≤j≤N

b2j

where the bj are C1,1 functions such that b′′j , (b
′
jb

′′
j )′, (bjb

′′
j )′′ ∈ L∞. More precisely, we

have
‖b′′j ‖

2
L∞ + ‖(b′jb

′′
j )′‖L∞ + ‖(bjb

′′
j )′′‖L∞ ≤ C‖a(4)‖L∞ .

Note that this implies that each function bj is such that b2j is C3,1 and that N and C depend
only on the dimension m.

Part of this theorem is a consequence of the classical proof of the Fefferman-Phong
inequality in [FP] and of the more refined analysis of Bony ([Bo1]) (see also the papers
by Guan [Gu] and Tataru [Ta]). However the control of the L∞ norm of the quantities
(b′jb

′′
j )′, (bjb

′′
j )′′ seems to be new and is important for us.

Sketching the proof. We use a Calderón-Zygmund method and define

ρ(x) =
(
|a(x)| + |a′′(x)|2

)1/4
, Ω = {x, ρ(x) > 0},

assuming as we may ‖a(4)‖L∞ ≤ 1. Note that, since ρ is continuous, the set Ω is open.
The metric |dx|2/ρ(x)2 is slowly varying in Ω: ∃r0 > 0, C0 ≥ 1 such that

x ∈ Ω, |y − x| ≤ r0ρ(x) =⇒ y ∈ Ω, C−1
0 ≤

ρ(x)

ρ(y)
≤ C0.

The constants r0, C0 can be chosen as “universal” constants, thanks to the normalization
on a(4) above. Moreover the nonnegativity of a implies with γj = 1 for j = 0, 2, 4,
γ1 = 3, γ3 = 4,

|a(j)(x)| ≤ γjρ(x)
4−j, 1 ≤ j ≤ 4.

Remark. We shall use the following notation: let A be a symmetric k-linear form on real
normed vector space V . We define the norm of A by

‖A‖ = sup
‖T‖=1

|AT k|.

Since the symmetrized products of T1 ⊗ · · ·⊗Tk can be written as a linear combination of
k-th powers, that norm is equivalent to the natural norm

|‖A‖ = sup
‖Tj‖=1,

1≤j≤k

|AT1 . . . Tk|

and in fact, when V is Euclidean, we have the equality ‖A‖ = |‖A‖ (see [Ke]). For an

arbitrary normed space, the best estimate is |‖A‖ ≤ kk

k! ‖A‖ (see the remark 3.1.2 in [LM]).
The basic properties of slowly varying metrics are summarized in the following lemma

(see e.g. section 1.4 in [H2]).
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Lemma 8. Let a, ρ,Ω, r0 be as above. There exists a positive number r′0 ≤ r0, such that
for all r ∈]0, r′0], there exists a sequence (xν)ν∈N of points in Ω and a positive number
Mr, such that the following properties are satisfied. We define Uν , U

∗
ν , U

∗∗
ν as the closed

Euclidean balls with center xν and radius rρν , 2rρν, 4rρν with ρν = ρ(xν). There exist two
families of nonnegative smooth functions on R

m, (ϕν)ν∈N, (ψν)ν∈N such that

∑

ν

ϕ2
ν(x) = 1Ω(x), suppϕν ⊂ Uν , ψν ≡ 1 on U∗

ν ,

suppψν ⊂ U∗∗
ν ⊂ Ω. Moreover, for all integers l, we have supx∈Ω,ν∈N ‖ϕ

(l)
ν (x)‖ρl

ν +

supx∈Ω,ν∈N
‖ψ(l)

ν (x)‖ρl
ν <∞. The overlap of the balls U∗∗

ν is bounded, i.e.

⋂

ν∈N

U∗∗
ν 6= ∅ =⇒ #N ≤Mr.

Moreover, ρ(x) ∼ ρν all over U∗∗
ν (i.e. the ratios ρ(x)/ρν are bounded above and below by

a fixed constant, provided that x ∈ U∗∗
ν ).

