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Microlocal analysis and seismic imaging

Christiaan C. Stolk

September 2, 2004

Abstract

We study certain Fourier integral operators arising in the inversion of data from

reflection seismology.

1 Introduction

In reflection seismology one studies the subsurface of the earth using acoustic waves. Mea-

surements are taken using sources and receivers of acoustic waves located at the surface.

An important step in the processing of data is the inversion of the so called forward op-

erator (or linearized forward operator) F , described precisely below. The operator F is a

Fourier integral operator between distribution spaces

F : E ′(X) → D′(Y )

where X and Y are open subsets of R
n resp. R

m, n < m. As n < m this is a formally

overdetermined problem, and one is not only interested in the inversion of F , but also for

instance in a characterization of its range.

This paper is about the structure of F , and about factorizing this operator like

F = F̄ ◦ χ. (1.1)

Here we search for F̄ that is an invertible Fourier integral operator, and χ that is a natural

injection of E ′(X) into some larger space of distributions D′(X0), dimX0 = m. In that

case we will call F̄ an extension of F , terminology introduced by Symes [13].
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The question of constructing such an extension arises quite naturally. For example

they can be used to construct explicitly the pseudodifferential “annihilators”, introduced

by Guillemin [4] to characterize the range of operators like F . In seismic data processing

it is related to prestack migration.

The inverse problem of reflection seismology

Let us first describe the seismic experiment, and the model of the data that we will use. In

a seismic experiment one puts sources at the surface of the earth, that emit a short pulse

of acoustic waves. The waves propagate inside the medium, and part of the energy reflects

where the mechanical properties of the medium vary strongly (e.g. at discontinuities). The

waves that arrive back at the surface are observed.

We consider the linearized, high-frequency model usually used in processing the data.

Throughout the paper c = c(x) will denote a smooth function that has as its values a

wavespeed as a function of the subsurface position. We will call this the background

medium, or velocity model. The associated wave operator will be denoted by

P = c(x)−2∂2
t − ∆.

The modeling starts with an incoming wave field ui = ui(x, t, xs). It depends on the

source position denoted by xs, in addition to the position and time variables (x, t). It is

assumed to satisfy

Pui(x, t) = w(t)δ(x− xs) on R
n × R+, ui = 0 for t < 0.

Here w(t) is the source wavelet, that will be chosen equal to w(t) = δ(t). Next a reflected

wave field ur is defined. It is defined as the perturbation of ui under a formal linearization,

where c(x) is replaced by c(x)(1 + 1
2
r(x)). This results in the following equation for ur

Pur = r(x)c(x)−2∂2
t ui (1.2)

The perturbation 1
2
c(x)r(x) is assumed to contain the discontinuities in the medium that

cause the reflections. The modeled data is given by the reflected wave field

d(xs, xr, t) = ur(xr, t, xs), (xs, xr, t) ∈ Y,
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where Y is the set of points (xs, xr, t) for which measurements are done. Source and

receiver points xs, resp. xr are contained in the surface R
n−1 × {0}, therefore Y will be a

submanifold of R
2n−1.

One may consider different sets Y . In this paper we assume Y is given by Y = Xs ×

Xr×]0, T [, where Xs is an open subset of R
n−1 containing the source locations, Xr is an

open subset of R
n−1 of receiver locations, and ]0, T [ is the time interval that measurements

are taken. We will identify Xs ⊂ R
n−1 with the subset Xs × {0} of R

n, and the same

for Rr. Other possibilities include the case of a single source, say at xs = 0, for which

Y = {(0, xr, t); (xr, t) ∈ Y ′ ⊂ R
n−1 × R+}, the case of constant offset Y = {(xs, xs +

h, t); (xs, t) ∈ Y ′ ⊂ R
n−1 × R+}, where h is some fixed vector in R

n−1. In n = 3

dimensions Y may be of codimension 1, as follows Y = {(xs, xr, t) ∈ R
2n−2 × R+; v ·

(xs − xr) = 0}, for some non-zero vector v ∈ R
n−1 (single streamer geometry).

The modeled data depends on both c and r. Both are in general unknown, and are to

be determined from the data. Here we will assume that c is given, and study the linear

inverse problem for r, except in the last section, where we make a few remarks on the

reconstruction of c. We therefore define the forward map to be the linear map

F : r 7→ d.

We assume r is zero outside a bounded open subset X such that the closure X is contained

in R
n
+ = {x ∈ R

n; xn > 0}.

