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Abstract. If L(t, x, ∂t, ∂x) is a linear hyperbolic system of partial differential operators for which
local uniqueness in the Cauchy problem at spacelike hypersurfaces is known, we find nearly optimal
domains of determinacy of open sets Ω0 ⊂ {t = 0}. The frozen constant coefficient operators
L(t, x, ∂t, ∂x) determine local convex propagation cones, Γ+(t, x). Influence curves are curves
whose tangent always lies in these cones. We prove that the set of points Ω which cannot be
reached by influence curves beginning in the exterior of Ω0 is a domain of determinacy in the sense
that solutions of Lu = 0 whose Cauchy data vanish in Ω0 must vanish in Ω. We prove that Ω is
swept out by continuous space like deformations of Ω0 and is also the set described by maximal
solutions of a natural Hamilton-Jacobi equation (HJE). The HJE provides a method for computing
approximate domains and is also the bridge from the raylike description using influence curves to
that depending on spacelike deformations. The deformations are obtained from level surfaces of
mollified solutions of HJEs.

§0. Introduction.

The question addressed in this note is to describe as accurately as possible the property of finite
speed of propagation for solutions of general hyperbolic systems. This is a problem of propagation
of zeros.

The analysis addresses mth order N × N system of partial differential operators with complex
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matrix valued coefficients

L(t, x, ∂t, ∂x) =
∑

|β|≤m

Aβ(t, x) ∂β
t,x = ∂m

t + lower order in t . (0.1)

Hypothesis 0.1. The coefficients satisfy α, β,

∂α
t,xAβ ∈ L∞(R × R

d) .

The characteristic polynomial is

P (t, x, τ, ξ) := det
(

∑

|β|=m

Aβ(t, x) (τ, ξ)β
)

, degP = mN . (0.2)

The operator is hyperbolic with timelike variable t in the sense that the equation

P (t, x, τ, ξ) = 0

has only real roots τ for real ξ ∈ R
d.

Problems with less regular coefficients are discussed in the detailed paper [JMR].

Define
τmax(t, x, ξ) := max

{

τ : P (t, x, τ, ξ) = 0
}

, (0.3)

and the associated convex cone of timelike codirections (see e.g. [Gå, Co, H03])

T (t, x) :=
{

(τ, ξ) : τ > τmax(t, x, ξ)
}

. (0.4)

T (t, x) a subset of the cotangent space at (t, x) and yields, by duality, the forward propagation
cone in the tangent space at (t, x)

Γ+(t, x) :=
{

(T,X) : ∀(τ, ξ) ∈ T (t, x) , (T,X).(τ, ξ) ≥ 0
}

. (0.5)

The set Γ+(t, x) depends only on the principal symbol of L. Both T and Γ+ are convex. The
former is open and the latter has compact intersection with the planes T = const > 0.

Definitions. An embedded hypersurface Σ ⊂ R
1+d is space like when its conormal vectors belong

to T (t, x)∪−T (t, x) for every (t, x) ∈ Σ. A relatively open set Ω ⊂ [0,∞[×R
d is called a domain

of determinacy of the relatively open subset Ω0 ⊂ {t = 0} when everyHm−1
loc

(

[0,∞[×R
d
)

solution
of Lu = 0 whose Cauchy data vanish in Ω0 must vanish in Ω. A closed subset S ⊂ [0,∞[×R

d is
called a domain of influence of the closed set S0 ⊂ {t = 0} if every Hm−1

loc

(

[0,∞[×R
d
)

solution
of Lu = 0 whose Cauchy data is supported in S0 is supported in S. An influence curve is a
lipschitzian curve x(t) : [a, b] → R

d so that the tangent vector to
(

s, x(s)
)

belongs to Γ+
(

s, x(s)
)

for Lebesgue almost all s.

The definitions imply that a set Ω is a domain of determinacy of Ω0 if and only if S :=
(

[0,∞[×R
d
)

\
Ω is a domain of influence of S0 := R

d \Ω0. The problems of finding large domains of determinacy
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and small domains of influence are therefore equivalent and amount to accurately describing the
speed of propagation for solutions of Lu = 0.

