SEMINAIRE

Equations aux Dérivées Partielles

2002-2003

Georgi Vodev
Local energy decay of solutions to the wave equation for nontrapping metrics Séminaire É. D. P. (2002-2003), Exposé n ${ }^{\circ}$ XIV, 6 p.
<http://sedp.cedram.org/item?id=SEDP_2002-2003
\qquad A14_0>

U.M.R. 7640 du C.N.R.S.

F-91128 PALAISEAU CEDEX
Fax : 33 (0)1 69334949
Tél : 33 (0)1 69334999

cedram

Local energy decay of solutions to the wave equation for nontrapping metrics

Georgi Vodev
Université de Nantes, Département de Mathématiques, UMR 6629 du CNRS, 2, rue de la Houssinière, BP 92208,
44072 Nantes Cedex 03, France
e-mail: vodev@math.univ-nantes.fr

Let (M, g) be an n-dimensional complete, unbounded, connected Riemannian manifold with a Riemannian metric g of class $C^{\infty}(\bar{M})$ and a compact C^{∞}-smooth boundary ∂M (which may be empty). We suppose that M is of the form $M=X_{0} \cup X$, where X_{0} is a compact, connected Riemannian manifold with a metric $g_{\mid X_{0}}$ of class $C^{\infty}\left(\bar{X}_{0}\right)$ with a compact boundary $\partial X_{0}=$ $\partial M \cup \partial X, \partial M \cap \partial X=\emptyset, X=\left[r_{0},+\infty\right) \times S, r_{0} \gg 1$, with metric $g_{\mid X}:=d r^{2}+\sigma(r)$. Here $(S, \sigma(r))$ is an $n-1$ dimensional compact Riemannian manifold without boundary equipped with a family of Riemannian metrics $\sigma(r)$ depending smoothly on r which can be written in any local coordinates $\theta \in S$ in the form

$$
\sigma(r)=\sum_{i, j} g_{i j}(r, \theta) d \theta_{i} d \theta_{j}, \quad g_{i j} \in C^{\infty}(X) .
$$

Denote $X_{r}=[r,+\infty) \times S$. Clearly, ∂X_{r} can be identified with the Riemannian manifold $(S, \sigma(r))$ with the Laplace-Beltrami operator $\Delta_{\partial X_{r}}$ written as follows

$$
\Delta_{\partial X_{r}}=-p^{-1} \sum_{i, j} \partial_{\theta_{i}}\left(p g^{i j} \partial_{\theta_{j}}\right),
$$

where $\left(g^{i j}\right)$ is the inverse matrix to $\left(g_{i j}\right)$ and $p=\left(\operatorname{det}\left(g_{i j}\right)\right)^{1 / 2}=\left(\operatorname{det}\left(g^{i j}\right)\right)^{-1 / 2}$. Let Δ_{g} denote the (positive) Laplace-Beltrami operator on (M, g) and let ∇_{g} be the corresponding gradient. We have

$$
\Delta_{X}:=\left.\Delta_{g}\right|_{X}=-p^{-1} \partial_{r}\left(p \partial_{r}\right)+\Delta_{\partial X_{r}}=-\partial_{r}^{2}-\frac{p^{\prime}}{p} \partial_{r}+\Delta_{\partial X_{r}},
$$

where $p^{\prime}=\partial p / \partial r$. We have the identity

$$
\begin{equation*}
\Delta_{X}^{\sharp}:=p^{1 / 2} \Delta_{X} p^{-1 / 2}=-\partial_{r}^{2}+\Lambda_{r}+q(r, \theta), \tag{1}
\end{equation*}
$$

where

$$
\Lambda_{r}=-\sum_{i, j} \partial_{\theta_{i}}\left(g^{i j} \partial_{\theta_{j}}\right),
$$

and q is an effective potential given by

$$
q(r, \theta)=(2 p)^{-2}\left(\frac{\partial p}{\partial r}\right)^{2}+(2 p)^{-2} \sum_{i, j} \frac{\partial p}{\partial \theta_{i}} \frac{\partial p}{\partial \theta_{j}} g^{i j}+2^{-1} p \Delta_{X}\left(p^{-1}\right)
$$

