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UNCERTAINTY PRINCIPLES FOR ORTHONORMAL BASES

PHILIPPE JAMING

Abstract. In this survey, we present various forms of the uncertainty principle (Hardy,
Heisenberg, Benedicks...). We further give a new interpretation of the uncertainty principles
as a statement about the time-frequency localization of elements of an orthonormal basis,
which improves previous unpublished results of H. Shapiro.

Finally, we reformulate some uncertainty principles in terms of properties of the free heat
and shrödinger equations.

1. Introduction

The uncertainty principle is a “metamathematical” statement that asserts that

a function and its Fourier transfrom can not both be sharply localized.

There are various precise mathematical formulations of this general fact, the most well
known being those of Hardy and of Heisenberg-Pauli-Weil. It is one of the aims of this
survey to present various statements that can be interpreted as uncertainty principles. The
reader may find many extensions of the results presented here, other manifestations of the
uncertainty principle as well as more references to the vast literature in the surveys [FS, BD]
and the book [HJ]. Part of this survey has serious overlaps with these texts.

We start with results around Heisenberg’s Uncertainty Principle and show, following de
Bruijn, how this can be proved using the spectral theory of the Hermite Operator. This
further shows that Hermite Functions are “successive optimals” of Heisenberg’s Uncertainty
Principle. We complete this section with a new result joint with A. Powell [JP] that shows
that the elements of an orthonormal basis and their Fourier Transforms have their means
and dispersions that grow at least like those of the Hermite Basis. This gives a quantitative
version of an unpublished result by H. Shapiro (see [Sh1, Sh2]).

In a second section, we consider the problem of the joint smallness of the support and
spectrum (support of the Fourier Transform) of a function. For instance, it is easy to show
that a function and its Fourier Transform can not both have compact support. It was shown
by Benedicks [Be] that the same is true when one asks the support and spectrum to be of
finite measure. Further, it was independently proved by Amrein and Berthier [AB] that the
L2-norm of a function is controled by the L2-norm of the function outside a set of finite
measure and the L2-norm of its Fourier transform outside an other set of finite measure. We
complete the section by mentioning the closely related problem of energy concentration in a

1991 Mathematics Subject Classification. 42B10.
Key words and phrases. Uncertainty principles, orthonormal bases.
Research partially financed by: European Commission Harmonic Analysis and Related Problems 2002-2006

IHP Network (Contract Number: HPRN-CT-2001-00273 - HARP) .

XV–1



compact set studied by Landau, Pollak and Slepian and conclude it with the local uncertainty
principle of Faris, Price and Sitaram and show how this is related to the previous section.

We pursue the paper by measuring concentration by the speed of decay away from the
mean. We first sketch a new proof of Hardy’s Theorem due to B. Demange [De]. This
roughly states that a function and its Fourier Transform can not both decrease faster than
gaussians and, if they decrease like a gaussian, then they are actually gaussians. We conclude
the section by asking whether all elements of an orthonormal sequence as well as their Fourier
Transforms be bounded by a fixed L2-function. We show that this implies that the sequence
is finite and give bounds on the number of elements, thus improving a previous result of H.
Shapiro [Sh1, Sh2].

We conclude the paper by some simple results in the spirit of [EKV, EKPV], reformulating
some uncertainty principles in terms of solutions of the free heat and Shrödinger equations.

2. Heisenberg’s uncertainty principle

In this section, we are going to prove Heisenberg’s Uncertainty Principle and show that
the Hermite Basis is the best concentrated in the time-frequency plane when concentration
is measured by dispersion. This is done using the spectral theory of the Hermite Operator.

2.1. Notations.
For sake of simplicity, all results will be stated on R. Generalizations to R

n are either
strateforward using tensorization or available in the litterature.

For f ∈ L2(R), let

— µ(f) =
1

‖f‖2
2

∫

R

t|f(t)|2dt its mean;

— ∆2(f) =

∫

R

|t− µ(f)|2|f(t)|2dt its variance and ∆(f) =
√

∆2(f) its dispersion.

For f ∈ L2(R) ∩ L1(R), the Fourier Transform is defined by

f̂(ξ) =

∫

R

f(x)e−2iπxξdx

and is then extended to all of L2(R) in the usual way. The Inverse Fourier Transform of f is
denoted by f̌ .