The intersection of a family of domains of influence of a fixed set S0 is a domain of influence.
Thus there is a smallest such domain called the the exact domain of influence and sometimes
just the domain of influence. For example, the exact domain of influence of the origin for the
operator +m2 is the solid cone |x|2 ≤ c2t2 when m 6= 0 or if m = 0 and d 6= 3, 5, . . .. For m = 0
and odd d ≥ 3, the exact domain of influence is just the boundary of the cone, |x|2 = c2t2. The
case of d = 3, 5, . . . and m ≈ 0 shows that the exact domain of influence depends sensitively on the
operator even in the constant coefficient case. On the other hand, in the constant coefficient case
the convex hull of the domain of influence of the origin is always equal to Γ+. We prove that the
bound of the domain of influence given by Γ+ extends naturally to a domain of influence in the
variable coefficient case.

The union of a family of domains of determination of a fixed set is also a domain of determination.
The largest domain of determination is called the exact domain of determination.

The most natural description of domains of influence and determinacy for hyperbolic problems use
influence curves ([Co, §VI.7], [Le, §VI.4], [La1, Thm 2.2]). The natural theorem is that if (t, x) is
not connected by an influence curve to the set S0 in {t = 0}, then the values of solutions of Lu = 0
at (t, x) are not influenced by the Cauchy data in S0. This geometric description of the domain of
influence does not immediately suggest a method of proof.

There is a second approach to the problem, the method of spacelike deformations, which has the
opposite character of leading directly to a proof.

Hypothesis 0.2 The operator L has the property of local uniqueness in the Cauchy problem at
space like hypersurfaces, that is, for every embedded space like hypersurface Σ ⊂]− 1,∞[×R

d and
point p ∈ Σ, if u ∈ Hm−1

loc (] − 1,∞[×R
d) satisfies Lu = 0 on a neighborhood of p in R

1+d and the
Cauchy data of u vanish on a neighborhood of p in Σ, then u vanishes on a neighborhood of p in
R

1+d.

Examples. 1. Constant coefficient systems and systems with analytic coefficients using Hölm-
gren’s Theorem. 2. Symmetric hyperbolic systems of first order. 3. Strictly hyperbolic systems.

The second approach to domains of determination is that domains swept out by spacelike surfaces
with their feet in Ω0 describe domains of determination. The two simple examples of ∂2

t − ∂2
x and

∂t+∂x both in dimension d = 1 with an initial set Ω0 =]−1, 1[ give the essential idea of the method.
The sharp domain of determinacies are the triangle {|x| < 1 − t} and the strip {−1 < x − t < 1}
respectively. These domains are swept out by space like deformations sketched in Figure 0.1

Figure 0.1

In the next result the deformation is by the level curves {F = c} with c increasing from 0 to 1.
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The straight forward proof is recalled in [JMR, Appendix].

John’s Global Hölmgren Theorem [Jo]. Suppose that L satisfies Hypothesis 0.1-0.2, that O
is a relatively open subset of {t ≥ 0} and F ∈ C1(O) has the following properties.

i. F > 0 on O ∩ {t > 0}.

ii. F−1([0, 1]) ⊂⊂ O.

iii. For all (t, x) ∈ F−1
(

[0, 1]
)

, dF (t, x) ∈ T (t, x).

Then, if u ∈ Hm−1
loc ({t ≥ 0}) satisfies Lu = 0 on O, and, the Cauchy data of u vanish on a

neighborhood of F−1([0, 1]) ∩ {t = 0}, then u = 0 on F−1([0, 1]).

Neither the influence curve nor the spatial deformation approach provides a method to compute
accurate approximations to the domains. The computation of first arrival times in problems
of geology and elsewhere amounts to the same fundamental question and in those communities,
computational strategies have been proposed based on using (maximal) solutions of Hamilton-
Jacobi equations (see e.g [SF], [RMO], [FJ], and references therein). To our knowledge the relation
of this Hamilton-Jacobi approach to the other two has not been investigated except in simple cases.
Our main result is that all three descriptions yield the same sets. One can profit from the numerical
advantages of Hamilton-Jacobi, the geometry of influence curves, or the analytic advantages of
space like deformations, secure in the knowledge that they agree. We use the solution of the
Hamilton-Jacobi equation to construct space like deformations. The Hamilton-Jacobi approach is
the bridge between the influence curves and the space like deformations.