We make the following assumptions:

$$
\begin{equation*}
|q(r, \theta)| \leq C, \quad \frac{\partial q}{\partial r}(r, \theta) \leq C r^{-1-\delta_{0}} \tag{2}
\end{equation*}
$$

with constants $C, \delta_{0}>0$. Denote

$$
h(r, \theta, \xi)=\sum_{i, j} g^{i j}(r, \theta) \xi_{i} \xi_{j}, \quad(\theta, \xi) \in T^{*} S
$$

We suppose that

$$
\begin{equation*}
-\frac{\partial h}{\partial r}(r, \theta, \xi) \geq \frac{C}{r} h(r, \theta, \xi), \quad \forall(\theta, \xi) \in T^{*} S \tag{3}
\end{equation*}
$$

with a constant $C>0$.
Denote by G the selfadjoint realization of Δ_{g} on the Hilbert space $H=L^{2}\left(M, d \mathrm{Vol}_{g}\right)$ with Dirichlet or Neumann boundary conditions, $B u=0$, on ∂M. Let $\chi \in C^{\infty}(\bar{M}), \chi=1$ on X_{0}, $\chi=0$ in $X_{r_{0}+1}$. Denote $\mathcal{G}:=(G+1)^{1 / 2}$. We make the following assumption:
there exist constants $T, \sigma>0$ so that the operators $\mathcal{G}^{\sigma_{1}} \chi \cos (T \sqrt{G}) \chi \mathcal{G}^{\sigma_{2}}$ and

$$
\begin{equation*}
\mathcal{G}^{\sigma_{1}} \chi \frac{\sin (T \sqrt{G})}{\sqrt{G}} \chi \mathcal{G}^{\sigma_{2}+1} \text { belong to } \mathcal{L}(H), \forall \sigma_{1}, \sigma_{2} \in \mathbf{R} \text { such that } \sigma_{1}+\sigma_{2}=\sigma \tag{4}
\end{equation*}
$$

The metric g will be said nontrapping if there exists a constant $T_{0}>0$ such that for every generalized geodesics (see [3], [4] for the definition), γ, with $\gamma(0) \in M \backslash X_{r_{0}+1 / 2}, \exists 0<t=t_{\gamma} \leq T_{0}$ so that $\gamma(t) \in X_{r_{0}+1}$. For such a metric, it follows from the result of Melrose-Sjöstrand [3], [4] on propagation of C^{∞} singularities that the distribution kernels of the operators $\chi \cos \left(T_{0} \sqrt{G}\right) \chi$ and $\chi \frac{\sin \left(T_{0} \sqrt{G}\right)}{\sqrt{G}} \chi$ are of class $C^{\infty}(\bar{M} \times \bar{M})$ (this is known as generalized Huyghens principle). Therefore, (4) is fulfilled for nontrapping metrics.

Given a real s, choose a real-valued function $\chi_{s} \in C^{\infty}(\bar{M}), \chi_{s}=1$ on $M \backslash X_{r_{0}+1 / 2},\left.\chi_{s}\right|_{X}$ depending only on $r, \chi_{s}=r^{-s}$ on $X_{r_{0}+1}, \chi_{s} \chi_{-s} \equiv 1$. Denote by G_{0} the Dirichlet selfadjoint realization of Δ_{X} on the Hilbert space $H_{0}=L^{2}\left(X, d \mathrm{Vol}_{g}\right)$.

