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Introduction

In this paper, our interest is to prove local solvability for equations of the type

(EC)


∂2

t u−∆u−
∑

1≤j,k≤d

gj,k∂j∂ku = 0

∆gj,k = Qj,k(∂u, ∂u)
(u, ∂tu)|t=0 = (u0, u1).

where Qj,k are quadratic forms on Rd+1. In all this work, we shall state, for a function u

on [0, T ]× Rd,

∇u def= (∂1u, · · · , ∂du) , ∂u
def= (∂tu, ∂1u, · · · , ∂du) and g · ∇2u

def=
∑

1≤j,k≤d

gj,k∂j∂ku.

When no confusion is possible, we shall also state γ def= (∇u0, u1). This problem of course is
a model one. The general problem consists in considering equations of the type

∂2
t u−∆u−

∑
1≤j,k≤d

gj,k∂j∂ku =
∑

1≤j,k≤d

Q̃j,k(∂gj,k, ∂u)

∆gj,k = Qj,k(∂u, ∂u)
(u, ∂tu)|t=0 = (u0, u1).

where Q̃j,k are quadratic form on Rd+1 and where all the quadratic forms are supposed to be
smooth functions of u. This simply complicates a little the estimates without any relevant
new phenomenon. In the frame work of (EC), it makes sense to work with small data and
this simplifies the proofs.

Energy methods allow to prove local wellposedness for initial data (u0, u1) inH
d
2
+ 1

2×H
d
2
− 1

2 .
More precisely, we have the following theorem.

Theorem 0.1. If d ≥ 3, let (u0, u1) be in H
d
2
+ 1

2 × H
d
2
− 1

2 such that ‖γ‖
Ḣ

d
2−1 is small

enough. Then, a positive times T exists such that a unique solution u of (EC) exists

in C([0, T ];H
d
2
+ 1

2 ) ∩ C1([0, T ];H
d
2
− 1

2 ). Moreover, a constant C exists (which of course does
not depend on the initial data) such that T ≥ C‖γ‖−2

Ḣ
d
2−

1
2
.
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Let us recall that Hs is the usual Sobolev space on Rd and that Ḣs is the homogeneous
one and we shall state

‖f‖2
s

def=
∫

Rd

|ξ|2s|f̂(ξ)|2dξ.

This is an Hilbert space when s < d/2.

The goal of this paper is to go below the regularity Hd/2+1/2 for the initial data. Let
us have a look to the scaling properties of equation (EC). If u is a solution of (EC),

then uλ(t, x) def= u(λt, λx) is also a solution of (EC). The space which is invariant under this
scaling is Ḣ

d
2 . So the above theorem appears to require 1/2 derivative more than the scaling.

The goal of this work is to try to go as closed as possible to the scaling invariant regularity.
Some results in that direction have been proved by the authors (see [1] and [2]) and also

by D. Tataru (see [22]) for quasilinear wave equations of the following type

(E)
{
∂2

t u−∆u−G(u) · ∇2u = F (u)Q(∂u, ∂u)
(u, ∂tu)|t=0 = (u0, u1)

where G is a smooth function vanishing at 0 with value in K such that Id+K is a convex
compact subset of the set of positive symmetric matrices. Let us recall this results. Let us
notice that the scaling of the two equations (E) and (EC) is the same.

Theorem 0.2. If d ≥ 3, let (u0, u1) be in Hs×Hs−1 for s > sd with sd =
d

2
+

1
2

+
1
6
· Then,

a positive time T exists such that a unique solution u exists such that

∂u ∈ C([0, T ];Hs−1) ∩ L2([0, T ];L∞).

Moreover, a constant C exists such that T
2
3
+(s−sd) ≥ C‖γ‖−1

Ḣs−1
.

This theorem has been proved with 1/4 instead than 1/6 in [1] and then improved a little
bit in [2] and proved with 1/6 by D. Tataru in [22]. Strichartz estimates for quasilinear
equations are the key point of the proofs. Recently, S. Klainerman and S. Rodnianski have
announced a better index. Their proof is based on very different methods. In this case, the
energy methods give the classical index s > d/2 + 1 and T ≥ C‖γ‖−1+s−sd

Hs−1 .
The goal of this work is to do the analogous in the case of Equation (EC). The result will

be the following.