For f ∈ C2(R) we define the Hermite operator as

Hf(t) = − 1

4π2

d

dx
+ t2f(t).

The Hermite Functions are then defined as

hk(t) =
21/4

√
k!

(
− 1√

2π

)k

eπt
2

(
d

dt

)k

e−2πt2 .

They have the following well known properties:

(i) they form an orthonormal basis in L2(R),

(ii) they are eigenfunctions of the Fourier transform ĥk = i−khk,

(iii) they are eigenfunctions of the Hermite operator Hhk =
2k + 1

2π
hk.
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This allows to extend the Hermite Operator as a positive self-adjoint operator on L2(R)
via

Hf =

+∞∑

k=0

2k + 1

2π
〈f, hk〉hk.

Finally, an easy computation shows that

〈Hf, f〉 = µ(f)2‖f‖2 + ∆2(f) + µ(f̂)2‖f̂‖2 + ∆2(f̂).

2.2. Heisenberg’s uncertainty principle.
It is now easy to give a proof of the following:

Heisenberg-Pauli-Weil’s Uncertainty principle. For every f ∈ L2(R),

∆(f)∆(f̂) ≥ 1

4π
‖f‖2

2.

Moreover equality occurs only if there exists C ∈ C, ω, a, α ∈ R, such that

f(t) = ce2iπωte−πα|t−a|
2

a.e.

The following proof, using the spectral theory of the Hermite operator, seems to be du to
De Bruijn [dB].

Proof. First, replacing f by f(t) = e2iπωtf(t−a), it is enough to assume that µ(f) = µ(f̂) = 0.
Further, it is enough to prove that

∆(f)2 + ∆(f̂)2 ≥ 1

2π
‖f‖2

2

with equality only for f = c h0. Indeed, it is enough to apply this to fλ(t) = 1√
λ
f(t/λ) and

then minimize the left hand side over λ.
But then,

∆2(f) + ∆2(f̂) = 〈Hf, f〉

=

+∞∑

k=0

2k + 1

2π
|〈f, hk〉|2

≥
+∞∑

k=0

2 × 0 + 1

2π
|〈f, hk〉|2 =

1

2π
‖f‖2.

Moreover, equality can only occur if 〈f, hk〉 = 0 for all k 6= 0, that is, for f = ch0. �

Remark : The above proof actually shows slightly more. If f is orthogonal to h0, . . . , hn−1,
then

∆2(f) + ∆2(f̂) ≥ 2n+ 1

2π
‖f‖2

with equality if and only if f = chn. This shows that the elements of the Hermite Basis are
succesive optimizers of Heisenberg’s Uncertainty Principle.

We would like to stress that one of the strength of Heisenberg’s Uncertainty Principle is
its optimality and the fact that we know the optimizers. There are various generalizations of
this principle for which the optimal constant is not known. Let us cite the following:
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Theorem 2.1 (Cowling-Price [CP]). Let p, q ∈ [1,∞] and a, b > 0. There exists a constant

K such that

(2.1)
∥∥|x|af

∥∥
p
+

∥∥|ξ|bf̂
∥∥
q
≥ K‖f‖2

for all f ∈ L2(R) if and only if

a >
1

2
− 1

p
and b >

1

2
− 1

q
.

If this is the case, let γ be given by

γ

(
a− 1

2
+

1

p

)
= (1 − γ)

(
b− 1

2
+

1

q

)

then there exists a constant K such that
∥∥|x|af

∥∥γ
p

∥∥|ξ|bf̂
∥∥1−γ
q

≥ K‖f‖2.

The necessary condition is easily obtained with the standard scaling argument. A proof of
a particular case of this theorem will be given in Section 3.3.

2.3. A quantitative form of Shapiro’s Mean-Dispersion Theorem.
In an unpublished note, H. Shapiro [Sh1, Sh2] asked what conditions should be put on
sequences (ak), (bk), (ck), (dk) for the existence of an orthonormal basis (ek) of L2(R) such
that

µ(ek) = ak, µ(êk) = bk, ∆(ek) = ck, ∆(êk) = dk.

Further he proved, using a compactness argument, that an orthonormal sequence such that
all four µ(ek), µ(êk), ∆(ek), ∆(êk) are bounded is necessarily finite. These results were
subsequently improved by A. Powell [Po] who proved that there is no orthonormal basis for
which µ(ek), ∆(ek), ∆(êk) are bounded and modified a construction of Bourgain to get an
orthonormal basis for which µ(ek), µ(êk), ∆(ek) are bounded.

