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D é r i v é e s
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Abstract. Semilinear hyperbolic problems with source terms piecewise smooth and dis-
continuous across characteristic surfaces yield similarly piecewise smooth solutions. If the
discontinuous source is replaced with a smooth transition layer, the discontinuity of the
solution is replaced by a smooth internal layer. In this paper we describe how the layer
structure of the solution can be computed from the layer structure of the source in the
limit of thin layers. The key idea is to use a transmission problem strategy for the problem
with the smooth internal layer. That leads to an ansatz different from the obvious candi-
dates. The obvious candidates lead to overdetermined equations for correctors. With the
transmission problem strategy we compute infinitely accurate expansions.

§1. Introduction.

We study internal waves of width ε → 0 separating values U
+
6= U− on two sides. In the

special case of U
+

= U
−

one has a pulse of width ε.

∼ ε

∼ 1

Consider the system of partial differential operators

L(t, x, ∂) = ∂t +
∑

Aj(t, x) ∂j + B(t, x) , ∂j :=
∂

∂xj
,

where Aj , B are N × N complex matrix valued functions satisfying

∂α
t,x{Aj , B} ∈ L∞(Rt × R

d
x) .
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The principal symbol and characteristic variety are,

L1(t, x, τ, ξ) := τI +
∑

Aj(t, x) ξj ,

and
Char(L) :=

{
det L1(t, x, τ, ξ) = 0

}
.

Assumption 1. The system L is strictly hyperbolic, or symmetric hyperbolic.

Assumption 2. Σ := {xd = 0} is a characteristic hypersurface for L. Furthermore,
on a conic neighborhood of the conormal variety N ∗Σ, Char(L) is a smooth embedded

hypersurface τ = τ(t, x, ξ) in R
2(1+d)
(t,x,τ,ξ).

Examples. Assumption 2 is satisfied in the following situations. i. L is strictly hyperbolic,

ii. Generic characteristic hyperplanes when L1 has constant coefficients,

iii. Symmetric systems with characteristics of constant multiplicity, hence for Maxwell
and linearized compressible Euler.

We consider semilinear equations with smooth nonlinearity

G ∈ C∞
(
C

N ; C
N ) , G(0) = 0, G′(0) = 0 .

Main Problem. Describe the behavior of solutions uε to

L uε + G(uε) = fε , uε = fε = 0 when t < 0 .

where
fε = F (t, x, xd/ε) ,

with F (t, x, z) smooth, compactly supported in x, with limits

lim
±z→∞

F (t, x, z) = F
±

(t, x)

rapidly achieved.

The source term fε has an internal layer in an ε neighborhood of xd = 0. The amplitude
is chosen so that there are nonlinear effects in the leading term, and there is existence on
an ε independent interval. The problem is to describe the resulting internal layer in the
family uε.

Define a discontinuous piecewise smooth function

f(t, x) := F
±

(t, x) , when ± xd > 0 ,
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As ε → 0, fε → f .

The limit ε → 0 yields (the outer problem),

LŪ + G(U) = f̄ , U = f̄ = 0 for t < 0 .

The limit source, f̄ , is piecewise smooth and discontinuous across the characteristic surface
Σ. It follows ([RR2], [M1,M2]) that there exists a unique local in time piecewise smooth

solution, U ∈ L∞([0, T1] × Rd). Denote by U
±

the restriction to ±xd > 0.

Since U jumps and uε does not, the convergence uε → u is not uniform. The problem is
to find correctors to U to describe uε with error uniformly small. Equivalently, from the
detailed structure of the transition layer in fε, predict the details of transition layer for
uε.

We follow a familiar two step process.

Step 1. Find an ansatz yielding an approximate solution uε
approx with small residual. In

our case the residual will have conormal (to Σ) derivatives and (ε∂t,x)α derivatives in
{xd 6= 0} of size O(εN ) for all N .

Step 2. A nonlinear stability theorem shows that the difference between the exact and

approximate solutions is O(ε∞). In the present case, this is a known stability result
([G2], [RK]). The key is constructing approximate solutions.

Warning. Concerning the first step, the obvious ansatz motivated by the cases of wave
trains and short pulses yields overdetermined equations for correctors to the leading ap-
proximation. This is so even in the linear case.

The goal of these notes is to motivate and describe the transmission strategy which we
employ. This strategy has been effective in related problems with layers coming from a
vanishing viscosity limit [GMWZ], [Sueur].

§2. The obvious ansatz fails.

A typical expansion for linear wave packets has the form

eixd/ε
(
a0(t, x) + εa1(t, x) + · · ·

)
.

Nonlinear wave packets include harmonics, and the possibility of adjusting the ampli-
tude

εp
(
U0(t, x, xd/ε) + εU0(t, x, xd/ε) + · · ·

)
, Uj(t, x, θ) periodic in θ.

A simple short pulse is,

f(t, x, xd/ε) , f(t, x,±∞) = 0 .

