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DECAY OF A LINEAR SCALAR FIELD ON SCHWARZSCHILD
SPACE-TIME

IGOR RODNIANSKI

1. RESULT

In this paper we describe a result obtained in a joint work with M. Dafermos (University of
Cambridge), see [6]. The problem concerns the long term behavior of solutions of the linear
wave equation

2gφ = 0

in the domain of outer communication of the Schwarzschild space-time (M, g). In this region
(r ≥ 2M ) the metric g can be written in the form

g = −(1− 2M
r

)dt2 + (1− 2M
r

)−1dr2 + r2dσS2

relative to the coordinates (t, r) or, alternatively, in the form

g = −4(1− µ)dudv + r2(u, v)dσS2

relative to the null coordinates (u, v), which can be chosen in such a way1 that µ = 2M/r.
The parameter M is the ADM mass of the Schwarzschild space-time and metric dσS2 is the
standard metric on S2. The manifold (M, g) is spherically symmetric, i.e., the group SO(3)
acts by isometry and 4πr2 is the area of an orbit. The vectorfield ∂

∂t , defined in the exterior
region relative to the coordinates (r, t), is time-like Killing. The wave equation for a scalar field
takes the following explicit form relative to the (r, t) coordinates:

2gφ = −(1− µ)−1∂2
t φ+

1
r2
∂r

(
r2(1− µ)∂rφ

)
+ ∆/φ = 0.

Our main result is the following

Theorem 1.1 ([6]). Let φ be a sufficiently regular solution of the wave equation

(1) 2gφ = 0

on the (maximally extended) Schwarzschild spacetime (M, g), decaying suitably at spatial
infinity on an arbitrary complete asymptotically flat Cauchy surface Σ. For any achronal hyper-
surface S in the closure of this region, let F (S) denote the flux of the energy through S , where

1These are the Eddington-Finkelstein coordinates v = t+r∗, u = t−r∗ with r∗ = r+2M log(r−2M).
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energy is here measured with respect to the timelike Killing vector field. Let v+ = max{v, 1},
u+ = max{u, 1}, and v+(S) = max{infS v, 1}, u+(S) = max{infS u, 1}. We have

(2) F (S) ≤ C((v+(S))−2 + (u+(S))−2).

(We also allow S to be a subset of null infinity, interpreted in the obvious limiting sense.) In
addition, we have the pointwise decay rates to the future2 of the Cauchy hypersurface Σ

|φ| ≤ Cv−1
+ , in {r ≥ 2M},(3)

|rφ| ≤ CR̂(1 + |u|)− 1
2 in {r ≥ R̂ > 2M}.

Remark 1.1. Various constants C appearing in the statement of the theorem above depend
on the initial data for the scalar field φ prescribed on Σ. In a particular case where Σ =
{t = 1} these constants depend on the weighted Sobolev norms of the initial data with weights
determining the rate of decay of the initial data at space-like infinity r = ∞. An example of
such norm is given by the expression

∞∫

−∞

∫

S2

r2
(
u2(∂u(r4∇/ 4φ))2 + v2(∂v(r4∇/ 4φ))2

)
dr∗ dσS2 .

Here∇/ denotes covariant differentiation along the 2-dimensional sphere of radius r. The norms
impose no assumptions on vanishing of the initial data for φ on the bifurcate sphere r = 2M .
In particular, the theorem holds for any sufficiently smooth initial data vanishing for all sufficiently
large r.

Note also the decay rate (3) holds uniformly in all of the domain of outer communication.

Independently of us, a version of this problem is being studied in [1].

Acknowledgments: The author would like to thank Mihalis Dafermos for valuable discussions
concerning this paper.

2. PREVIOUS WORK

Heuristics: The heuristic arguments for the decay of linear fields on Schwarzschild
background were first put forward in the work of R. Price, [15], where a linearized pertur-
bation theory on a fixed (Schwarzschild) background was used to study the problem of a
non-spherical gravitation collapse. It was argued there that linear fields should develop
“power tails", i.e. decay polynomially at time-like infinity (as opposed to the linear fields
on Minkowski space, where the fields vanish in the neighborhood of time-like infinity).
Gundlach-Price-Pullin, [8], extended the work of Price by predicting power law decay
(for each fixed spherical harmonic) along null infinity and the event horizon.