The question was motivated by the developement of Gabor and wavelet analysis. More
precisely:

(1) A Gabor basis is a basis {gk,l}k,l∈Z of L2(R) of the form gk,l(x) = e2iπkxg(x − l). It
follows that µ(gk,l) → ∞ when l → ∞ and µ(ĝk,l) → ∞ when k → ∞. Moreover, a
theorem of Balian [Ba] and Low [Lo] asserts that if (gk,l)k,l is an orthonormal basis
then ∆(g)∆(ĝ) = +∞.

(2) A Wavelet is a basis {gk,l}k,l∈Z of L2(R) of the form gk,l(x) = 2k/2g(2kx− l). Again
µ(gk,l) → ∞ when l → ∞, ∆(gk,l) → ∞ when k → −∞ and ∆(ĝk,l) → ∞ when
k → +∞.

We will now show the following quantitative form of Shapiro’s result:

Theorem (Jaming-Powell [JP]). Let {ek}k≥0 be an orthonormal sequence in L2(R). Then
for all n ≥ 0,

n∑

k=0

(
∆2(ek) + ∆2(êk) + |µ(ek)|2 + |µ(êk)|2

)
≥ (n+ 1)2

2π
.

If equality holds for all n ≤ n0, then for k = 0, . . . , n0, ek = ckhk, |ck| = 1.
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A similar result also extends to Riesz basis that are near enough to an orthogonal one by
other techniques similar to those used in Section 4.2. However, the growth of the left hand
side is only in O(n).

As a corollary, we immediatly get the following:

Corollary (Jaming-Powell [JP]). Let {ek}k≥0 be an orthonormal sequence in L2(R) such
that ∆(ek), ∆(êk), |µ(ek)|, |µ(êk)| are all ≤ C then the sequence has at most 8πC2 elements.

In the case of orthonormal sequences, the proof is a direct application of the Rayleigh-Ritz
technique which we now recall:

Theorem (Rayleigh-Ritz). Let H be a positive self-adjoint operator with domain D(H).
Define

λk(H) = sup
ϕ0,··· ,ϕk−1

inf
ψ∈[ϕ0,··· ,ϕk−1]⊥,||ψ||=1,ψ∈D(H)

〈Hψ,ψ〉.

Let V be a n + 1 dimensional subspace V ⊂ D(H) and let PV be the orthogonal projection

on V . Define HV = PVHPV , and consider HV as an operator H̃V : V → V . Let µ0 ≤ µ1 ≤
· · · ≤ µn be the eigenvalues of H̃V . Then

λk(H) ≤ µk, k = 0, · · · , n.

Taking the trace of H̃V , we then get that, for (ϕk) orthonormal and in D(H),
n∑

k=0

λk(H) ≤
n∑

k=0

〈Hϕk, ϕk〉.

If one of the ϕk’s is not in D(H), then the right-hand side is infinite and this is trivial. To
conclude the proof of the theorem, it is thus enough to take H the Hermite operator and
ϕk = ek. 2

3. Qualitative uncertainty principles

3.1. Annihilating pairs.

Notation : We will use the following notations. All sets considered will be measurable and
the measure of a set S will be denoted by |S|. We denote by χS the characteristic function
of S, that is χS(x) = 1 if x ∈ S and χS(x) = 0 otherwise.

A way of measuring the concentration of a function in the time-frequency plane is by asking
that the function and its Fourier Transform have both small support. For instance, it is well
known that a function and its Fourier Transform can not both have compact support. Indeed
if a non zero function has compact support, then its Fourier Transform is analytic and thus
can not have compact support. This leads naturally to the following property:

Definition. Let S,Σ be two measurable subsets of R
d. Then

— (S,Σ) is a (weak) annihilating pair if,

supp f ⊂ S and supp f̂ ⊂ Σ

implies f = 0.
— (S,Σ) is called a strong annihilating pair if there exists C = C(S,Σ) such that

(3.2) ‖f‖L2(Rd) ≤ C
(
‖f‖L2(Rd\S) + ‖f̂‖L2(Rd\Σ)

)
.
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To prove that a pair (S,Σ) is a strong annihilating pair, one usually shows that there exists
a constant D = D(S,Σ) such that, for all functions f ∈ L2(Rd) whose Fourier Transform is
supported in Σ,

(3.3) ‖f‖L2(Rd\Σ) ≥ D‖f‖L2(Rd).