Fourier integral operators and inversion

Let us recall a few facts about Fourier integral operators (see e.g. [3, 5, 16]). A Fourier

integral operator mapping functions of x ∈ X to functions of y ∈ Y is an operator with

Schwartz kernel given by a locally finite sum of terms

∑

j

∫

RN(j)
eiφ(j)(y,x,θ)a(j)(y, x, θ) dθ, (1.3)

for some N (j) ≥ 1. For simplicity, omit the index j. Here φ is called the phase function

and is assumed smooth, homogeneous of order 1 in θ and non-degenerate, i.e.

dθφ(y, x, θ) = 0 ⇒ d(y,x,θ)
∂φ(y, x, θ)

∂θj

are linearly independent for j = 1, . . . , N .
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The amplitude is a symbol in a class Sm((Y × X) × R
N), i.e. the class of functions in

C∞(Y ×X × R
N) such that for each compact set K and each pair of multi-indices α, β,

there is a constant Cα,β,K with

∂α
θ ∂

β
(x,y) ≤ CK,α,β(1 + ‖θ‖)m−‖α‖.

The essential support esssupp a is defined as the smallest conic subset of Y ×X×R
N\{0}

outside which a is of class S−∞.

Associated with a non-degenerate phase function is a Lagrangian submanifold of the

cotangent space T ∗(Y ×X)\0, given by

Λφ = {(y, x, d(y,x)φ) ∈ T ∗(Y ×X)\0

The canonical relation is defined by

Λ′
φ = {(y, x, η, ξ); (y, x, η,−ξ) ∈ Λφ}.

The global Fourier integral operator has canonical relation given by the union
⋃

j Λ′
φ(j) .

We will sometimes denote the canonical relation also by Λ′
F . An important property is that

different sets of phase functions may parameterize the same canonical relation. A Fourier

integral operator can be represented by the different sets of phase functions as long as these

phase functions parameterize the same canonical relation [3, theorem 2.3.4]. A second

important property is that Fourier integral operators form a calculus, their composition is

again a Fourier integral operator if the canonical relations can be composed in a clean or

transversal way. For the precise results on the composition we refer to [3], theorem 2.4.1,

and [5], section 25.2.

Under certain conditions the map F is a Fourier integral operator [8, 15]. The calculus

of Fourier integral operators can then be used for the reconstruction of singularities of r.

If certain conditions on c are satisfied, that depend on Y , a Fourier integral operator G can

be constructed such that

GF = a pseudodifferential operator ,

and the symbol of GF is 1 plus a term in S−∞ on a conic subset of T ∗(X)\0, say Γ. Thus

there is an approximate, high-frequency reconstruction of r in the sense that

WF(Gd− r) ∩ Γ = ∅,
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where WF(·) denotes Hörmanders wave front set. Such reconstructions for different

choices of Y are given for example in [1, 15, 7].

The contents of the paper is as follows. In section 2 we study the connection with the

paper [4]. We obtain there an extension for Fourier integral operators satisfying the Bolker

condition. Our main result is in section 3, where we construct explicitly an extension for

the seismic problem. In the fourth and last section we say a few words about the application

in seismic data processing.

2 Microlocal extension when the Bolker condition is sat-

isfied

In this section we describe the main steps in the construction of an extension when the

Bolker condition of Guillemin [4] is satisfied. We then give a short discussion on the

pseudodifferential “annihilators” introduced in that paper.

We assume Γ ⊂ T ∗(Y ×X)\0 is a canonical relation, Y is a bounded open subset of

R
m, X a bounded open subset of R

n, n < m, and πX , πY are the projections from Γ to the

factors T ∗(X) and T ∗(Y ). This can be summarized in the diagram

Γ

πY ↙ πX ↘

T ∗(Y )\0 T ∗(X)\0

We have the following

Assumption 1. (Bolker assumption [4]) The projection πY is an injective and proper im-

mersion of Γ in T ∗(Y )\0.

The notation Σ will be used for the image of Γ under πY .

Standard coordinates

Let ρ be a point in Γ, and consider the tangent maps to the projections, TρπX and TρπY .

By lemma 25.3.6 of [5], it follows that the rank λ1 of the projection TρπY , and λ2 of TρπX

satisfy λ1 = λ2 + dimY − dimX , so that Assumption 1 implies that the projection πX
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has everywhere maximal rank, and that πX defines a fibration on Γ, and a fibration with

isotropic fibers on Σ.

By (x, ξ) we denote coordinates on T ∗(X). Because πX is a submersion, we can use

(x, ξ) as local coordinates on Γ, and hence on Σ, together with a coordinate on the fiber,

that we will call s. So, let (x, s, ξ) 7→ ρ(x, s, ξ) be such a parameterization of some subset

U0 on Σ. Then we have (using that ∂ρ
∂sj

is tangent to the fibers)

σY

(

∂ρ

∂ξj
,
∂ρ

∂xk

)

= δj,k

σY

(

∂ρ

∂xj
,
∂ρ

∂xk

)

= σY

(

∂ρ

∂ξj
,
∂ρ

∂ξk

)

= σY

(

∂ρ

∂sj
,

∂ρ

∂(s, x, ξ)k

)

= 0

Then there is an open subset U of T ∗(Y )\0, such that U0 = U ∩ Σ, and a coordinate

transformation

Φ : U 3 (y, η) 7→ (x, s, ξ, σ),

such that Σ is given locally by σ = 0. The proof is by an adaption of the proof of the

Darboux theorem, and was done in [10], section 5. We let V be the image of U under Φ.