Theorem 0.3. If d ≥ 5, let (u0, u1) be in Hs × Hs−1 with s >
d

2
+

1
6

such that ‖γ‖
Ḣ

d
2−1

is small enough. Then, a positive times T exists such that a unique solution u of (EC)

exists such that ∂u ∈ C([0, T ];Hs−1)∩L2
T (Ḃ

d
4
− 1

2
4,2 ) where Ḃ

d
4
− 1

2
4,2 is the Besov space defined in

Definition 1.1. Moreover, for any positive α, we have that T
1
6
+α ≥ Cα‖γ‖−1

Ḣ
d
2−

5
6+α

.

The case of dimension 4 is a little bit different. The theorem is the following.

Theorem 0.4. If d = 4, let (u0, u1) be in Hs × Hs−1 with s > 2 +
1
6

such that ‖γ‖Ḣ1 is

small enough. Then, a positive times T exists such that a unique solution u of (EC) exists
such that

∂u ∈ C([0, T ];Hs−1) ∩ L2
T (Ḃ

1
6
6,2) and ∂g ∈ L1

T (L∞).

where Ḃ
d
6
− 1

2
6,2 denotes the Besov space defined in Definition 1.1. Moreover, for any positive α,

a constant Cα exists such that T
1
6
+α ≥ Cα‖γ‖−1

Ḣ
d
2−

5
6+α

.
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Remarks

• If we think in term of small data (i.e. of initial data of the type ε(u0, u1)), then energy
methods give a life span in ε−2. The above theorem gives a life span of order ε−6+α

for any positive α.
• As we shall see, the case when d ≥ 5 can be treated only with Strichartz estimates

simply because if ∂u belongs to L2
T (Ḃ

d
4
− 1

2
4,2 ) then ∂g is in L1

T (L∞).
• The case when d = 4 requires bilinear estimates. This fact appears in the statement of

Theorem 0.4 through the following phenomenon: the fact that ∂u is in L2
T (Ḃ

1
6
6,2) does

not imply that the time derivative of g belongs to L1
T (L∞). Of course this condition

is crucial in particular to get the basic energy estimate. But we have been unable to
exibit a Banach space B which contains the solution u and such that if a function a
is in B, then ∂∆−1(a2) belongs to L1

T (L∞).

Acknowledgments We want to thank S. Klainerman for introducing us to this problem
and also for fruitful discussions. We thank J.-M. Bony for very important discussions about
the concept of microlocalized functions.

1. Method of the proof

1.1. Some basic facts in Littlewood-Paley theory. Let us begin by recalling the basis
of Littlewood-Paley theory. Let us denote by C the ring of center 0, of small radius 3/4
and of big radius 8/3. Let us choose two non negative radial functions χ and ϕ belonging
respectively to D(B(0, 4/3)) and D(C) such that

χ(ξ) +
∑
q∈N

ϕ(2−qξ) =
∑
q∈Z

ϕ(2−qξ) = 1, (1)

|p− q| ≥ 2 ⇒ Supp ϕ(2−q·) ∩ Supp ϕ(2−p·) = ∅, (2)

q ≥ 1 ⇒ Supp χ ∩ Supp ϕ(2−q·) = ∅, (3)

and if C̃ = B(0, 2/3) + C, then C̃ is a ring and we have

|p− q| ≥ 5 ⇒ 2pC̃ ∩ 2qC = ∅. (4)

Notations

h = F−1ϕ and h̃ = F−1χ,

∆qu = ϕ(2−qD)u = 2qd

∫
h(2qy)u(x− y)dy,

Squ =
∑

p≤q−1

∆pu = χ(2−qD)u = 2qd

∫
h̃(2qy)u(x− y)dy.

We shall often denote ∆qu by uq. Let us recall the definition of Besov spaces.