Our first result is the following
Theorem 1. Assume(2) and (3) fulfilled. Then, for every $s>1 / 2$, there exist constants $C_{0}, C>0$ such that for $z \geq C_{0}, 0<\varepsilon \leq 1$, we have (with $j=0,1$)

$$
\begin{equation*}
\left\|r^{-s} \nabla_{g}^{j}\left(G_{0}-z \pm i \varepsilon\right)^{-1} r^{-s}\right\|_{\mathcal{L}\left(H_{0}\right)} \leq C z^{(j-1) / 2} \tag{5}
\end{equation*}
$$

Moreover, if (4) holds, we have

$$
\begin{equation*}
\left\|\chi_{s} \nabla_{g}^{j}(G-z \pm i \varepsilon)^{-1} \chi_{s}\right\|_{\mathcal{L}(H)} \leq C z^{(j-1) / 2} \tag{6}
\end{equation*}
$$

We use this theorem to study the local energy of the solutions of the following mixed problem

$$
\left\{\begin{array}{r}
\left(\partial_{t}^{2}+\Delta_{g}\right) u(t, x)=0 \quad \text { in } \quad \mathbf{R} \times M, \tag{7}\\
B u(t, x)=0 \quad \text { on } \quad \mathbf{R} \times \partial M, \\
u(0, x)=\varphi(G) f_{1}(x), \partial_{t} u(0, x)=\varphi(G) f_{2}(x), \quad x \in M,
\end{array}\right.
$$

where $\varphi \in C^{\infty}(\mathbf{R}), \varphi=0$ in a neighbourhood of the interval $\left(-\infty, A_{0}\right], \varphi=1$ outside a larger neighbourhood, where $A_{0}=\max \left\{C_{0}, C_{0}^{\prime}\right\}, C_{0}$ being as in Theorem 1 and C_{0}^{\prime} being as in (9) and (10) below. Recall that the solutions to (7) can be expressed by the formula

$$
\begin{equation*}
u=\cos (t \sqrt{G}) \varphi(G) f_{1}+\frac{\sin (t \sqrt{G})}{\sqrt{G}} \varphi(G) f_{2} \tag{8}
\end{equation*}
$$

Given $s>0$ and a function $\chi \in C^{\infty}(\bar{M}), \chi=1$ in $X_{0}, \chi=0$ outside some compact, set

$$
\begin{gathered}
E_{s}(t)=\int_{M}\left(\left|\partial_{t} u(t, x)\right|^{2}+\left|\nabla_{g} u(t, x)\right|^{2}\right) \chi_{2 s} d \mathrm{Vol}_{g}, \\
E_{l o c}(t)=\int_{M}\left(\left|\partial_{t} u(t, x)\right|^{2}+\left|\nabla_{g} u(t, x)\right|^{2}\right) \chi d \mathrm{Vol}_{g}, \\
\widetilde{E}(0)=\int_{M}\left(\left|f_{2}\right|^{2}+\left|\nabla_{g} f_{1}\right|^{2}+\left|f_{1}\right|^{2}\right) d \mathrm{Vol}_{g}, \\
\widetilde{E}_{-s}(0)=\int_{M}\left(\left|f_{2}\right|^{2}+\left|\nabla_{g} f_{1}\right|^{2}\right) \chi-2 s d \mathrm{Vol}_{g}+\int_{M}\left|f_{1}\right|^{2} \chi_{-2 s+2} d \mathrm{Vol}_{g} .
\end{gathered}
$$

To get uniform local energy decay estimates of the solutions to (7) we need to impose additional conditions on the behaviour of the resolvent of the operator G_{0}. We suppose that there exist $s>1 / 2, C_{0}^{\prime}>0$ and an integer $m \geq 0$ so that for $z \geq C_{0}^{\prime}, 0<\varepsilon \leq 1$, the following estimates hold (with $j=0,1$):

$$
\begin{gather*}
\left\|r^{-s} \nabla_{g}^{j}\left(G_{0}-z \pm i \varepsilon\right)^{-k} r^{-s}\right\|_{\mathcal{L}\left(H_{0}\right)} \leq C z^{(j-k) / 2}, \quad k=1, \ldots, m+1, \tag{9}\\
\left\|r^{-s} \nabla_{g}^{j}\left(G_{0}-z \pm i \varepsilon z^{1 / 2}\right)^{-m-2} r^{-s}\right\|_{\mathcal{L}\left(H_{0}\right)} \leq C z^{(j-m-2) / 2} \varepsilon^{-1+\mu}, \tag{10}
\end{gather*}
$$

with constants $C>0$ and $0<\mu \leq 1$ independent of z and ε.
Our main result is the following
Theorem 2. Assume (2), (3), (4), (9) and (10) fulfilled. Then, we have, for $t \gg 1$,

$$
\begin{equation*}
E_{s-1 / 2}(t) \leq O\left(t^{-2 m-2 \mu}\right) \widetilde{E}_{-s}(0) \tag{11}
\end{equation*}
$$