(Standard coordinates for canonical relations were also discussed by Hörmander [5].)

Extension of F

We let U1 be an open subset of U , such that U1 is contained in U , and V1 = Φ(U1).

Now let H be a Fourier integral operator of order 0 with canonical relation

{(Φ(y, η); y, η) ; (y, η) ∈ U},

whose principal symbol is nonzero on {(Φ(y, η); y, η) ; (y, η) ∈ U1}. Then it follows from

the composition theorem of Fourier integral operators [3, theorem 2.4.1], that HF is a

Fourier integral operator with canonical relation given by

{(x, s, ξ, 0; x, ξ) ; (x, s, ξ, 0) ∈ V }.

It follows that HF is an s-family of pseudodifferential operators, that we will denote by

A(x, s,Dx).

We define the map χ from (1.1) by

χ : D′(X) → D′(X × S) : χf(x, s) = f(x).
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Let B = B(x, s,Dx) be a microlocal inverse of A for (x, s, ξ, 0) ∈ V1. Then we have

BHFf ≡ χf on V1,

microlocally (the notation meaning that WF(BHFf − χf) ∩ V1 = ∅). Denote by 〈H〉−1

a Fourier integral operator with canonical relation

{(y, η; Φ(y, η)) ; (y, η) ∈ U}

such that the symbol of the pseudodifferential operator 〈H〉−1H is 1 plus a term in S−∞

on U1. We now let

F̄ = 〈H〉−1A

The operator F̄ is a microlocal extension, since

F̄ χf ≡ 〈H〉−1ABHf ≡ f,

microlocally on V1. It follows now that, if ψ1 is a pseudodifferential cutoff with support

contained in U1, then we have

ψ1F̄χ = ψ1F.

Annihilators

Guillemin introduced the left ideal IF of pseudodifferential operators on Y such that

W ∈ IF ⇔WF is a smoothing operator.

Theorem 2 in [4] states that the characteristic variety of IF is Σ, and that for each (y, η) ∈ Σ

there exist l
def
= dim Y − dimX commuting pseudodifferential operators W1, . . . ,Wl ∈ IF

whose symbols are defining functions of Σ near (y, η), such that IF is generated, near

(y, η), by theWj’s. If d is a compactly supported distribution on Y such thatWd is smooth

for all W ∈ IF , then

d = Ff + g,

where f is a compactly supported distribution on X and g is smooth. In this way the

W ∈ IF characterize the functions in the range of F , modulo smooth functions.
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With the operator F̄ , and H and B defined above, such pseudodifferential operators

Wj , are directly constructed. Denote 〈F̄ 〉−1 = BH , then we can set

Wj = ψ1F̄Dsj
〈F̄ 〉−1, j = 1, . . . , dimY − dimX.

The Wj are such that

WjF is regularizing.

3 Construction of an extension of F

In this section we construct an extension of the operator F . It will be slightly different

from the description above. We will use that with a function r = r(x) there is naturally

associated a multiplication operator Mr mapping f 7→ rf . With an operator on functions

of X is associated a distribution kernel in D′(X × X). In the extension here, χ will

be a mapping of functions to the associated multiplication operators, or their distribution

kernels, in a subspace of operators,

First some notation. Let the Green’s function G = G(x, y, t) be defined by

PG(x, y, t) = δ(x− y)δ(t), for x ∈ R
n, G = 0, for t < 0.

The solution to Pu = g, u|t<0 = 0 is then given by

∫ t

0

∫

Rn

G(x, y, t− s)g(y, s) dyds. (3.1)

Instead of the incoming field due to a point source, we may consider the incoming wave

field due to an arbitrary source f(xs, t) at the boundary xn = 0. We denote this by vi, that

satisfies

Pvi(x, t) = f(xs, t)δ(xn) on R
n × R+, vi = 0 for t < 0.

Let vr be a resulting reflected wavefield, again given by (1.2), with ur, ui replaced by vr, vi.

The data ur of section 1 is the kernel of the linear map f 7→ vr, in the sense that

vr(xr) =

∫ ∫

u(xr, t− s, xs)f(xs, s) dxsds.

The operator f 7→ vr has a simple relation to the multiplication operator Mr. Denote

by G the map g 7→ u given by (3.1). Let R1 be the restriction R1g = g|xn=0, and I1 the
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map multiplying a function on the boundary by the singular function of the boundary (i.e.

if we write x = (x′, xn), x′ ∈ R
n−1, xn ∈ R, then I1f(x, t)

def
= δ(xn)f(x′, t)). Then we

have

vr =
(

R1 ◦G ◦Mr ◦Mc−2 ◦ ∂2
t ◦G ◦ I1

)

f. (3.2)

(at this point we will not discuss whether this is well defined).