In the constant coefficient hyperbolic case, the convex hull of the support of the forward funda-
mental solution E defined by

L(∂)E = δ , suppE ⊂ {t ≥ 0} .

is equal to Γ+ (see [Gå, Ho3]). The fact that it is contained in Γ+ implies that in the constant
coefficient hyperbolic case the set swept out by all influence curves starting in S0 is a domain of
influence. The set Ω defined by (t, x) ∈ Ω if and only if no influence curve x : [0, t] → R

d satisfies
both

x(0) ∈ S0 , and x(t) = x ,

is a domain of determinacy of Ω0 since Ω is the complement of S.

To prove a variable coefficient analogue, we need to know that τmax is lipschitzean. This is easy to
prove in the symmetric hyperbolic case and is true in general.

Bronstein’s Theorem [B,W]. Hypothesis 0.1 implies that the function τmax(t, x, ξ) is uniformly
lipschitzian on R

1+d × {|ξ| = 1}.

The natural candidate Ω ⊂ [0,∞[×R
d for a large domain of determinacy of Ω0 is

Ω :=
{

(t, x) : no influence curve with x(0) ∈ S0 can satisfy x(t) = x
}

. (0.10)

Theorem 0.1. If Hypotheses 0.1 and 0.2 are satisfied, ψ(x) ∈ W 1,∞(Rd) vanishes on S0, and
is strictly positive on Ω0, then the set Ω from (0.10) is exactly the set

{

(t, x) ∈ [0,∞[×R
d :

Ψ(t, x) > 0
}

where Ψ ∈ ∩TW
1,∞([0, T ] × R

d) is the largest uniformly lipschitzian solution of the
Hamilton-Jacobi initial value problem

Ψt + τmax(t, x,−∇xΨ(t, x)) = 0 a.e. (t, x) , Ψ(0, x) = ψ(x) .
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Theorem 0.2. If Hypotheses 0.1 and 0.2 are satisfied, then the natural Ω defined in (0.10) is a
domain of determinacy of Ω0.

Theorem 0.3. If Hypotheses 0.1 and 0.2 are satisfied and (t, x) belongs to the natural Ω defined
in (0.10), then there is a deformation by spacelike hypersurfaces as in John’s Theorem so that
(t, x) ∈ F−1([0, 1[).

Theorem 0.3 together with John’s Theorem proves Theorem 0.2.

A proof of Theorem 0.2 in the strictly hyperbolic case is given in [Le]. It uses a result of Marchaud
[M] asserting that if Z is a closed set in {t ≥ 0} with the property that for each point in Z there is a
backward semitangent belonging to −Γ+(t, x) then through each point (t, x) ∈ Z with t > 0 there
is a backward influence curve belonging to Z and reaching t = 0. The outline of proof in [La1]
for the symmetric hyperbolic case is not quite complete. It can be completed by appealing to the
above result of [M]. Appeal to the long and technical article [M] can be circumvented by proving
the result cited above from scratch. Our use of Hamilton-Jacobi equations not only justifies the
natural description of Theorem 0.1, but avoids recourse to [M], applies in the general case where
local uniqueness in the Cauchy problem is known, and also yields Theorem 0.3.

As far as we know, Theorem 0.3 is nowhere suggested in the literature.

§1. Hamilton-Jacobi.

Let ψ(x) be a uniformly lipschitzian function which is strictly positive on the nonempty open set
Ω0 and vanishes on the nonempty complement S0 := R

d \ Ω0. For example, ψ(x) := dist{x , S0}.
An example which tends to zero as |x| → ∞ is ψ(x) := e−|x| dist{x , S0}.

Definitions. Denote by X (T,X) the set of forward influence curves x(t) : [0, T ] → R
d with

x(T ) = X . (1.1)

Define a function Ψ(T,X) in T ≥ 0 by

Ψ(T,X) = inf
{

ψ(x(0)) : x(·) ∈ X (T,X)
}

. (1.2)

The infinum in (1.2) is an achieved minimum.

Corollary 1.1 The set described in (0.10) is exactly the set {Ψ > 0}. The complementary set
S :=

(

[0,∞[×R
d
)

\ Ω is equal to {Ψ = 0}.