Moreover, the best constants are related by 1
D(S,Σ) ≤ C(S,Σ) ≤ 1

D(S,Σ) + 1.

As seen as above, if S,Σ are compact, then they form an annihilating pair. More generally,
if S,Σ are sets of finite measure, then they form an annihilating pair. This is a particular
case of the following:

Theorem (Benedicks [Be]). Assume that, for almost every x ∈ (0, 1), the set (x+ Z) ∩ S
is finite and, for almost every ξ ∈ (0, 1), the set (ξ + Z) ∩ Σ is finite. Then the pair (S,Σ) is
a weak annihilating pair.

Proof. The main tool is the Poisson Summation Formula, which implies that

(3.4) e−2iπxξ
∑

j∈Z

f(x+ j)e2iπjξ =
∑

k∈Z

f̂(ξ + k)e2iπkx.

Assume first that there exists a set E ⊂ (0, 1) of positive measure such that, for all x ∈ E,
the set (x+ Z) ∩ S is empty. Then the left hand side of (3.4) vanishes on E. Since the right
hand side is a trigonometric polynomial in the x variable, for almost every ξ, it is identically
0. In particular

‖f‖2
2 =

∫ 1

0

∑

k∈Z

|f̂(ξ + k)|2 = 0

and the conclusion follows in this case.
Let us now prove the general case. It is easy to find a set E ⊂ (0, 1) of positive measure

and an integer N > 0 such that (x+NZ) ∩ S is empty. We will use the previous case after
a change of scale. We are thus lead to proving that, for almost all ξ ∈ (0, N−1), the set
(ξ + N−1

Z) ∩ Σ is finite, which is done by writing it as a finite union of sets (ξj + Z) ∩ Σ

where ξj = ξ + j
N , j = 0, . . . , N . �

It has been proved by Amrein-Berthier [AB] that pairs of sets of finite measure are actually
strongly annihilating. As noticed in [BD], this can be deduced from Benedick’s theorem.

Theorem (Amrein-Berthier [AB]). Let S,Σ be sets of finite measure, then (S,Σ) is a
strong annihilating pair.

Proof. Assume there is no such constant C. Then there exists a sequence fn ∈ L2(R) of
norm 1 and with spectrum Σ such that fnχR\S converges to 0. Moreover, we may assume

that f̂n is weakly convergent in L2(R) with some limit f̂ . As fn(x) is the scalar product of

e2iπxξχΣ and f̂n, it follows that fn converges to f . Finally, as |fn| is bounded by |Σ|1/2, we
may apply Lebesgue’s Theorem, thus fnχS converges to f in L2(R) and the limit f has norm
1. But the function f has support in S and spectrum in Σ so by Benedick’s Theorem, it is
0, a contradiction. �

It is much more difficult to have an estimate of the constant in Amrein-Berthier’s Theorem.
Let us mention a theorem of Nazarov [Na] which states that one can take C = c0e

c1|S||Σ|.
The same problem in higher dimension is not yet solved in a completely satisfactory way.
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For particular Σ, the range of possible S may be widened. Let us mention the following
theorem, which improves estimates of Logvinenko-Sereda [LS] and Paneah [Pa1, Pa2].

Definition. A set E is γ-thick at scale a > 1 if, for all x ∈ R,

|E ∩ [x− a, x+ a]| ≥ 2γa.

Theorem (Kovrizhkin [Ko]). There exists a constant C such that, for all functions f ∈
L2(R) with spectrum in [−1, 1] and for every set E which is γ-thick at scale a > 1, one has
the inequality

‖f‖2
2 ≤

(
C

γ

)Ca ∫

E
|f(x)|2dx.

3.2. Prolate spheroidal wave functions. A closely related question is that of concentra-
tion. This has been extensively studied by Landau, Pollak and Slepian [LP1, LP2, SP, S1],
see also [S2]. More precisely, they studied the set of all functions f ∈ L2(R) such that, for
some fixed T,Ω, ε > 0,

(3.5)

∫

|t|>T
|f(t)|2dt ≤ ε2‖f‖2

2 ,

∫

|ξ|>T
|f̂(ξ)|2dξ ≤ ε2‖f‖2

2.