To proceed we discuss some properties ofG. Denote by p = p(x, t, ξ, τ) = −c(x)−2τ 2+

ξ2 the principal symbol of P . Solutions to the wave equation Pu = f have the property

that WF(u)\WF(f) ⊂ Char(p), and is invariant under flow defined there by the Hamil-

ton vector field of Hp (Hörmander th 26.1.1). The solution curves of the Hamilton flow are

called bicharacteristic, or null bicharacteristic if contained in p−1(0). The characteristic set

p−1(0) is given by the set of points (x, t, ξ, τ) satisfying ξ2 = c−2(x)τ 2. Outside the point

t = 0, x = y, G(x, y, t) is a Fourier integral with Lagrangian manifold (see [3], chapter 5)

{(x, y, t, ξ, η, τ) ; t > 0, η2 = c−2(x)τ 2,

and (x, t, ξ, τ) are on the bicharacteristic through (y, 0,−η, τ)}.

We also recall the reciprocity property

G(x, y, t) = G(y, x, t).

The Schwartz kernel of Mr is given by

KMr
(x, y) = r(

x + y

2
)δ(x− y).

The kernel of the sequence of operators in (3.2) is given by a linear map acting on KMr
. If

Ψ is an operator C∞
0 (Rn) → D′(Rn), such that G ◦ Ψ ◦Mc−2 ◦ ∂2

t ◦ G is a well defined

operator, then the Schwartz kernel of G ◦ Ψ ◦Mc−2 ◦ ∂2
t ◦G is obtained by application of

the following linear map, that we will call L to the kernel KΨ of Ψ

LKΨ(x, y, t) =

∫

G(x, u, t0)c(y)
−2∂2

tG(y, v, t− t0)KΨ(u, v) dudvdt0. (3.3)

Here we used the reciprocity property of G.

Our first result is about L (by u∗, v∗ we denote covectors associated with u, v)
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Theorem 3.1. Let U, V be disjoint bounded open subsets of R
n, so that also their closures

are disjoint, and similarly for U ′ and V ′. The expression (3.3) defines a Fourier integral

operator C∞
0 (U × U ′) → C∞(V × V ′×]0, T [) with canonical relation

{(x, y, t+ s, ξ, η, τ ; u, v, u∗, v∗) ∈ T ∗(V × V ′×]0, T [)\0 × T ∗(U × U ′) ;

u∗2 = c−2(u)τ 2, (x, t, ξ, τ) on a bicharacteristic through (u, 0, u∗, τ),

v∗2 = c−2(v)τ 2, (y, s, η, τ) on a bicharacteristic through (v, 0, v∗, τ)}. (3.4)

It extends to a continuous operator E ′(U × U ′) → D′(V × V ′×]0, T [).

Proof. We first show the statement for L0 defined by

L0KΨ(x, y, t) =

∫

G(x, u, t0)G(y, v, t− t0)KΨ(u, v) dudvdt0.

We first give some properties of Fourier integral operators, and ofG. A standard choice

of phase function, that is convenient because it does not involve coordinate transformations,

has been described by Maslov and Fedoriuk [6]. Suppose Λ is a Lagrangian submanifold

of T ∗(Rn)\0, and let xj, ξk, 1 ≤ j, k ≤ n be coordinates on R
n. For each point in Λ, there

is always a partition I∪J of {1, . . . , n} such that the projection on the (xI , ξJ) coordinates

(the vector valued function (xI , ξJ)) defines a local diffeomorphism. If I ′, J ′ are disjoint

such that I ′ ∪ J ′ ⊂ {1, . . . n}, and (xI′ , ξJ ′) define locally a submersive map, then I ′ and

J ′ can be extended to a partition I, J with the previously described property. There is now

a generating function S = S(xI , ξJ), such that the Lagrangian manifold is locally given by

ξI =
∂S

∂xI

(xI , ξJ), xJ = −
∂S

∂ξJ
(xI , ξJ).

A local phase function is then given by φ(x, ξJ) = S(xI , ξJ) + xJ · ξJ .

In the case of G the projection is submersive on τ , x, and can be extended to a dif-

feomorphic projection on τ, x and yI, ηJ , for some partition I ∪ J of {1, . . . , n}. Using a

generating function S(x, yI, ηJ , τ) we find a phase function of the form

φ(x, y, t, ηJ , τ) = S(x, yI , ηJ , τ) + ηJ · yJ + tτ,

that locally describes Λ.

Consider now (3.3). The Schwartz kernel can be written as

KL0(x, y, t, u, v) =

∫

Ĝ(x, u, τ)Ĝ(y, v, τ ′)ei
1
2

t(τ+τ ′)+it0(τ−τ ′) dτdτ ′dt0,
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where Ĝ(x, y, τ) is the time-Fourier transform ofG. We observe that Ĝ(x, y, τ) is bounded

by C(1+ τ 2)l/2 for some l, (x, y in some compact set). It follows by partial integration that

this is a well defined distribution. The integration over t0 can be done, yielding
∫

Ĝ(x, u, τ)Ĝ(y, v, τ)eitτ dτ.