The obvious ansatz for nonlinear short pulses is

εp
(
U0(t, x, xd/ε) + εU1(t, x, xd/ε) + · · ·

)
, Uj(t, x,±∞) = 0.
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A simple internal wave has the form

f(t, x, xd/ε) , f(t, x,±∞) exist .

The obvious ansatz for nonlinear internal waves is

εp
(
U0(t, x, xd/ε) + εU0(t, x, xd/ε) + · · ·

)
, Uj(t, x,±∞) exist.

For our problem, p = 0 is the critical power for nonlinear affects in the leading asymptotics.
Plugging the ansatz into the equation. collecting terms according to powers of ε and setting
the coefficients equal to zero yields equations for the Uj which look like you can solve
them one after the other.

However, the equations for the corrector U1 are overdetermined for pulses and internal
waves. The equations have parts determined by equations of the form

∂g

∂xd
= f , g(−∞) = a, g(+∞) = b

This boundary value problem is overdetermined. Solvability requires the moment condi-
tion,

b − a =

∫ ∞

−∞

f(xd)dxd.

Even for linear problems, this is not satisfied generically.

That is the bad news. The good news is that we will find approximate solutions with error
O(εN ) for all N . So we know what the solution looks like.

For the special case of pulses where the leading term is known accurate [AR], we provide
approximations of order ε∞ which are new.

Future direction. We want to understand the behavior of internal and boundary layers
for times O(1/ε) where diffractive effects parallel to the boundary will likely be present.
Stay tuned.

§2. Main result.

Assumption 1 and 2 imply that dim ker L1(t, x, τ(t, x, ξ), ξ) is constant for (t, x, ξ) in a
conic neighborhood of N ∗(Σ). In particular, dimker Ad(t, x

′, 0) = k is constant on Σ.

By an t, x-dependent change of basis (orthogonal in the symmetric case), we can assume
that

Ad(t, x
′, 0) =

(
0k×k 0k×N−k

0N−k×k A(t, x′)

)
,

detA(t, x′) ≥ δ > 0 ,

π :=

(
Ik×k 0k×N−k

0N−k×k 0N−k×N−k

)
.
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Define the group velocity

v(t, x′) := −∇ξτ(t, x′ , xd = 0, τ = 0 , ξ′ = 0 , ξd = 1) .

Since τ vanishes on N ∗Σ and is homogeneous of degree 1, it follows that v is tangent to
{xd = 0}.

The algebraic lemmas of geometric optics show that the differential operator

πL(t, x′ , xd = 0 , ∂)π

is essentially a directional derivative,

π L(t, x′, 0, ∂) π = π
(
∂t + v(t, x′).∂′

x

)
+ lower order terms .

The analogous transport operator for internal waves, H, is

H = π
(
∂t + v(t, x′).∂x′ + ∂dτ(t, x′, 0; 0, . . . , 0, 1)z∂z

)

+ lower order terms

In ±z ≥ 0, define F̃±

0 (t, x′, z) with F̃±(t, x′,±∞) = 0 by

F̃±

0 (t, x′, z) := F (t, x′ , xd = 0 , z) − F
±

(t, x′, xd = 0) .

Denote by
Z := (∂t, ∂1, . . . , ∂d−1, φ(xd)∂d)

the standard conormal derivatives.

Main Theorem. Define in {±xd ≥ 0} × {±z ≥ 0} the principal profile

U±

0 := U
±

(t, x) + Ũ±

0 (t, x′, z) ,

where Ũ±

0

(
t, x′, z) ∈ H∞

(
[0, T2] × R

d−1 × R
)

is determined as the local solution of,

(I − π)Ũ±

0 = 0 , Ũ±

0

∣∣
t<0

= 0 ,

H Ũ±

0 + π
(
G(U

±

0 |xd=0 + Ũ±

0 ) − G(U
±

0 )
)

= πF̃±

0 .

Then uε −U0(t, x, xd/ε) = O(ε) in the sense that if ε is sufficiently small then uε exists on
[0, T2] and ∀β,

∥∥∥
(
Z, ε∂d

)β
(
uε − U0(t, x, xd/ε)

)∥∥∥
L∞([0,T2]×R

d

±
)
= O(ε)
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Remarks. i. If coordinates are chosen so that the hyperplanes xd = const. are all
characteristic then the z∂z term is not present in H. ii. We construct approximations of
accuracy O(ε∞) (see [GR]).

§3. The transmission strategy.

A hint that the moment conditions should not be a fatal stumbling block comes from the
following observation. In U0(t, x, z) one makes the substitution z = xd/ε. In xd > 0 only
the limit at z = ∞ counts and in xd < 0 only the limit at z = −∞ counts. One never
needs both z = ±∞ limits.

To capitalize on this, it is natural to split the problem according to the two sides ±xd > 0.
This leads naturally to the transmission strategy which we follow. The initial value problem
for uε is equivalent to the transmission problem

L uε + G(uε) = fε in {xd 6= 0} ,
[
(I − π)uε

]
xd=0

= 0 . (1)

The square brackets indicate the jump from xd = 0− to xd = 0+. The transmission
condition guarantees that when the functions on the two sides are glued together at {xd =
0}, Adu will be continuous so there will be no delta functions produced when the differential
operator is applied.