Since a is vanishing on Ωc, we obtain

a(x) =
∑

ν∈N

a(x)ϕ2
ν(x).

Definition. Let a, ρ,Ω be as above. Let θ be a positive number ≤ θ0, where θ0 < 1/2 is
a fixed constant. A point x ∈ Ω is said to be

(i) θ-elliptic whenever a(x) ≥ θρ(x)4,

(ii) θ-nondegenerate whenever a(x) < θρ(x)4 : we have then ‖a′′(x)‖2 ≥ ρ(x)4/2.

Let us first consider the “elliptic” indices ν such that xν is θ-elliptic. For x ∈ U∗∗
ν , we

have a(x) ∼ ρ4
ν , so that with

bν(x) = a(x)1/2ψν(x), b2ν = aψ2
ν , ϕ2

νb
2
ν = aϕ2

ν

and on suppϕν (where ψν ≡ 1),







b′ν = 2−1a−1/2a′,

b′′ν = −2−2a−3/2a′
2

+ 2−1a−1/2a′′,

b′′′ν = 3 × 2−3a−5/2a′
3 − 3

4a
−3/2a′a′′ + 2−1a−1/2a′′′,

b
(4)
ν = −15

16
a−7/2a′

4
+ 9

4
a−5/2a′

2
a′′ − 3

4
a−3/2a′′

2

−a−3/2a′a′′′ + 1
2a

−1/2a(4),

yielding easily the result. The whole difficulty is concentrated on the next case.
The nondegenerate indices ν are those for which xν is θ-nondegenerate. Since a′′ is

large, according to our scaling, we may choose the coordinates on Uν such that

∂2
1a(x) ≥ ρ2

ν/2 for |x− xν | . ρν .
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Since we know also that a is small at some point in Uν (if the constant θ0 is suitably
chosen, cf. the lemma A.1.5 in [LM]), we get that ∂1a vanishes somewhere in Uν . ¿From
the implicit function theorem, there exists α such that ∂1a(α(x′), x′) = 0 and thus, with

β = x1 − α(x′), R =
(∫ 1

0
(1 − t)∂2

1a
(
α(x′) + t(x1 − α(x′)), x′

)
dt

)1/2

,

a(x) = a(x1, x
′) = R2β2 + a(α(x′), x′)

=

∫ 1

0

(1 − t)∂2
1a

(
α(x′) + t(x1 − α(x′)), x′

)
dt

(
x1 − α(x′)

)2
+ a(α(x′), x′).

We find easily |α(x′)−xν1| . ρν , |α′(x′)| . 1, |α′′(x′)| . ρ−1
ν , |α′′′(x′)| . ρ−2

ν . Following
Bony’s argument, we compute the derivatives of

x′ 7→ a(α(x′), x′) = c(x′).

We have, denoting by ∂2 the x′-partial derivative,

c′ = α′∂1a+ ∂2a = ∂2a,

(here we have used the identity ∂1a(α(x′),x′) ≡ 0),

c′′ = α′∂1∂2a+ ∂2
2a,

c′′′ = α′′∂1∂2a+ α′2∂2
1∂2a+ 2α′∂1∂

2
2a+ ∂3

2a,

c′′′′ = α′′′∂1∂2a+ 3α′′α′∂2
1∂2a+ 3α′′∂1∂

2
2a

+ α′3∂3
1∂2a+ 3α′2∂2

1∂
2
2a+ 3α′∂1∂

3
2a+ ∂4

2a,

so that |c′| . ρ3, |c′′| . ρ2, |c′′′| . ρ, |c′′′′| . 1.

This forces the function B(x) = R(x)2(x1 −α)2 to be C3,1 with a j-th derivative bounded
above by ρ4−j

ν (0 ≤ j ≤ 4), since it is the case for a and c. Defining b(x) = R(x)
(
x1−α(x′)

)

we see that
a = b2 + c, |(b2)(j)| = |B(j)| . ρ4−j

ν , 0 ≤ j ≤ 4.