Definition 1.1. Let s be a real number, and (p, r) in [1,∞]2. Let us state

‖u‖Ḃs
p,r

def=
∥∥(2qs‖∆qu‖Lp

)
q∈Z
∥∥

`r(Z)

If s < d/p then the closure of the compactly smooth functions with respect to this norm is a

Banach space and we have that Ḣs = Ḃs
2,2 and the norm ‖ · ‖Ḃs

2,2
is equivalent to ‖ · ‖Ḣs .
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Notations We shall also state

‖a‖s
def= ‖a‖Ḃs

2,2
, ‖b‖Lp

I (E)
def= ‖b‖Lp(I;E) , ‖b‖Lp

T (E)
def= ‖b‖Lp([0,T ];E)

and ‖b‖T,s
def= ‖b‖L∞T (Ḃs

2,2).

Here we want to explain the problems we have to solve to prove Theorem 0.4. As in the
case of Equation (E), the basic fact is energy estimates. This implies the control of∫ T

0
‖∂g(t, ·)‖L∞dt.

In the case of Equation (E), it is obtained by Strichartz estimates. This will be the case
here when d ≥ 5 not when d = 4. Let us follow now ideas of S. Klainerman and D. Tataru
(see [17]). If u is the solution of the constant coefficient wave equation, let us estimate∫ T

0
‖∂∆−1

(
∂ju(t, ·)∂ku(t, ·)

)
‖L∞dt.

As ∂t∆−1
(
∂ju(t, ·)∂ku(t, ·)

)
= ∆−1

(
∂t∂ju∂ku(t, ·)

)
+ ∆−1

(
∂ju∂t∂ku(t, ·)

)
, we have to control

expression of the type ∫ T

0
‖∆−1

(
∂t∂ju∂ku(t, ·)

)
‖L∞dt.

When d ≥ 4, we have that ‖∆−1
(
∂t∂ju∂ku(t, ·)

)
‖

B
d
2
2,1

≤ C‖∂u(t, ·)‖2
d
2
− 1

2

. So we get that

∫ T

0
‖∆−1

(
∂t∂ju∂ku(t, ·)

)
‖L∞dt ≤ T‖∂u‖2

T, d
2
− 1

2

.

Then the proof of Theorem 0.1 is routine. If we want to go below this H
d
2
+ 1

2 regularity of the
initial data, we shall use Strichartz estimates. Let us introduce Bony’s decomposition which
consists in writing

ab =
∑

q

Sq−1a∆qb+
∑

q

Sq−1b∆qa+
∑

−1≤j≤1
q

∆qa∆q−jb.

When d ≥ 4, we have ‖∂kuq‖L2
T (L∞) ≤ C2q( d

2
− 1

2
+k−1)‖γq‖L2 . Then it is easy to prove that∥∥∥∆−1

(∑
q

Sq−1∂
2u∂uq

)∥∥∥
L1

T (L∞)
≤ C‖γ‖2

d
2
−1
.

The symmetric term can be treated exactly along the same lines. The remainder term

∆−1
( ∑
−1≤j≤1

q

∂2uq∂uq−j

)

is much more difficult to treat particulary in dimension 4. The reason why is the following.
When d is greater or equal to 5, the Strichartz estimates tells us that

‖∂kuq‖L2
T (L4) ≤ 2q( d

4
− 1

2
+k−1)‖γq‖L2 .
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So thanks to Bernstein inequality, we infer that∥∥∥∆p∆−1
( ∑
−1≤j≤1
q≥p−N0

∆q∂
2u∆q−j∂u

)∥∥∥
L1

T (L∞)
≤ C2p( d

2
−2) ∑

−1≤j≤1
q≥p−N0

2q d
2 ‖γq‖L2‖γq−j‖L2

≤ C
∑

−1≤j≤1
q≥p−N0

2−(q−p)( d
2
−2)2q(d−2)‖γq‖L2‖γq−j‖L2 .

Convolution and Cauchy-Schwarz inequalities implies that
∥∥∆−1

(
∂2u∂u

)∥∥
L1

T (L∞)
≤ C‖γ‖2

d
2
−1

.

The case of dimension 4 is much more delicate. In dimension 4, the Strichartz estimate is

‖∂kuq‖L2
T (L6) ≤ 2q( 4

3
− 1

2
+k−1)‖γq‖L2 .