Theorem 1.2. If Hypotheses 0.1 and 0.2 are satisfied and T > 0, then Ψ is uniformly lipschitzian
on [0, T ] × R

d and satisfies the Hamilton-Jacobi initial value problem

∂tΨ + τmax(t, x,−∇xΨ) = 0 a.e. , Ψ(0, x) = ψ(x) . (1.3)

It is the largest solution in the sense that if `(x) ∈W 1,∞
loc

(

[0, T ] × R
d
)

and satisfies

∂t`+ τmax(t, x,−∇x`) ≤ 0 a.e. , `(0, x) ≤ ψ(x) , (1.4)
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then,
`(t, x) ≤ Ψ(t, x) on [0, T ] × R

d . (1.5)

The proof of this is on one hand standard Hamilton-Jacobi Theory, and on the other hand unfamil-
iar to a large part of the audience of this seminar. A self contained treatment strongly influenced
by [Li] can be found in the detailed version [JMR].

§2. Natural domains by spacelike deformations.

The method uses perturbations of the function Ψ. The idea is that the level sets {Ψ = c > 0}
with c decreasing from the maximum value of Ψ, almost give a smooth deformation by spacelike
hypersurfaces sweeping out the natural domain of determinacy Ω from (0.10). Since the level sets
of W 1,∞ functions are ill behaved, the proof in this section uses regularization of Ψ.

In simple cases, it is clear what regions can be swept out with the constraint of remaining spacelike.
In the general case we were surprised and pleased to find that the natural set Ω can be reached by
such deformations.

The example of Ω0 equal to a dumbbell shaped region in Figure 2.1 suggests some of the pitfalls.
Take ψ to be equal to the distance from the boundary of Ω. Consider the case of D’Alembert’s
wave equation in which case Ψ = ψ(x) − t.

Figure 2.1

The level sets {Ψ = c} with c small positive are dumbbell shaped for t small and then for larger t
pinch off into two cusped circles. The difficulties are both the cusps and the change of topology.
If one puts C∞ wobbles in the connecting tube of the dumbbell, there can be a countable number
of little bubbles pinched off in the tube. We sweep out the set {Ψ > µ} with µ > 0 small. This
strict positivity allows us just enough wiggle room to regularize the geometry.

Theorem 0.2 follows from the next general principal applied with Φ equal to the function Ψ from
§1 when the initial data ψ are chosen satisfying lim|x|→∞ ψ(x) = 0.

Theorem 2.1 If L satisfies Hypotheses 0.1 and 0.2, Φ ∈ W 1,∞
(

[0, T ] × R
d
)

for all T > 0 and
satisfies

Φt + τmax

(

t, x,−∇xΦ(t, x)
)

≤ 0 a.e. , lim
|x|→∞

Φ(0, x) = 0 , (2.1)

and u ∈ Hm−1
loc

(

[0,∞[×R
d
)

satisfies

Lu = 0 , and Φ(0, x) ≤ 0 for x ∈ ∪m−1
j=0 supp ∂j

t u(0, .) . (2.2)

then for all |α| ≤ m− 1,
Φ(t, x) ≤ 0 on supp ∂α

t,xu . (2.3)
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Theorem 2.1 in turn is proved using the next Lemma which establishes the key link between
Hamilton-Jacobi equations and the method of deforming spacelike hypersurfaces.

Lemma 2.2. Spacelike deformations. Suppose that Φ ∈
(

C1 ∩W 1,∞
)(

[0, T ] × R
d
)

for all
T > 0 satisfies

Φt + τmax

(

t, x,−∇xΦ(t, x)
)

< 0 , lim sup
|t,x|→∞

Φ(t, x) ≤ 0 , (2.4)

and u ∈ Hm−1
loc

(

[0,∞[×R
d
)

satisfies

Lu = 0 , and Φ(0, x) ≤ 0 for x ∈ ∪m−1
j=0 supp ∂j

t u(0, .) . (2.5)

then for all |α| ≤ m− 1,
Φ(t, x) ≤ 0 on supp ∂α

t,xu , (2.6)

Remark. The key additional hypotheses are the continuous differentiability of Φ and the strict
Hamilton-Jacobi inequality.