Since U, U ′, V, V ′ are bounded sets, the G’s are finite sums of local Fourier integral

operators
∑

j G
(j), with Maslov phase functions φ(j) and amplitudes a(j), as introduced

above. Let us consider the (j, k) contribution to the sum that is KL0 . For brevity we write

φ, φ′ instead of φ(j), φ(k) etc. With this notation the (j, k) contribution to the Schwartz

kernel KL0 is given by
∫ ∫ ∫

A(x, u, u∗J , τ)A
′(y, v, v∗J ′, τ)ei(S+S′−uJ ·u

∗

J−vJ′ ·v∗
J′

+tτ) du∗Jdv
∗
J ′dτ,

(where we have u∗J = −ηJ compared to the formula above). Denote by Φ the phase

function

Φ = S + S ′ − uJ · u∗J − vJ ′ · v∗J ′ + tτ.

It is easily verified that Φ is a non-degenerate phase function, since the matrix

∂2Φ

∂(uJ , vJ ′ , t)∂(u∗J , v
∗
J ′, τ)

has maximal rank.

The corresponding Lagrangian manifold is given by

Λ′
(j,k) = {(x, y, t+ s, ξ, η, τ ; u, v, u∗, v∗) ;

(x, u, t, ξ,−u∗, τ) ∈ ΛG(j) , (y, v, s, η,−v∗, τ) ∈ ΛG(k)},

Hence it is of the form given in the theorem.

We verify that the amplitude is a symbol. We have that ‖(η, ξ)‖ ≤ C|τ | on the La-

grangian manifold. Therefore for the amplitude

∂α
(x,y)∂

β
(ηJ ,τ)A ≤ Cα,β(1 + τ 2)1/2(k−|β|),

for some constant k, and similar for A′ with a constant k′. It follows that the product of

amplitudes is also a symbol.

Since the canonical relation contains no elements of the form (x, y, t, 0, 0, 0; u, v, u∗, v∗)

and no elements of the form (x, y, t, ξ, η, τ ; u, v, 0, 0) this Fourier integral operator is con-

tinuous C∞
0 (U × U ′) → C∞(V × V ′×]0, T [) and E ′(U × U ′) → D′(V × V ′×]0, T [).
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Clearly, if G(y, v, t) is a Fourier integral except at x = y, t = 0, then this is also true

for c(y)−2∂2
tG(y, v, t). This shows that the statement remains true for L.

Definition of F̄ and χ

Next we will give χ and F̄ , the latter by composition of L with operators before and after,

and give conditions such that F̄ is a Fourier integral operator with canonical relation that

is the graph of an invertible map.

We let x 7→ Z(x) ∈ R define a family of hypersurfaces on a large open set Ω, contain-

ing X , Xs and Xr. We will also assume that Z = 0 on xn = 0, Z > 0 on xn > 0, Z < 0

when xn < 0, and grad(Z) 6= 0 on Ω.

We will assume that after a coordinate transformation, we can set Z = xn. In the new

coordinates the operator L remains a Fourier integral operator. However, the bicharacter-

istics of the canonical relation of G, are now given by the Hamilton flow of

p(x, t, ξ, τ) =

n
∑

j=1

n
∑

k=1

gj,k(x)ξjξk − τ 2, (3.5)

where the metric gj,k(x) is obtained from applying a coordinate transformation on the

original metric c(x)2δj,k.

We will first formulate the results in the coordinates such that xn = Z, using bicharac-

teristics with p given by (3.5). We define the open subset X0 of R
2n−1 by

X0 = {(x, y) ∈ X ×X ; Z(x) = Z(y)}.

A point in this set for Z(x) = xn is given by (x, y, z) ∈ R
n−1 ×R

n−1 ×R with (x, z) ∈ X

and (y, z) ∈ X . With this notation we define the operator χ in the factorization (1.1), by

χr(x, y, z) = r(x, z)δ(x− y), (x, y, z) ∈ X.

It maps r to the Schwartz kernel of a family of operators on the surfaces Z = constant. We

define a map I : D′(R2n−1) → D′(R2n), using the notation x = (x′, xn), x′ ∈ R
n−1, xn ∈

R, and similar for y,

Ig(x, y) = g(x′, y′, xn)δ(xn − yn).

We define also a restriction operator R : C∞
0 (R2n+1) → C∞

0 (R2n−1) by

Ru(x, y, t) = u((x, 0), (y, 0), t), x, y ∈ R
n−1.
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We let

F̄ = R ◦ L ◦ I. (3.6)

Fourier integral operator property of F̄

It will be convenient to parameterize the null bicharacteristics. As pointed out above,

the points (x, t, ξ, τ) in the characteristic set p−1(0) satisfy
∑n

j=1

∑n
k=1 g

j,kξjξk = τ 2.

Hence those (ξ, τ) can be specified by α ∈ Sn−1 and τ ∈ R according to the formula

ξ = Ξ(x, α, τ)
def
= −τ

(

∑n
j=1

∑n
k=1 g

j,kαjαk
)−1/2

α. The solution curves to the Hamilton

field are such that τ is invariant. They can be parameterized by the time. The (x, ξ)

components will be denoted by

γ(t, x, α, τ) = (γx(t, x, α), γξ(t, x, α, τ)),

(γx is independent of τ ). A curve t 7→ γx(t, x, α) is called a ray.