In particular, they proved that there is an orthonormal basis {ψn}n≥0 of the space

PWΩ = {f ∈ L2(R) : supp f̂ ⊂ [−Ω,Ω]}
formed of eigenfunctions of the differential operator:

L = (T 2 − x2)

(
d

dx

)2

− 2x
d

dx
− Ω2

T 2
x2

such that the following theorem holds:

Theorem (Landau-Pollak [LP2]) Let d = b4TΩc+1. Then, for every f ∈ L2(R) such that
(3.5) holds

‖f − Pdf‖2
L2(R) ≤ 49ε2‖f‖2

2,

where Pd is the orthogonal projection on the span of ψ0, . . . , ψd−1.

The functions ψk are called prolate spheroidal wave functions and are linked to the wave
equation in “prolate spheroidal” coordinates.

This theorem is intimately linked to the Shannon Sampling Theorem. Its heuristics is the
following. Assume that f ∈ PWΩ then, according to Shannon’s sampling theorem, f can be
reconstructed from its samples in the following way :

f(x) =
∑

k∈Z

f

(
k

2Ω

)
sinc π

(
x− k

2Ω

)
.

But now, if f is essentially 0 outside [−T, T ], then f is essentially reconstructed from its
4TΩ samples at { k

2Ω ,−2TΩ ≤ k ≤ 2TΩ}. That is, the space of functions that are almost
supported in [−T, T ] and have spectrum in [−Ω,Ω] has dimension d ' 4TΩ. The above
theorem gives a precise formulation of this.
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3.3. Local uncertainty principles. The following theorem is due to Faris [Fa] when α = 1
and Price and Sitaram [Pr, PS] in the general case.

Theorem. If 0 < α < d/2, there is a constant K = K(α, d) such that for all f ∈ L2(Rd) and
all measurable set E ⊂ R

d,

(3.6)

∫

E
|f̂(ξ)|2dξ ≤ K|E|2α/d‖|x|αf‖2

2.

Proof. Let χr be the characteristic function of the ball {x : |x| < r} and χ̃r = 1− χr. Then,
for r > 0, write

(∫

E
|f̂(ξ)|2dξ

)1/2

= ‖f̂χE‖2 ≤ ‖f̂χrχE‖2 + ‖f̂ χ̃rχE‖2 ≤ |E|1/2‖f̂χr‖∞ + ‖f̂ χ̃r‖2.

Now
‖f̂χr‖∞ ≤ ‖fχr‖1 ≤ ‖ |x|−αχr ‖2‖ |x|αf ‖2 ≤ Cαr

d/2−α‖ |x|αf ‖2

and
‖f̂ χ̃r‖2 ≤ ‖ |x|−αχ̃r ‖∞‖ |x|αf ‖2 ≤ r−α‖ |x|αf ‖2,

so (∫

E
|f̂(ξ)|2dξ

)1/2

≤
(
Cα|E|1/2rd/2−α + r−α

)
‖ |x|αf ‖2.

The desired result is obtained by minimizing the right hand side of that inequality over
r > 0. �

An easy computation shows that this proof gives

K =
(d+ 2α)2

(2α)4α/d
(d− 2α)2α/d−2.

A more interesting remark is the following. First, note that if we exchange f and f̂ in
(3.6), then the right hand side becomes,

∥∥∆α/2f
∥∥

2
, using Parseval. We thus get that

sup
E⊂Rd, 0<|E|<∞

1

|E|α/d
(∫

E
|f(x)|2dx

)1/2

≤ K
∥∥∥∆α/2f

∥∥∥
2
.

The left hand side is known to be an equivalent norm of the Lorentz-space Lpα,∞ where

pα =
2d

d− 2α
:

∥∥f
∥∥
Lpα,∞ ≤ K

∥∥∆α/2f
∥∥

2
for all f ∈ L2(R).

Faris also showed that local uncertainty principles are stronger than global ones of the
Heisenberg type. For instance, for 0 < α < d

2 and β > 0,

‖f‖2
2 = ‖f̂‖2

2 =

∫

|ξ|<r
|f̂(ξ)|2dξ +

∫

|ξ|≥r
|f̂(ξ)|2dξ

≤ Kαr
2α

∥∥|x|αf
∥∥2

2
+ r−2β

∥∥|ξ|β f̂
∥∥2

2
.