2Similar decay rates hold to the past of Σ.
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Boundedness: Uniform boundedness

|φ| ≤ C
of solutions of the wave equation 2gφ = 0 in the domain of outer communication of
the Schwarzschild space-time was established by Kay-Wald, [9]. For the wave equation
on Minkowski space the boundedness statement can be shown using conservation of
energy and Sobolev inequalities. The existence of a time-like Killing vectorfield ∂

∂t in the
domain of outer communication of the Schwarzschild space-time leads to a conserved
quantity

Eφ =
∫

Σt

(
(∂tφ)2 + (∂r∗φ)2 + (1− µ)|∇/φ|2) ,

where Σt is the hypersurface {t = const}. Commuting the equation with Killing
vectorfields: ∂

∂t and angular momentum Ω = r∇/ allows one to generate “higher"
energy conserved quantities, which would lead to the boundedness of the scalar field φ
if it was not for a loss of control of the∇/φ part of the energy near r = 2M arising due
to the presence of the (1 − µ) factor. This problem was overcome in [9] by applying
the inverse of the Laplace-Beltrami operator ∆ on Σt and using the discrete isometries
of the maximally extended Schwarzschild space-timeM.
Spectral aspects of the problem: Sá Barreto-Zworski in [17] studied the spectral
properties of the corresponding Hamiltonian

H =
1− µ
r2

∂r
(
r2(1− µ)∂r

)
+ (1− µ)∆/

defined as a self-adjoint operator with respect to the measure (1 − µ)−1r2drdσS2 .
They showed that the poles (quasi-normal modes) of the meromorphic continuation
of the resolvent (H − λ)−1 outside of a conic neighborhood of the origin and for all
sufficiently |λ| are in one-to-one corresponding with the lattice points

(3
3
2M)−1

(
±`± 1

2
− 1

2
i(k +

1
2

)
)
, ` = 0, 1, ..., k = 0, 1...

The structure of the poles is connected with the photosphere r = 3M containing
unstable closed geodesics of the metric (1 − µ)−1dr2 + r2dσS2 on the manifold
{r > 2M} × S2.

The connection between the behavior of a resolvent and solutions of a wave equation
can be in some cases established via the Laplace transform. However even in these
cases the problem of decay can not be easily translated into a resolvent question and
is very sensitive to its behavior at the bottom of the spectrum λ = 0.
Scattering problem: the problem of existence and asymptotic completeness of the
wave operators for a linear scalar field on Schwarzschild space-time was considered by
Dimock, [7].
Spherical symmetry: The problem of decay of a linear scalar field on Schwarzschild
space-time can be considered in the context of spherical symmetry, where the equation
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can be cast in the form

∂2
t ψ − ∂2

r∗ψ +
2M
r3

(1− 2M
r

)ψ = 0, ψ = rφ

relative to the Regge-Wheeler coordinates (t, r∗) with r∗ = r + 2M log(r − 2M).
However, in these coordinates the event horizon r = 2M corresponds to t =∞, r∗ =
−∞ and its geometry, which is crucial for the problem of decay, is much less apparent.
From this point of view the use of the null Eddington-Finkelstein coordinates (u, v) is
more suitable.

The decay rates stated in Theorem 1.1 for a spherically symmetric scalar field follow
from a very special case of the results of Dafermos-Rodnianski in [5], where the decay
question was investigated for a nonlinear problem of a self-gravitating spherically sym-
metric scalar field3. There, it was shown that the decay of a scalar field, both linear and
nonlinear, along the event horizon parametrized by v obeys the Price law (see heuristics
above)

|φ| ≤ Cεv−3+ε, ∀ε > 0.
For the linear problem in the spherically symmetric context some results on the decay
of a scalar field were also obtained by Machedon-Stalker, [12].
Decay without a rate for solutions of the linear wave equation on Schwarzschild back-
ground was obtained by Twainy, [18].