In particular, if f_{1} and f_{2} are of compact support, we have

$$
\begin{equation*}
E_{l o c}(t) \leq O\left(t^{-2 m-2 \mu}\right) \widetilde{E}(0) \tag{12}
\end{equation*}
$$

Remark 1. If (9) holds for every integer $k \geq 1$ with $s=s_{k}>1 / 2$ and $C=C_{k}>0$, then (12) holds with $O_{N}\left(t^{-N}\right), \forall N \gg 1$, in place of $O\left(t^{-2 m-2 \mu}\right)$.

The key point in the proof of Theorem 2 is the following

Proposition 3. The estimates (5), (6), (9) and (10) imply the following ones (with $j=0,1$)

$$
\begin{gather*}
\left\|\chi_{s} \nabla_{g}^{j}(G-z \pm i \varepsilon)^{-k} \chi_{s}\right\|_{\mathcal{L}(H)} \leq C z^{(j-k) / 2}, \quad k=1, \ldots, m+1, \tag{13}\\
\left\|\chi_{s} \nabla_{g}^{j}\left(G-z \pm i \varepsilon z^{1 / 2}\right)^{-m-2} \chi_{s}\right\|_{\mathcal{L}(H)} \leq C z^{(j-m-2) / 2} \varepsilon^{-1+\mu} \tag{14}
\end{gather*}
$$

for $z \geq A_{0}, 0<\varepsilon \leq 1$, with m and $0<\mu \leq 1$ the same as in (9) and (10), and a new constant $C>0$ independent of z and ε.

As an application of the above theorem we get uniform local energy decay of the solutions to (7) for a class of asymptotically Euclidean manifolds. To describe this class, denote

$$
q^{b}:=r^{-1} \frac{\partial\left(r^{2} q\right)}{\partial r}, \quad \Lambda_{r}^{b}:=-r^{-1} \sum_{i, j} \partial_{\theta_{i}}\left(\frac{\partial\left(r^{2} g^{i j}\right)}{\partial r} \partial_{\theta_{j}}\right)
$$

Denote by G_{0}^{\sharp} the Dirichlet self-adjoint realization of the operator Δ_{X}^{\sharp} on the Hilbert space $H_{0}^{\sharp}=L^{2}(X, d r d \theta)$. We make the following assumptions:

$$
\begin{gather*}
\left|q^{b}(r, \theta)\right| \leq C r^{-\delta}, \tag{15}\\
r^{\delta} \Lambda_{r}^{b}\left(G_{0}^{\sharp}-i\right)^{-1} \in \mathcal{L}\left(H_{0}^{\sharp}\right), \tag{16}
\end{gather*}
$$

for some constants $C>0$ and $0<\delta \leq 1$. We have the following
Proposition 4. Assume (2), (3), (15) and (16) fulfilled. Then, (9) and (10) hold with $m=0, s=1+\delta / 2$, for every $0<\mu<\delta$.

Corollary 5. Assume (2), (3), (4), (15) and (16) fulfilled. Then, we have, for $t \gg 1$,

$$
\begin{equation*}
E_{(1+\delta) / 2}(t) \leq O_{\epsilon}\left(t^{-2 \delta+\epsilon}\right) \widetilde{E}_{-(1+\delta / 2)}(0), \quad \forall 0<\epsilon \ll 1 \tag{17}
\end{equation*}
$$

In particular, if f_{1} and f_{2} are of compact support, we have

$$
\begin{equation*}
E_{l o c}(t) \leq O_{\epsilon}\left(t^{-2 \delta+\epsilon}\right) \widetilde{E}(0), \quad \forall 0<\epsilon \ll 1 \tag{18}
\end{equation*}
$$

Remark 2. It is worth noticing that the above results still hold for the self-adjoint realization of $\Delta_{g}+V(x)$, where V is a real-valued potential, $V(x) \geq 0$, provided the assumptions (2) and (15) are satisfied with q replaced by $q+\left.V\right|_{X}$.