The elements of the canonical relation (3.4) are given by the points

(γx(t, x, α), γx(s, y, β), t+ s, γξ(t, x, α, τ), γξ(s, y, β, τ), τ ;

x, y,Ξ(x, α, τ),Ξ(y, β, τ)) (3.7)

where (x, y, α, β, t, s, τ) vary in an open subset of U ×U ′ ×Sn−1 ×Sn−1 ×R×R×R\0,

such that γx(t, x, α) ∈ V , γx(s, y, β) ∈ V ′. Consider the operator L with U = U ′ = X , V

a neighborhood of Xs, and V ′ a neighborhood of Xr.

Lemma 3.2. Under the assumption

Each ray segment t 7→ γx(t, x, α), x ∈ X, t ∈]0, T [ intersects Xs at

most once and transversally, and similarly for Xr,
(3.8)

the operator R ◦ L is a Fourier integral operator with canonical relation

{(γx′(t, x, α), γx′(s, y, β), t+s, γξ′(t, x, α, τ), γξ′(s, y, β, τ), τ ; x, y,Ξ(x, α, τ),Ξ(y, β, τ)) ;

(t, x, α) such that γx(t, x, α) ∈ Xs, (s, y, β) such that γx(s, y, β) ∈ Xr}, (3.9)

where γx′ = (γx1, . . . , γxn−1), and similarly for γξ′.
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Proof. The restriction R is a Fourier integral operator with canonical relation given by,

where we denote by x′ = (x1, . . . , xn−1)

{(x′, y′, t, ξ′, η′, τ ; x, y, t, ξ, η, τ) ; (x, y, t, ξ, η, τ) ∈ T ∗(R2n+1), xn = 0, yn = 0}

The composition of Fourier integral operators is described in [3, Theorem 2.4.1]. This

includes a condition involving the support of the amplitudes, equation (2.4.8), which is

satisfied in our case, since for (x, t) fixed, the set of y, such that (x, y, t) ∈ supp(G)

is bounded. In addition it includes three conditions (2.4.9) to (2.4.11) on the canonical

relations. Let us repeat them. Here X, Y, Z are open subsets of R
nX ,RnY ,RnZ , such that

Λ′
φ1

⊂ T ∗(X × Y )\0, Λ′
φ2

⊂ T ∗(Y × Z)\0. The conditions are

η 6= 0 if (x, ξ, y, η) ∈ Λ′
φ1

or (y, η, z, ζ) ∈ Λ′
φ2
, (3.10)

ξ 6= 0 or ζ 6= 0 if (x, ξ, y, η) ∈ Λ′
φ1

and (y, η, z, ζ) ∈ Λ′
φ2
, (3.11)

Λ′
φ1

× Λ′
φ2

intersects T ∗(X) × diag(T ∗(Y )) × T ∗(Z) transversally. (3.12)

The first of these is satisfied by the canonical relation of the restriction. The second con-

ditions follows from the fact that ξ 6= 0 and η 6= 0 for all (x, ξ, y, η) ∈ Λ′
L. To verify the

third condition we go to the parameterization above. The third condition is then equivalent

to
∂(γxn

(t, x, α), γxn
(s, y, β)

∂(x, y, α, β, t, s)
has rank 2 when γxn

(t, x, α) = γxn
(s, y, β) = 0,

which is clearly implied by (3.8). The composition of canonical relations yields (3.9),

using (3.7).

Next we consider the composition (R ◦ L) ◦ I . We denote x′ = (x1, . . . , xn−1).

Lemma 3.3. With the assumption (3.8), the composition (R ◦ L) ◦ I is a Fourier integral

operator with canonical relation consisting of the points

(γx′(t, x, α), γx′(s, y, β), t+ s, γξ′(t, x, α, τ), γξ′(s, y, β, τ), τ ;

x′, y′, xn,Ξ
′(x, α, τ),Ξ′(y, β, τ),Ξn(x, α, τ) + Ξn(y, β, τ)), (3.13)

such that xn = yn, (x, α, t) ∈ X × Sn−1×]0, T [ such that γx(t, x, α) ∈ Xs and (y, β, s) ∈

X × Sn−1×]0, T [ such that γx(s, y, β) ∈ Xr, and t+ s < T .
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Proof. The map I is a Fourier integral operator with canonical relation

{((u, z), (v, z), (u∗,
ζ

2
+ θ), (v∗,

ζ

2
− θ); u, v, z, u∗, v∗, ζ) ;

(u, v, z, u∗, v∗, ζ) ∈ T ∗(Rn−1 × R
n−1 × R), θ ∈ R, (u∗, v∗, ζ, θ) 6= 0} (3.14)

As in the previous proof the condition on the support of the amplitudes is satisfied. The first

condition on the canonical relations is satisfied, because of (3.14). The second condition

on the canonical relation is satisfied since Λ′
R◦L has no elements of the form (x, ξ, y, η)

with ξ = 0, η 6= 0 or η = 0, ξ 6= 0. From the parameterization of the canonical relation

(3.9) it is clear that the composition of (3.9) and (3.14) is transversal. The composition of

these canonical relations is given by the parameterization by (3.13) in the lemma.