Choosing r so as too minimize the left-hand side, we obtain
∥∥f

∥∥2

2
≤ Kα,β

∥∥|x|αf
∥∥

2

∥∥|ξ|β f̂
∥∥

2
.
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Nevertheless, the constant Kα,β obtained this way is likely not to be the optimal one. Indeed,
it is not for α = β = 1 when the equality case is known, and in other cases, the optimal
constant is unknown.

Let us slightly modify the argument: for 0 < α < d, β > 0 and f ∈ L2(Rd),
〈
(∆β + |x|α)f, f

〉
=

〈
∆βf, f

〉
+

∥∥|x|α/2f
∥∥2

2

≥
∥∥|ξ|β/2f̂

∥∥2

2
+

1

K

∥∥f̂
∥∥2

L2(|ξ|≤1)
≥ 1

K
‖f‖2

2

where we have used Parseval’s Indentity and Faris’ Theorem. This shows that the operator
∆β + |x|α has a spectral gap, the precise value of which is not known.

4. Fast decrease conditions

We will now measure concentration by asking that a function has fast decrease away from

its mean. A typical very concentrated function is the gaussian e−πax
2

and the parameter a
measures concentration.

4.1. Hardy’s uncertainty principle.

Theorem (Hardy [Ha]). Let f ∈ L2(R). Assume that

(1) for almost all x ∈ R, |f(x)| ≤ C(1 + |x|)Ne−πa|x|2 ,
(2) for almost all x ∈ R, |f̂(ξ)| ≤ C(1 + |ξ|)Ne−πb|ξ|2.

Then, if ab > 1, f = 0 and if ab = 1 f(x) = P (x)e−πa|x|
2

, P polynomial of degree at most N .

Note that this theorem may be interpreted as follows: the space of functions satisfying
conditions (1) and (2) of Hardy’s Theorem is N + 1-dimensional. There are various gener-
alizations of this theorem. The following is an improvement of a result of Beurling whose
proof was lost until a new prove was given by Hörmander. Hörmander’s result was only in
dimension 1 and with N = 0 so that it did not cover the equality case in Hardy’s Theorem.

Theorem (Bonami-Jaming-Demange [BDJ]). Let f ∈ L2(Rd). Assume that
∫∫

Rd×Rd

|f(x)||f̂(ξ)|e2π|〈x,ξ〉| dxdξ

(1 + |x| + |ξ|)N

then f = P (x)e−〈Ax,x〉, where A is positive definite and P is a polynomial of degree < N−d
2 .

This theorem was further generalized to distributions by B. Demange. Its only disadvan-
tage is that it does not give information on the degree of the polynomial, but in practice, this
can be easily obtained.

Theorem (Demange). Let f ∈ S ′(Rd). Assume that eπ|x|
2

f ∈ S ′ and eπ|ξ|
2

f̂ ∈ S ′ then

f = P (x)e−〈Ax,x〉, where A is positive definite and P is a polynomial.

Sketch of proof for d = 1. The key tool here is to use the Bargmann Transform which trans-
forms the distribution f into an entire function of order 2 via

F (z) = B(f)(z) := e
π
2
z2

〈
f(x), e−π(x−z)2

〉
.
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Using the fact that a Schwartz distribution has finite order, we get from eπ|x|
2

f ∈ S ′ that
there exists C,N such that

|F (z)| ≤ C(1 + |z|)N eπ
2
|Im z|2

while, from eπ|ξ|
2

f̂ ∈ S ′ and the the fact that F (−iz) = B(f)(−iz) = B(f̂)(z), we get that

|F (z)| ≤ C(1 + |z|)N eπ
2
|Re z|2.

But then, Phragmèn-Lindelöf’s Principle implies that |F (z)| ≤ C(1 + |z|)N which, with
Liouville’s Theorem, implies that F is a polynomial. Inverting the Bargmann Transform
then shows that f is of the desired form. �

4.2. The umbrella theorem. We will now prove that the elements of an orthonormal basis
and their Fourier Transforms can not all be bounded by fixed functions:

Theorem (Jaming-Powell). Let ϕ,ψ be two fixed functions in L2(R). Then there exists
N = N(ϕ,ψ) such that, if (ek)k∈I ⊂ L2(R) is orthonormal and

|ek| ≤ ϕ , |êk| ≤ ψ

then #I ≤ N .