We now quickly review the problem of decay of a linear scalar field on Minkowski space.

3. MINKOWSKI SPACE-TIME (R3+1,m)

The conformal picture of the quotient manifold R3+1/SO(3) is given by the following diagram:

Γ

I−

I+

The metric m on Minkowski space-time can be written in the form

m = −dt2 +
3∑

i=1

(dxi)2,

3The problem studied in [5] was that of coupled Einstein-Maxwell-scalar field equations in the context of spherically
symmetric gravitational collapse.
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or, alternatively, relatively to the null coordinates 2u = t− r and 2v = t+ r in the form

m = −4dudv + r2dσS2 .

The wave equation for a field φ reads

(4) ∂2
t φ−∆φ = r−1 (∂u∂v(rφ)−∆/ (rφ)) = 0.

The long term behavior of φ is effectively captured by the statement that to the future of the initial
hypersurface Σ0, on which the initial data is assumed to have compact support, the function rφ
has compact support4 with respect to the null coordinate u. In some way this can be viewed as
a consequence of the strong Huygens’ principle and can be obtained using the exact form of
the fundamental solution for (4): δ(t2 − r2).

While the above picture is undoubtedly accurate it is highly unstable as even small metric
perturbations destroy the compact support property, which also does not survive applications
to nonlinear stability problems. The answer to this problem is provided by deriving the rates of
decay stable under perturbations or better yet by finding robust5 methods for establishing such
decay rates

3.1. Robust methods for proving decay on Minkowski space. The right approach to the
problem of decay on Minkowski space is provided by the vectorfield method based on isometries
of Minkowski space-time and their infinitesimal generators

Z = {∂α,Ωαβ, S,K},
where Ωαβ = xα∂β − xβ∂α combines rotations and Lorentzian boosts, S = xα∂α is the
scaling and K = (t2 + r2)∂t + 2tr∂r is the Morawetz vectorfield. To be precise there are
two versions of the vectorfield method: one that uses vectorfieldK as a multiplier in the energy
identity and goes back to the work of Morawetz on the obstacle problem, [13]. In the second
approach, developed6 by Klainerman [11], vectorfields Γ = {∂α,Ωαβ , S} are commuted
through the wave equation and the decay is deduced from the energy estimates for Γφ via so
called global Sobolev inequalities.

The success of the vectorfield method is illustrated by its applications to nonlinear problems
examples of which include the small data global existence result for quasilinear wave equations
satisfying the null condition [11] and the proof of stability of Minkowski space [3], [10].

In the vectorfield approach the optimal decay rates for a linear scalar field on Minkowski space-
time can be derived with just a Morawetz vectorfield K used as a multiplier with the energy-
momentum tensor:

Tαβ = ∂αφ∂βφ− 1
2
mαβ ∂

µφ∂µφ.

4In fact, the function rφ also has a limit at future null infinity as v →∞ along the outgoing null rays u =const.
5in particular independent of the exact form of the fundamental solution.
6as well as its combination with the multiplier method of Morawetz
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One has the identity

∂α
(
TαβK

β
)

= 2t2(φ2),

which can be integrated over the region [0, t] × R3 to derived boundedness of the conformal
energy:

EK [φ](t) =
∫

Σt

(
v2(∂vφ)2 + u2(∂uφ)2 + (v2 + u2)|∇/φ|2 + (1 +

t2

r2
)φ2

)
,

which when complemented by the boundedness of the conformal energies for the derivatives of
φ leads to the

Decay Rate on Minkowski space-time: |rφ| ≤ Cu− 1
2 .

Note that the rate of decay stated in Theorem 1.1 in the region r ≥ R > 2M is precisely the
same as above.

4. SCHWARZSCHILD SPACE-TIME (M, g)

We now review basic geometric properties of the Schwarzschild space-time. The conformal
picture of the Lorentzian quotientM/SO(3) of a maximally extended Schwarzschild space-
timeM is given by the following Penrose diagram:

S

I+
AI+

B

I−AI−B

B
H +
B H

+
A

The two exterior regions (domains of outer communication) are formed by intersecting causal
pasts of the future null infinities I+

A (I+
B ) with causal futures of the past null infinities I−A (I−B )

and are characterized by the values of the parameter r > 2M . The black hole region is
bounded by the components of the future event horizonH+

A andH+
B , on which r = 2M .