It is easy to see that the assumptions (2), (3), (15) and (16) are fulfilled for long-range perturbations of the Euclidean metric on $\mathbf{R}^{n}, n \geq 2$. More precisely, let $\mathcal{O} \subset \mathbf{R}^{n}$ be a bounded
domain with a C^{∞}-smooth boundary and a connected complement $\Omega=\mathbf{R}^{n} \backslash \mathcal{O}$. Let g be a Riemannian metric in Ω of the form

$$
g=\sum_{i, j=1}^{n} g_{i j}(x) d x_{i} d x_{j}, \quad g_{i j}(x) \in C^{\infty}(\bar{\Omega}),
$$

satisfying

$$
\begin{equation*}
\left|\partial_{x}^{\alpha}\left(g_{i j}(x)-\delta_{i j}\right)\right| \leq C_{\alpha}\langle x\rangle^{-\gamma_{0}-|\alpha|}, \tag{19}
\end{equation*}
$$

for every multi-index α, with constants $C_{\alpha}, \gamma_{0}>0$, where $\langle x\rangle:=\left(1+|x|^{2}\right)^{1 / 2}$ and $\delta_{i j}$ denotes the Kronecker symbol. It follows from (19) that outside a sufficiently big compact there exists a global smooth change of variables, $(r, \theta)=(r(x), \theta(x)), r \in\left[r_{0},+\infty\right), r_{0} \gg 1, \theta \in S=\left\{y \in \mathbf{R}^{n}\right.$: $|y|=1\}$, which transforms the metric g in the form $d r^{2}+\sigma(r)$. Therefore, (Ω, g) is isometric to a Riemannian manifold of the class described above, and (17) and (18) hold with $\delta=\min \left\{1, \gamma_{0}\right\}$, provided the metric g is nontrapping.

In the case when $g_{i j}=\delta_{i j}$ for $|x| \geq \rho_{0}$ with some $\rho_{0} \gg 1$, and the metric g is nontrapping, a better estimate than (18) is known to hold true with $\varphi \equiv 1$. In this case, Vainberg [5], [6] showed that the generalized Huyghens principle implies (18) with a rate of decay $O\left(e^{-c t}\right), c>0$, if $n \geq 3$ is odd, and $O\left(t^{-2 n}\right)$ if $n \geq 4$ is even. The fact that the metric coincides with the Euclidean one outside some compact plays an important role in Vainberg's method. In particular, this implies that the cutoff resolvent extends analytically to some strip through the real axis. This approach, however, does not work anymore in the setting described above, and it does not allow to get estimates like (11) and (17).

To prove Theorem 1 we make use of some ideas developed in [1], [8], where uniform high frequency resolvent estimates have been obtained without assuming (4). The assumption (4), however, allows to get much better estimates than those proved in the above papers.

Given any domain $M_{0} \subset M$, equipe the Sobolev space $H^{1}\left(M_{0}, d \mathrm{Vol}_{g}\right)$ with the semi-classical norm defined by

$$
\|u\|_{H^{1}\left(M_{0}, d \mathrm{Vol}_{g}\right)}^{2}:=\|u\|_{L^{2}\left(M_{0}, d \mathrm{Vol}_{g}\right)}^{2}+\left\|\lambda^{-1} \nabla_{g} u\right\|_{L^{2}\left(M_{0}, d \mathrm{Vol}_{g}\right)}^{2},
$$

where $\lambda \gg 1$. The estimate (6) follows from combining the following two estimates
Proposition 6. Assume (4) fulfilled. Then, given any $u \in D(G)$, the following estimate holds:

$$
\begin{gather*}
\|u\|_{H^{1}\left(M \backslash X_{r_{0}+1}, d \mathrm{Vol}_{g}\right)} \leq C \lambda^{-1}\left\|\left(\Delta_{g}-\lambda^{2}+i \varepsilon\right) u\right\|_{L^{2}\left(M \backslash X_{r_{0}+1}, d \mathrm{Vol}_{g}\right)} \\
+C\|u\|_{H^{1}\left(X_{r_{0}+1 / 2} \backslash X_{r_{0}+1}, d \mathrm{Vol}_{g}\right)}, \tag{20}
\end{gather*}
$$

for $\lambda \geq \lambda_{0}, 0<\varepsilon \leq 1$, with constants $C, \lambda_{0}>0$ independent of λ and ε.
Proposition 7. Let $u \in H^{2}\left(X_{a}, d \mathrm{Vol}_{g}\right), a>r_{0}$, be such that

$$
r^{s}\left(\Delta_{g}-\lambda^{2}+i \varepsilon\right) u \in L^{2}\left(X_{a}, d \operatorname{Vol}_{g}\right)
$$

for $1 / 2<s \leq\left(1+\delta_{0}\right) / 2,0<\varepsilon \leq 1$. Then, for every $0<\gamma \ll 1$ there exist constants $C_{1}, C_{2}, \lambda_{0}>0$ (which may depend on γ but are independent of λ and ε) so that for $\lambda \geq \lambda_{0}$, $\forall a_{1}>a$, we have

$$
\left\|r^{-s} u\right\|_{H^{1}\left(X_{a_{1}}, d \mathrm{Vol}_{g}\right)}^{2} \leq C_{1} \lambda^{-2}\left\|r^{s}\left(\Delta_{g}-\lambda^{2}+i \varepsilon\right) u\right\|_{L^{2}\left(X_{a}, d \mathrm{Vol}_{g}\right)}^{2}
$$

$$
\begin{equation*}
-C_{2} \lambda^{-1} \operatorname{Im}\left\langle\partial_{r} u, u\right\rangle_{L^{2}\left(\partial X_{a}\right)}+\gamma\|u\|_{H^{1}\left(X_{a} \backslash X_{a_{1}}, d \operatorname{Vol}_{g}\right)}^{2} \tag{21}
\end{equation*}
$$

The estimate (11) follows from combining the following estimates

Proposition 8. a) The estimate (6) implies, $\forall s>1 / 2$,

$$
\begin{equation*}
\int_{0}^{\infty} E_{s}(\tau) d \tau \leq C \widetilde{E}_{-s}(0) \tag{22}
\end{equation*}
$$

b) The estimates (13) and (14) imply, for $t \geq 1$,

$$
\begin{equation*}
\int_{t}^{\infty} E_{s}(\tau) d \tau \leq C t^{-2 m-2 \mu} \widetilde{E}_{-s}(0) \tag{23}
\end{equation*}
$$

Lemma 9. For $\forall s>1 / 2, t \geq 1$, we have

$$
\begin{equation*}
E_{s-1 / 2}(t) \leq C \int_{t}^{\infty} E_{s}(\tau) d \tau \tag{24}
\end{equation*}
$$

with a constant $C>0$ independent of t.

References

[1] F. Cardoso and G. Vodev, Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds. II, Ann. H. Poincaré 3 (2002), 673-691.
[2] F. Cardoso and G. Vodev, High frequency resolvent estimates and energy decay of solutions to the wave equation, Canadian Bull. Math., to appear.
[3] R. B. Melrose and J. Sjöstrand, Singularities of boundary value problems. I, Commun. Pure Appl. Math. 31 (1978), 593-617.
[4] R. B. Melrose and J. Sjöstrand, Singularities of boundary value problems. II, Commun. Pure Appl. Math. 35 (1982), 129-168.
[5] B. Vainberg, On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as $t \rightarrow \infty$ of solutions of nonstationary problems, Russian Math. Surveys 30 (1975), 1-53.
[6] B. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach, New York, 1988.
[7] A. Vasy and M. Zworski, Semiclassical estimates in asymptotically Euclidean scattering, Commun. Math. Phys. 212 (2000), 205-217.
[8] G. Vodev, Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds with cusps, Commun. Partial Diff. Equations 27 (2002), 14371465.