This theorem generalizes an earlier result of H. Shapiro [Sh1, Sh2] that showed, using a
compactness argument, that the sequence is finite, but with no quantitative estimate.

Proof. Let M = max(‖ϕ‖, ‖ψ‖), and 0 < ε < 1
50M . Define

Cϕ(ε) = inf

{
T ∈ R :

∫

|t|>T
|ϕ(t)|2 ≤ ε2‖ϕ‖2

2

}
.

Define Cψ(ε) accordingly. For T > max
(
Cϕ(ε), Cψ(ε)

)
, for all n ∈ I,

∫

|t|>T
|en(t)|2dt ≤ ε2‖ϕ‖2

2 ,

∫

|ξ|>T
|ên(ξ)|2dξ ≤ ε2‖ψ‖2

2.

Let d = b4T 2c + 1, η = 7Mε and let ψn be the associated prolate spheröıdals,

for n ∈ I, ‖en − Pden‖ ≤ η.

Now write Pden =

d−1∑

k=0

an,k+1ψk i.e. an := (an,k) ∈ C
d. Then 1 − η ≤ ‖an,k‖ = ‖Pden‖ ≤ 1

and

〈an,k, am,k〉 = 〈Pden,Pdem〉
= 〈Pden − en + en,Pdem − em + em〉
= 〈Pden − en,Pdem − em〉 + 〈en,Pdem − em〉 + 〈Pden − en, em〉
= 〈Pden − en,Pdem − em〉 + 〈en − Pden,Pdem − em〉 + 〈Pden − en, em − Pdem〉
= 〈Pden − en, em − Pdem〉 ≤ η2.

So bn =
an
‖an‖

are vectors on the unit sphere such that the angles |〈bn, bm〉| ≤ η2

1−η2 . A set of

such vectors is called a spherical code in C
d and is known to be finite. �
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There are various bounds on the number of spherical codes. For instance, one may identify
C
d with R

2d in the standard way. One then gets that if |〈bn, bm〉Cd | ≤ α then 〈bn, bm〉R2d ∈
[−α,α] i.e. (bn) is a [−α,α]-spherical code in R

2d. If we call N2d(α) the maximal number of
elements of a [−α,α]-spherical codes in R

2d, then the following bounds can be obtained

— if α < 1
2d then N2d(α) = 2d.

This is a trivial bound as the code is then linearly independent.

— N2d(α) ≤
(

2−α
1−α

)2d
.

This can be obtained by a volume counting argument.

— if α < 1√
2d

then N2d(α) ≤ 2 1−α2

1−2α2d
d.

This has been obtained by Delsarte [DGS].

If ϕ,ψ are explicitely given, one may then optimize the choice of T and ε in the previous
proof to get more explicit estimates on #I.

Example :

(1) Take ϕ = ψ = Ce−πax
2

then

#I ≤ 2 +
2

πa
max

(
ln

C

a7/2
, ln

9C2

a

)
.

In this case, only the trivial bound is needed.
(2) Take ϕ = ψ = C

(1+|x|)p then, using the volume counting bound, one gets

#I ≤ N ≤ 3
8

“

20C√
2p−1

” 4
2p−1

.

Moreover,

#I ≤





4
(

800C2

2p−1

) 2

2p−3

if p > 3/2

32 (20C)
2

2p−3 if 1 < p ≤ 3/2

where we used the trivial bound for the first estimate and Delsarte-Goethals-Siedel’s
bound for the second.

5. Reformulation of uncertainty principles as properties of solutions of

some classical PDE’s

This section is motivated by recent results on unique continuation in [EKV, EKPV]. There,
the qualitative properties of solutions of some partial differential (in)equation where ex-
plicitely inspired by uncertainty principles.

5.1. The Free Heat Equation. Let us recall that the solution of the Free Heat Equation

(5.7)




−∂tv +

1

4π
∂2
xv = 0

v(x, 0) = v0(x)

with initial data v0 ∈ L2(R) ∪ L1(R) has solution

v(x, t) =

∫

R

e−πξ
2t+2iπxξ v̂0(ξ)dξ =

(
e−πξ

2tv̂0
)
.̌
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We may then reformulate some uncertainty principles as follows.