As a consequence, we have

R2β2 =

=0
︷ ︸︸ ︷

B(α(x′), x′)+

∈C2,1

︷ ︸︸ ︷
∫ 1

0

∂1B(α(x′) + θ(x1 − α(x′)), x′)dθ β,

|β(j)| . ρ1−j , 0 ≤ j ≤ 3,

and since the open set {β 6= 0} is dense,

R2β =

∫ 1

0

∂1B(α(x′) + θ(x1 − α(x′)), x′)dθ ∈ C2,1,

|(R2β)(j)| . ρ3−j
ν , 0 ≤ j ≤ 3.
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Also we have 0 < R2 = ω ∈ C1,1, ω ∼ ρ2
ν and

|ω(j)| . ρ2−j
ν , 0 ≤ j ≤ 2,

entailing that with R = ω1/2,

|R′ =
1

2
ω−1/2ω′| . 1, |R′′ = −

1

4
ω−3/2ω′2 +

1

2
ω−1/2ω′′| . ρ−1

ν .

Using Leibniz’ formula, we get

(R2β)′′′ = (ωβ)′′′ = ω′′′β + 3ω′′β′ + 3ω′β′′ + ωβ′′′,

which makes sense since ω′′′ is a distribution of order 1 and β is C2,1. We know that (ωβ)′′′

is L∞, and since it is also the case of ω′′β′, ω′β′′, ωβ′′′, we get that ω′′′β is bounded. On
the other hand we have, since ω = R2,

ω′′′ = 6R′R′′ + 2 R
︸︷︷︸

C1,1

R′′′
︸︷︷︸

distribution

of order 1

entailing that β(6R′R′′ + 2RR′′′) is L∞ and since it is the case of βR′R′′, we get that
βRR′′′ is L∞ . With b = Rβ, we get b′b′′ = (R′β+Rβ′)(R′′β+2R′β′ +Rβ′′) and to check
that (b′b′′)′ is in L∞, it is enough to check the derivatives of R′′βR′β, R′′βRβ′ which are,
up to bounded terms,

R′′′βR′β = R′′′βRR′ β

R
, R′′′βRβ′

which are bounded according to the estimates above. Note that b′′ is bounded. We want
also to verify that (bb′′)′′ is bounded. We use that (b2)(4) is bounded and since we have

(b2)′′′′
︸ ︷︷ ︸

bounded

= 2(b′ ⊗ b′ + bb′′)′′ = 2 (b′ ⊗ b′′ + b′′ ⊗ b′)′
︸ ︷︷ ︸

bounded

+2(bb′′)′′,

we obtain the boundedness of (bb′′)′′. We can conclude by using an induction on the
dimension (c is defined on R

m−1) and a standard argument due to Guan ([Gu]) on slowly
varying metrics.

3.2. End of the proof.

Lemma 9. Let a be a nonnegative function defined on R
2n such that a(4) belongs to

L∞(R2n). We have from the theorem II the identity a =
∑

1≤j≤N b2j along with some
estimates on each bj and its derivatives. Then we have

(

a−
1

8π
Tr a′′

)Wick

=
∑

1≤j≤N

[
(

bj −
1

8π
Tr b′′j

)Wick
]2

+R

where R is a L2-bounded operator such that ‖R‖L(L2(Rn)) ≤ C‖a(4)‖L∞(R2n), C depending

only on the dimension n.
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3.3. A final comment. One may ask the following question: why did we not apply
the induction argument on the Sjöstrand algebra A directly, and avoid that complicated
detour with the Wick calculus? The answer to that (self-raised) interrogation is simple:
as seen above the Fefferman-Phong induction procedure requires a cutting process (this
is the metric dX2/ρ(X)2) and also a bending of the phase space (the function α is not
linear). Although the cutting part may respect A, it is not very likely that the rigid affine
structure of A would survive the bending. We were somehow forced to push the induction
procedure in some other corner, far away from the quantization business, and our theorem
on nonnegative functions, although proven by induction on the dimension, is collecting all
the information on lower dimensions.
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