On each of the two exteriors the metric g may be written:

g = − (1− µ) dt2 + (1− µ)−1 dr2 + r2dσS2 = −4(1− µ)dudv + r2dσS2 ,

µ =
2M
r
, v = t+ r∗, u = t− r∗, r∗ = r + 2M log(r − 2M).
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The apparent singularity of g at r = 2M is nothing else but a singularity of a particular
coordinate system, i.e. (r, t). The vector field ∂

∂t is time-like Killing but becomes null on the

event horizon: g( ∂∂t ,
∂
∂t) = −(1− µ).

We now restrict the attention to the right domain of outer communication A on the diagram. In
the exterior region the wave equation for a linear scalar field can be written in the form

2gφ = − 1
1− µ∂

2
t φ+

1
r2
∂r

(
(1− µ)r2∂rφ

)
+ ∆/φ = 0

The initial data for φ is prescribed on a 3-dimensional manifold S∩A. It completely determines
the evolution of φ in A provided that S ∩ A contains the bifurcate sphere H+

A ∩ H+
B . The

point here is that unlike in the boundary value problems the event horizon r = 2M is a null
characteristic surface – the solution of the wave equation there is completely determined from
the initial data. The initial data is assumed to be sufficiently smooth on S and vanish at a
sufficiently fast rate at the asymptotically flat end. No vanishing assumption is imposed on the
bifurcate sphere.

From the point of view of decay of a solution to the wave equation the two important distinct
regions of the domain of outer communication A (to the future of S) are the future null infinity
and the future event horizon H+

A . Relative to the Eddington-Finkelstein coordinates (u, v)
they are characterized by (u,∞) and (∞, v) respectively 7. In particular, the decay of φ
on H+

A should be measured with respect to the variable v. For the same reason, unlike in
Minkowski space-time where the decay of a solution of the wave equation is sometime phrased
in terms of the variable t, a solution of the wave equation on Schwarzschild space-time can not
decay uniformly in t: the event horizon H+

A corresponds to t = ∞ and the decay in t would
erroneously imply that φ has to vanish onH+

A .

We finally recall that (M, g) is a one-parameter family of spherically symmetric solutions
(unique by Birkhoff’s theorem) of the vacuum Einstein equations

Rαβ − 1
2
gαβR = 0.

It is also a sub-family of the 2-parameter Kerr family of solutions.

5. MOTIVATION

While the problem the long term behavior of linear fields on Minkowski space-time
has a very good quantitative description achieved by robust methods the analogous
problem on space-times “far away" from Minkowski is much less understood. Among
such Lorentzian manifolds a particular important class is formed by space-times arising
in General Relativity, as one can expect (and indeed this is often the case) that the
long term behavior of linear fields is connected with physical phenomena and that such

7Note the difference however: future null infinity is not part of the space-time while the event horizon is.
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space-times possess “natural" geometric properties. Black hole space-times (such as
Schwarzschild and Kerr families) are particularly interesting from the either point of view.
Their global geometry is drastically different from Minkowski space-time while the long
term behavior of a linear scalar field is (heuristically) believed to be relevant for a variety
of phenomena.
Among them is a properly formulated problem of nonlinear stability of the Kerr family in a
neighborhood of the Schwarzschild solution. Linearization and traditional simplifications
lead to the linear problem: 2gφ = 0 on the Schwarzschild background. In the physics
literature just the boundedness of solutions of this problem is often referred to as linear
stability of Schwarzschild, [9]. Note that that the boundedness of linear fields on a Kerr
space-time is not known, see however [16].
The heuristics of Price and Price-Gundlach-Pullin for the linear problem 2gφ = 0 on
Schwarzschild (and Reissner-Nordström) space-time had been developed in an attempt
to shed light on the picture of non-spherical gravitational collapse. At this level a power
law decay of a linear scalar field along the event horizon becomes relevant for the
problem of the internal structure of black holes.
Internal structure of black holes: the decay of external fields along the event horizon
determines the amount of radiation entering a black hole at late times and thus has a
direct influence on the mass inflation scenario proposed by Poisson and Israel, [14] and
the problem of stability of Cauchy horizons (strong cosmic censorship conjecture).
The above problem is much better understood in the context of the gravitational collapse
in spherical symmetry which is governed by a coupled system of Einstein-scalar field-
(Maxwell)8 equations