The ansatz for uε has profiles for each half space. A preliminary version is

uε = Uε(t, x, xd/ε)

where, Uε(t, x, z) is compactly supported in x with asymptotic expansions

Uε(t, x, z) ∼
∞∑

j=0

εj U±

j (t, x, z) , in {±xd ≥ 0} × {±z ≥ 0}

U±

j (t, x, z) = U
±

j (t, x) + Ũ±

j (t, x, z) ,

with Ũ±

j rapidly decreasing as ±z → ∞. We do not require that Ũ± → 0 when z → ∓∞.

In fact, Ũ± is not even defined at such points.

At the heart of our analysis is a calculus of such expansions. The first remark it that,
without loss of generality, the Ũj parts can be taken independent of xd. In fact, because of

the rapid decrease, Ũj(t, x, xd/ε) is essentially supported in an ε neighborhood of xd = 0.
Taylor expansion in xd yields

Ũ±

j (t, x′, xd, z) ∼
∞∑

k=0

xk
d

k!
∂k

xd
Ũ±

j (t, x′, 0, z) .

Replacing xd by εz yields an equivalent profile with the property that the z dependent
parts depend only on t, x′, z and not on xd.
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This leads to the final form for the ansatz where

U±

j (t, x, z) = U
±

j (t, x) + Ũ±

j (t, x′, z)

with Ũ±

j independent of xd and rapidly decreasing as ±z → ∞. Such expansions are
unique.

Proposition 1. If a family uε has an asymptotic expansion of this form, then the profiles

U
±

j and Ũ±

j are uniquely determined.

A different way to generate smoothed sources fε is to take a standard mollification of the
piecewise smooth source f . Suppose that j(t, x) is smooth compactly supported in t ≥ 0
with

∫
j dt dx = 1. Define jε(t, x) = ε−d−1j(t/ε, x/ε). Denote by Jε the operator which is

convolution with jε.

Suppose that f is piecewise smooth and compactly supported on on {t ≤ T} × Rd with
jumps on {xd = 0}.

Proposition 2. With the hypotheses of the preceding paragraph, fε := Jεf has an
asymptotic expansion of the above form.

Proposition 3. The set of families uε which have expansions of the form is invariant
under smooth change of coordinates

(
t̃, x̃

)
=

(
t̃(t, x), x̃(t, x)

)
,

(
t, x

)
=

(
t(t̃, x̃), x(t̃, x̃)

)

which map the half spaces ±xd > 0 to the corresponding halfspaces ±x̃d > 0.

This is crucial when one wants to study characteristic surfaces which are not presented in
the form {xd = 0}. The first step is to flatten the surface and Proposition 3 shows that
the families with expansions are independent of the flattening.

Proposition 4. If uε has an expansion of the above form and uε satisfies the transmission
condition in (1), then Luε + G(uε) has an expansion

Luε + G(uε) = W ε(t, x, xd/ε) ∼
∞∑

j=−1

εj Wj(t, x, xd/ε)

where Wj is compactly supported in x and smooth in ±xd ≥ 0,±z ≥ 0, and

Wj(t, x, z) = W
±

j (t, x) + W̃±

j (t, x′, z)

with W̃±

j (t, x′, z) rapidly decreasing as ±z → ∞. For each n ≥ 0 the profiles Wj with
j ≤ n − 1 are given by explicit formulas involving terms in the expansion of uε up to an
including O(εn) .
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Remarks. 1. The expansion starts with an ε−1 term. 2. If the transmission condition
were not exactly satisfied there would be δ(xd) terms on the left from ∂d applied to a jump.

The approximate solution is constructed by injecting the ansatz and evaluating as in Propo-
sition 4. Setting the successive terms equal to zero yields determined (and not overdeter-
mined) equations for the profiles Uj . The computation is interesting in detail and resembles
similar computations for boundary layers. The details can be found in the preprint on my
web page. The recipe for U0 is described in the Main Theorem.

For the transmission strategy, some components of the Ũ±

j are determined from differential
equations of the form

∂zg
+ = f+ in z > 0 , g+(+∞) = 0 ,

∂zg
− = f− in z < 0 , g+(−∞) = 0 .

The problematic moment conditions have as a consequence that the g± do not match
continuously at z = 0. However, this is not an obstruction to the smoothness of uε since
the Ū terms are also discontinuous, and what is important is the sum.

Summary. Once the transmission problem form of the ansatz and the basic calculus is
in hand, the proofs are interesting in detail. The stability is known. The key is finding
the ansatz and the key step in the discovery step is the fact that for the obvious ansatz,
the two limits U(t, x,±∞) never occur for the same point (t, x) with xd 6= 0. There is a
natural decoupling of ±xd > 0, which leads to the transmission problem approach.
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linéaires, Annales Institut Fourier, Grenoble, to appear.

[T] B. Texier, The short wave limit for symmetric hyperbolic systems, Advances in Differ-
ential Equations, 9 no. 1-2, 1–52. 2004.

XIII–9