Hardy’s Uncertainty Principle. Let v0 ∈ L1(R) be non zero and let v be a solution of

(5.7) with initial data v0. Then for every t > 0 and for every N > 0, x 7→ eπx
2/t

(1 + |x|)N v(x, t)
is unbounded.

Indeed, as e−πξ
2t|v̂0(ξ)| ≤ ‖v0‖L1(R)e

−πξ2t, if |v(x, t)| ≤ C(1 + |x|)Ne−πx2/t then, from

Hardy’s Theorem, e−πξ
2t|v̂0(ξ)| = Ce−πξ

2t, a contradiction.

Note that Demange’s Theorem shows that, if v0 ∈ S ′(R) and if x 7→ eπx
2/tv(x, t) ∈ S ′(R)

then v0 is a Hermite Function, an so is then v.

Annihilating pairs. Let v0 ∈ L2(R) and let v be a solution of (5.8) with initial data v0. As
x 7→ v(x, t) is analytic, if it is supported in some set S such that R \ S has positive measure,
then v = 0 thus v0 = 0 i.e. the heat equation has the weak unique continuation property.

However, a little bit more can be said in the case (S,Σ) is a strong annihilating pair with
constant D(S,Σ) in (3.3). If v̂0 is supported in Σ, then, for all t > 0,

‖v(x, t)‖L2(R\S) ≥ D‖v(x, t)‖L2(R) = D(S,Σ)
∥∥∥e−πξ2tv̂0(ξ)

∥∥∥
L2(Σ)

.

For instance, if Σ = [−a, a], we thus get the lower bound

‖v(x, t)‖L2(R\S) ≥ D(S,Σ)e−πa
2t‖v0‖L2(R).

5.2. The Free Shrödinger Equation. Let us recall that the solution of the Free Shrödinger
Equation

(5.8)




i∂tv +

1

4π
∂2
xv = 0

v(x, 0) = v0(x)

with initial data v0 ∈ L2(R) has solution

v(x, t) =

∫

R

e−iπξ
2t+2iπxξ v̂0(ξ)dξ =

(
e−iπξ

2tv̂0
)
.̌

We may then reformulate some uncertainty principles as follows.

Hardy’s Uncertainty Principle. Let v0 ∈ L2(R) and assume that |v̂0(ξ)| ≤ Ce−πaξ
2

. Let
v(x, t) is a solution of (5.8) with initial data v0 and assume that, for some t > 0, there exists
c = c(t) and b = b(t) such that

|v(x, t)| ≤ ce−πbξ
2

.

If b > 1/a, then v0 = 0. If b = 1/a, then v0(x) = Ce−πx
2/(a−it0). for some C ∈ C.

The first assertion is a direct consequence of Hardy’s theorem. For the second, Hardy’s the-

orem implies that v(x, t0) = ce−πξ
2/a, thus v̂0(ξ) = ceiπξ

2t0e−πaξ
2

= ce−π(a−it0)ξ2 . Inverting
the Fourier transform, we get the assertion. Note that, in this case

|v(x, t)| =
C√

a2 + (t− t0)2
exp

(
− πa

a2 + (t− t0)2
x2

)
.
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Annihilating pairs. Let (S,Σ) be an annihilating pair. Let v0 ∈ L2(R) and assume that
v̂0 is supported in Σ. Let v be a solution of (5.8) with initial data v0 and assume that, for
some t > 0, v(·, t) is supported in S, then v0 = 0.

Moreover, if (S,Σ) is a strong annihilating pair with constant D(S,Σ) in (3.3), then, for
all t > 0,

‖v(x, t)‖L2(R\S) ≥ D(S,Σ)‖v(x, t)‖L2(R) = D(S,Σ)‖v0‖L2(R).

For instance, if Σ = [−1, 1] and E is γ-thick at scale a > 1, then

‖v(x, t)‖L2(E) ≥
( γ
C

)Ca
‖v0‖L2(R).
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Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 292 (1981), 1357–1362.
[Be] M. Benedicks On Fourier transforms of functions supported on sets of finite Lebesgue measure. J. Math.

Anal. Appl. 106 (1985), 180–183.
[BD] A. Bonami & B. Demange A survey on the uncertainty principle for quadratic forms à parraîıtre dans
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