Proof of Lemma 2.2. If Φ ≤ 0 there is nothing to prove. Since Φ is nonpositive at infinity, if Φ
assumes positive values it attains its maximum value. The differential inequality (2.4) shows that
Φ has no critical points in T > 0. Thus the maximum value, Φmax is assumed only in {t = 0}.

It suffices to show that u vanishes wherever Φ > 0. Therefore it suffices to show that u vanishes
on Φ−1([ε,Φmax] for arbitrary ε > 0. Fix 0 < ε < Φmax.

Let

O := {t ≥ 0} , F (t, x) :=
Φ(t, x) − Φmax

ε− Φmax
. (2.7)

Then as Φ decreases from Φmax to ε, F increases from 0 to 1. It suffices to show that u vanishes on
F−1([0, 1]). It suffices to verify the hypotheses of John’s Global Hölmgren Uniqueness Theorem.

The assertion about Φmax proves property i.

Property ii. is a consequence of the fact that {F ≥ 0} = {Φ ≥ ε}. The latter is compact thanks
to the second part of (2.4).

Property iii. follows from the differenital inequality (2.4).

That the Cauchy data of u vanish on {F ≥ 0} ∩ {t = 0} = {Φ ≥ ε} ∩ {t = 0} follows from the
second part of (2.5). That Lu = 0 is the first part of (2.5) which completes the verification of the
hypotheses of John’s Theorem.

Proof of Theorem 2.1. Replacing Φ by a larger function satisfying the conditions of the Theorem
and with the same initial data, strengthens the conclusion (2.3). Thus it suffices to prove the
Theorem for the largest such function Φ. Theorem 2.3 shows that this largest function is given by
the formula

Φupper(t, x) := min
x(·)∈X (t,x)

{

Φ(0, x(0))
}

. (2.8)

Then Φupper ∈ W 1,∞([0,∞[×R
d) satisfies

∂tΦupper + τmax

(

t, x,−∇xΦupper(t, x)
)

= 0 , Φupper(0, x) = Φ(0, x) , (2.9)

and is the largest such solution. Replace Φ by Φupper and drop the subscript.
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If (T,X) with T > 0 satisfies Φ(T,X) > 0, we must show that u vanishes on a neighborhood
of (T,X). If there are no such points there is nothing to prove. Fix (T,X) with T > 0 and
Φ(T,X) > 0.

With 0 < δ define
Φδ := Φ − δ t . (2.10)

The Hamilton-Jacobi equation for Φ is equivalent to

Φδ
t + τmax(t, x,−∇xΦδ) = −δ , Φδ(0, x) = Φ(0, x) . (2.11)

Fix 0 < δ so small that
Φδ(T,X) > 0 . (2.12)

The second assertion in (2.1) together with formulas (2.8) and (2.10) imply that

lim
|t,x|→∞

Φδ(t, x) ≤ 0 . (2.13)

Regularize to construct

Φε,δ := Jε(Φ
δ) :=

∫ ∫

ε(−1−d) ρ
( (t, x) − (s, y)

ε

)

Φδ(s, y) ds dy ∈ C∞([0,∞[×R
d) .

Equations (2.12) and (2.13) imply that for ε small and positive

lim
|t,x|→∞

Φε,δ(t, x) ≤ 0 and Φε,δ(T,X) > 0 . (2.14)

Carefully commute with Jε (using the convexity of τmax) to get one sided estimates

∥

∥

∥
Φε,δ − Φδ

∥

∥

∥

L∞([0,T ]×Rd)
< C ε , and, Φε,δ

t + τmax(t, x,−∇xΦε,δ) ≤ −δ + C ε . (2.15)

In addition
sup

{

Φε,δ(0, x) : x ∈ ∪j≤m−1 supp ∂ju(0, x)
}

≤ C ε . (2.16)

Thus for ε small and positive

Φε,δ
t + τmax(t, x,−∇xΦε,δ) < −δ/2 , (2.17)

and
sup

{

Φε,δ(0, x) : x ∈ ∪j≤m−1 supp ∂ju(0, x)
}

< Φε,δ(T,X)/2. (2.18)

Theorem 2.1 then follows from Lemma 2.2 applied to the function Φε,δ −Φε,δ(T,X)/2 with ε small
and positive.
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