Local invertibility of the canonical relation

The source and receivers rays have take off velocity at x and y given by −τ−1gj,kξk, with

ξ = Ξ(x, α, τ) and ξ = Ξ(y, β, τ) resp. For an element of the canonical relation, we will

use the condition that the sum of the n-th component of velocities is unequal zero.

∂γxn

∂t
(0, x, α) +

∂γxn

∂t
(0, y, β) =

−τ−1gn,kΞk(x, α, τ) − τ−1gn,kΞk(y, β, τ) 6= 0.

(3.15)

Here (x, y, α, β) are the parameters appearing in the parameterization (3.13).

Lemma 3.4. If for some point of Λ′
F̄

condition (3.15) is satisfied, then the linearizations of

the natural projections of Λ′
F̄

on T ∗(Y )\0 and on T ∗(X0)\0 are invertible.

Proof. By [5], Lemma 25.3.6, the corank of the projection of the canonical relation of

Lemma 3.3 on the first factor T ∗(Y )\0 is equal to that on T ∗(X0)\0. Therefore, it is

sufficient to verify that the linearization of the projection on the second factor T ∗(X0)\0

is invertible. The parameters α, β, τ (with either τ < 0 or τ > 0) simply parameterize the

(ξ, η) ∈ R
2n, such that

∑

j,k

gj,k(x)ξjξk −
∑

j,k

gj,k(y)ηjηk = 0. (3.16)

The cotangent vector (ξ ′, η′, ξn + ηn) occurring in the projection on the second factor

T ∗(R2n−1) is the projection of an element of this hypersurface along the lines given by
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ζ 7→ (ξ′, ξn + ζ, η′, ηn − ζ) on the hyperplane given by ξn − ηn = 0. It follows from some

simple linear algebra, that the lines above must intersect the hypersurface given by (3.16)

transversally, i.e.

∂

∂ξn

∑

j,k

gj,k(x)ξjξk +
∂

∂ηn

∑

j,k

gj,k(y)ηjηk 6= 0.

Evaluation of the derivatives yields
∑

j

gj,n(x)ξj +
∑

j

gj,n(y)ηj 6= 0.

Dividing by −τ we see that this holds if and only if (3.15) holds.

Global invertibility and summary of the result

We will now consider the case where not necessarily Z(x) = xn, and define χ and I for

this case. The operator F̄ will again be given by (3.6). The definitions are non-unique in

the sense that different multiplicative factors can be changed or added, so that the product

Iχ remains the same. Let κ(x) be a coordinate transformation, such that κn = Z. Denote

κ′(x) = (κ1, . . . , κn−1(x)), and X̃ = κ(X). We assume κ is defined on an open subset Ω

of R
n that contains X , Xs and Xr, and is such that if there are two ray segments resp. from

X to Xs, and from X to Xr, with total travel time < T , then the two rays are contained in

Ω.

We denote by (x̃, z̃) ∈ R
n−1 × R (or (ỹ, z̃)) the new coordinates. We define χ by

χr(x̃, ỹ, z̃) = a(x̃, ỹ, z̃)r(κ−1(x̃, z̃))δ(x̃− ỹ),

with (x̃, ỹ, z̃) ∈ R
n−1 × R

n−1 × R, (x̃, z̃) ∈ X̃ and (ỹ, z̃) ∈ X̃. We define I by

Ig(x, y) = b(x, y)g(κ′(x), κ′(y), κn(x))δ(κn(x) − κn(y)),

where a, b are smooth multiplicative factors. We must have Iχr(x, y) = r(x)δ(x − y).

This yields

Iχr(x, y) = r(x)a(κ′(x), κ′(y)κn(x))b(x, y)δ(κ(x) − κ(y)).

To fix a, b we now use that

δ(κ(x) − κ(y)) =

∣

∣

∣

∣

det
∂κ

∂x
(x)

∣

∣

∣

∣

−1

δ(x− y).
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This means we can set

a(x̃, ỹ, z̃) =

∣

∣

∣

∣

det
∂κ

∂x
(κ−1(x̃, z̃))

∣

∣

∣

∣

,

b(x, y) = 1,

We will assume that

Assumption 2. There is some ε > 0, such that if [0, t1] 3 t 7→ γ1(t) is a ray from xs ∈ Xs

to x ∈ X , and [0, t2] 3 t 7→ γ2(t) is a ray from xr ∈ Xr to y ∈ X , t1 + t2 < T , and

Z(x) = Z(y), then d
dt
Z(γj(t)) > ε for all t ∈ [0, tj], j = 1, 2.