(5) Rαβ − 1
2
gαβR = Tαβ,

where Tαβ is the energy-momentum of a scalar field (Maxwell)

Tαβ = ∂αφ∂βφ− 1/2 gαβ, ∂µφ∂µφ

and the scalar field satisfies the equation 2gφ = 0 on a dynamic background with a
metric g determined by the equation (5). Weak cosmic censorship for this model was
established in the work of Christodoulou, [2]. His analysis had left open the problem of
decay of a scalar field φ along the event horizon. Under assumption of a certain power
law decay the problem of internal structure of black holes for the Einstein-scalar field-
Maxwell equations has been rigorously understood in the work of M. Dafermos, [4]. In
particular, the work confirmed the mass inflation scenario and showed a certain stability
of the Cauchy horizons (in contrast with the picture suggested by the strong cosmic
censorship conjecture). The required rate of decay (Price law) was then established in
[5].

8The Maxwell field in spherical symmetry is non-dynamic. Its coupling to the Einstein equations in spherical
symmetry is designed to simulate angular momentum.
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The decay rates stated in Theorem 1.1 are sufficiently fast so as to suggest that the
picture established in [4] may remain valid in the absense of symmetry assumptions9.

6. OUTLINE OF THE PROOF OF THEOREM 1.1

Consider a solution of the wave equation

2gφ = − 1
1− µ∂

2
t φ+

1
r2
∂r

(
(1− µ)r2∂rφ

)
+ ∆/φ = 0.

The proof of the decay rates stated in Theorem 1.1 is based on an energy-momentum approach
and several geometrically constructed vectorfields used as multipliers in the energy identities.

The energy-momentum tensor for a linear scalar field φ takes the form

Tαβ = ∂αφ∂βφ− 1
2
gαβ ∂

µφ∂µφ.

It has the property that contracted with a vectorfield V = V α∂α

(6) Dα
(
TαβV

β
)

=
1
2
Tαβ(DαV β +DβV α).

For a vectorfield V = V v∂v+V u∂u whose components depend only on (u, v) the right hand
side of the above identity takes the form

1
2
Tαβ(DαV β +DβV α) =

1
4(1− µ)

(
(∂uφ)2∂v

Vv
1− µ + (∂vφ)2∂u

Vu
1− µ + |∇/φ|2(∂uVv + ∂vVu)

)

− 1
2r

(Vu − Vv)(|∇/φ|2 − ∂µφ∂µφ)

The expression (DαV β + DβV α) vanishes for a Killing vectorfield. However the Killing
fields ∂

∂t and angular momentum Ω are not sufficient by themselves to provide any decay

information, e.g. the use of the Killing field ∂
∂t generates the energy identity, which can only

lead to boundedness of φ. The identity (6) is integrated either in a region bounded by two time
slices t =const or in a characteristic rectangle [u1, u2]× [v1, v2].

The crucial role in the proof of Theorem 1.1 is played by the following 3 vectorfields:

Red-shift: Y ∼ 1
1−µ

∂
∂u

Morawetz: K = v2 ∂
∂v + u2 ∂

∂u

Local energy: X ∼ f(r)
(
∂
∂v − ∂

∂u

)

9For even the weakest results of [4], one still requires the analog of φ ≤ Cv−
1
2−ε along the event horizon, for

an ε > 0.
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The red shift vectorfield has no analog in Minkowski space-time. It captures a well-known
physical phenomena taking place in a black hole space-time, where a frequency of signal sent
by an observer traveling towards a black hole is shifted to the red part of the spectrum when
received by another observer to the future of the first one.