Theorem 3.5. With this assumption F̄ is a Fourier integral operator, with canonical rela-

tion that is the graph of invertible canonical transformation from a subset of T ∗(X0)\0 to

a subset of T ∗(Y )\0.

Proof. By a coordinate transformation this can be reduced to the case Z(x) = xn, already

discussed above.

Suppose (x, ξ′, τ) ∈ R
n × R

n−1 × R is given, then there are 0, 1, or 2 different real

solutions ξn to the equation p(x, (ξ ′, ξn), τ) = 0. In case of 1 real solution, this correspond

to a ray tangent to the hypersurface Z = constant. For the case of 2 real solutions,

let these correspond to α1, α2. The two rays have non-zero n-th component of velocity
∂γxn

∂t
(0, x, αj), with different signs. So if this sign is known, then (x, ξ ′, τ) determines

uniquely a null bicharacteristic. With the above assumption, in the parameterization of

the canonical relation of Lemma 3.3, it follows that the rays in the canonical relation have

negative vertical velocity component.

Assumption 2 implies the assumption (3.8). This shows that F̄ is a Fourier integral

operator by Lemmas 3.2 and 3.3. It also implies (3.15), which shows that the canonical

relation is locally the graph of an invertible canonical transformation by Lemma 3.4. It

remains to show that the projection π1 from Λ′
F̄

to T ∗(Y )\0 is injective, and that the pro-

jection π2 from Λ′
F̄

to T ∗(X0)\0 is injective. We start with π1. Let (xs, xr, t, ξs, ξr, τ) be in

Y . Then (xs, ξs, τ) determines uniquely the source bicharacteristic by the assumption and

the previous alinea, and (x,Ξ(x, α, 0)) must be on this bicharacteristic. Similarly (xr, ξr, τ)

determines a bicharacteristic, such that (y,Ξ(y, β, 0)) is on this bicharacteristic. The time

t must be equal to the travel time along the bicharacteristic from xs to x, and s equal to the
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time from xr to y. Since these bicharacteristics intersect the hypersurfaces Z = constant

transversally, t + s uniquely determines the value of Z, so it completely determines the

point in Λ′
F̄

.

We next show that π2 is injective. We will show that the map (α, β, τ) 7→ (Ξ′(x, α, τ),

Ξ′(y, β, τ),Ξn(x, α, τ) + Ξn(y, β, τ)) is injective, where (x, y) are considered as parame-

ters. This map can be viewed as the composition of the two maps

(α, β, τ) 7→ (Ξ′(x, α, τ),Ξ′(y, β, τ), τ)

and

(ξ′, η′, τ) 7→ (ξ′, η′, ξn + ηn),

where ξn is uniquely determined by the conditions p(x, (ξ ′, ξn), τ) = 0, and that the corre-

sponding bicharacteristic has negative n-th velocity component, and similar for ηn with

p(y, (η′, ηn), τ) = 0. That those ξn, ηn are uniquely determined, shows that the first

map is injective. Finally we must argue that the second map is injective. We will first

give explicitly the formula for ξn, such that p(x, (ξ ′, ξn), τ) = 0. Denote by g′ the ma-

trix (g′j,k)j=1,...,n−1,k=1,...n−1, and denote v = (gj,n)j=1,...,n−1. The solutions ξn, such that

p(x, (ξ′, ξn), τ) = 0, are given by

ξn =
1

gn,n

(

−v · ξ′ ±
√

(v · ξ′)2 + gn,n(τ 2 − ξ′ · g′ · ξ′)
)

. (3.17)

Since the source and receiver rays have the same sign of the n-th component of velocity, it

follows that the signs for ξn and ηn are the same, so that the map τ 7→ ξn + ηn is strictly

monotonous. This shows the injectivity of the second map.

4 Application in reflection seismology

We will say a few words on the connections with the applications. The adjoint of F̄ is a

Fourier integral operator with the transposed canonical relation. Such operators are called

prestack migration operators. Section 3 is related to downward-continuation seismic data

processing, an important processing technique in practice. The standard geophysical refer-

ence for these methods is the book [2], for a mathematical discussion and more references

see [11, 12]).
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Applying an operator 〈F 〉−1 defined at the end of section 2, yields a set (s-family) of

reconstructions of the singular part of r. Let us finally say a few words on why this is

done. Recall that, in addition to r, also the background medium c is to be reconstructed.

Both the forward operator, and the operator H depend on c. In the reconstruction of c

one can therefore use the property that 〈F 〉−1d must be independent of the parameter s

(microlocally). Migration velocity analysis is the practice of finding a c so that this property

is satisfied as far as practically possible.

Quantitave measures of the optimality, and algorithms to find an optimal c still form

a highly challenging subject of research. Differential semblance optimization [14] is a

method that involves the pseudodifferential annihilators introduced in section 2. It has

the property that the resulting error function depends smoothly on the medium, which

allows the use of efficient global optimization methods. The paper [9] does this using the

extension of section 3, with some success in examples.
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