B

H+

I+

A

The red shift vectorfield captures the geometry of the event horizon and is used in “characteristic
rectangles" [u1, u2]× [v1, v2] with the side {u2}× [v1,2 ] on the event horizon, e.g. u2 =∞.

The associated Y flux densities have the form

yu =
(∂uφ)2

1− µ , yv = |∇/φ|2

The corresponding characteristic energy identity with Y leads to the inequality (where all the
integrations over S2 have been suppressed):
∫ v2

v1

yv(u2)dv +
∫ u2

u1∩r<r0
yu(v2)du+

∫ v2

v1

∫ u2

u1∩r<r0
yududv .

∫ v2

v1

∫ u2

u1∩r0<r<R
et

+
∫ v2

v1∩r<R
yv(u1)dv +

∫ u2

u1

yu(v1)du

where

et = (∂vφ)2 + (∂uφ)2 + (1− µ)|∇/φ|2
is the energy density, associated with a Killing vectorfield ∂

∂t .

The analog10 of the Morawetz vectorfield K allows one to associate with it a conformal energy:

EKφ (t) =
∫

Σt

(
v2(∂vφ)2 + u2(∂uφ)2 + (1− µ)(v2 + u2)|∇/φ|2 + (1− µ)

(
(r∗)2

r2
+
t2

r2

)
φ2

)

The energy identity withK in place of V obtained by integrating (6) between times slices t = 0
and t leads to the inequality

EKφ (t) ≤ EKφ (0) +
∫ t

0

∫

[r0,R]
τeτ , 2m < r0 < R <∞,

10Note that the generalization of the vectorfieldK from Minkowski space-time is based on the representation of
the latter relative to the null coordinates (u, v) rather than its form relative to (t, r).
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On the other hand one can show that

EKφ (t) ≥ t2
∫

[r1,r2]
et, r∗1 > −.9t, r∗2 < .9t.

To bound space-time integrals of a local energy density we use vectorfieldX . In fact vectorfields
X are constructed separately for each spherical harmonic φ`:

− 1
1− µ∂

2
t φ` +

1
r2
∂r

(
r2(1− µ)∂rφ`

)− `(`+ 1)
r2

φ` = 0

and then put together to bound space-time integrals of a local energy density.

Vectorfields X` are found according to the formula

X` = f`(r)
(
∂

∂v
− ∂

∂u

)

with a special choice of a function f`. With that choice the energy identity obtained by integrating
(6), with X` in place of V , between times slices t = 0 and t leads to the inequality

∫ t

0

∫

[r0,R]

(
(∂r∗φ`)2 + (2− 3µ)f` |∇/φ`|2 + φ2

`

) ≤ Eφ` ,

where Eφ` is the total energy of φ`. The function f` is non-negative but required to vanish at
a point r` with the property that r` → 3M (photosphere) as ` → ∞. To bound a space-
time integral of the local energy density one needs to sum the above inequality in ` and the
corresponding inequality for Ωφ.

∫ t

0

∫

[r0,R]
et ≤ Eφ +Eφω

6.1. Putting it all together. We now list the essential steps of the remaining parts of the
argument.

I+

r
=
R

t = 1

v =
t
i

H+

r
=
r 0 t = ti

u
=
t i

(1) First round of application of K and X implies

EKφ (t) ≤ Ct,
∫

r∈[r1,r2]
et ≤ Ct−1

(2) First round of applications of Y and X : implies that fluxes associated with the red
shift vectorfield Y are bounded
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(3) Partitioning the interval [0, t] dyadically (with the base 10/9), using X in [ti, ti+1],
finite speed of propagation and the obtained bounds for the conformal energy implies
that ∫ t

0

∫

r∈[r1,r2]
τeτ ≤ C log t

(4) Second round of application of K and X implies

EKφ (t) ≤ C log t,
∫

r∈[r1,r2]
et ≤ Ct−2 log t

(5) Partition the event horizon dyadically and use the red-shift effect combined with the
pigeonhole principle followed by

(6) Second round of application of Y and X : implies that Y fluxes decay like v−1

... Third round of estimates leads
(7) to the claimed decay of energy and fluxes. Pointwise decay follows from Sobolev type

estimates.
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