So the series ∂2uq∂uq−j does not converge in L1
T (L3) because the only estimate we have is

‖∂2uq∂uq−j‖L1
T (L3) ≤ C2q 8

3 ‖γq‖2
L2 ≤ C2q 2

3dq‖γ‖2
1 with

∑
q

dq = 1.

To overcome this difficulty, we follow an idea of D. Tataru and S. Klainerman (see [17]).

1.2. Bilinear estimates and precised Strichartz estimates. To explain the basic ideas
of bilinear estimates, let us consider the case of constant coefficient case.

Proposition 1.1. Let u1 and u2 two solutions of ∂2
t uj −∆uj = 0 and (∂uj)|t=0 = γj . Then,

if d ≥ 4,
‖∂∆−1Q(∂u1, ∂u2)‖L1

T (L∞) ≤ Cε,T ‖γ1‖ d
2
−1+ε‖γ2‖ d

2
−1+ε.

The precised Strichartz estimates are described by the following proposition.

Proposition 1.2. If d ≥ 3, a constant C exists such that for any T and any h ≤ 1, if Supp ûj

and Supp F(�u(t, ·)) are included in a ball of radius h and in the ring C, we have

‖u‖L2
T (L∞) ≤ C

(
hd−2 log(e+ T )

) 1
2
(
‖u(0)‖L2 + ‖∂tu(0)‖L2 + ‖�u‖L1

T (L2)

)
.

As usual it is deduced with the TT ? argument from the following dispersive inequality.

Lemma 1.1. Let C be a ring of Rd. A constant C exists such that if u0 and u1 are functions
in L1(Rd) such that

Supp (ûj) ⊂ C and max
{
δ(Supp (û0), δ(Supp (û1)

}
≤ h,

then, for any d̃ between 0 and d− 1, we have

‖u(t, ·)‖L∞ ≤ Chd−d̃

t
d̃
2

(
‖u0‖L1 + ‖u1‖L1

)
,

where u denotes the solution of ∂2
t u−∆u = 0 and ∂j

t u|t=0 = uj .

This inequality is proved in [17] in the case when d̃ = d− 1. The general case is obtained
by interpolation with the classical Sobolev embedding.

Let us recall that we want to estimate the∥∥∥∆p∆−1
( ∑
−1≤j≤1
q≥p−N0

∆q∂
2u∆q−j∂u

)∥∥∥
L1

T (L∞)

With scaling, we can assume that q = 1 and let us state h = 2p−q. Let us define (φν)1≤ν≤Nh

a partition of unity of the ring C such that Supp φν ⊂ B(ξν , h). Then, using the fact
XVII–5



that the support of the Fourier transform of the product of two functions is included in the
sum of the support of their Fourier transform, a family of functions (φ̃ν)1≤ν≤Nh

exists such
that Supp φ̃ν ⊂ B(−ξν , 2h) and

χ(h−1D)(∂2v∂v)) =
Nh∑
ν=1

χ(h−1D)
(
∂2φ̃ν(D)v∂φν(D)v)

)
. (5)

Applying Proposition 1.2 gives

‖χ(h−1D)(∂2v∂v))‖L1
T (L∞) ≤ Chd−2 log(e+ T )

Nh∑
ν=1

‖φ̃ν(D)γ‖L2‖φν(D)γ‖L2 .

The Cauchy Schwarz inequality implies that

‖χ(h−1D)(∂2v∂v))‖L1
T (L∞) ≤ Chd−2 log(e+ T )

(
Nh∑
ν=1

‖φ̃ν(D)γ‖2
L2

) 1
2
(

Nh∑
ν=1

‖φν(D)γ‖2
L2

) 1
2

.

The almost orthogonality of (φ̃ν(D)γ1)1≤ν≤Nh
and (φν(D)γ2)1≤ν≤Nh

implies that

‖χ(h−1D)(∂2v∂v))‖L1
T (L∞) ≤ Chd−2 log(e+ T )‖γ‖L2‖γ‖L2 . (6)

So after rescaling, we get that∥∥∥∆p∆−1
( ∑
−1≤j≤1
q≥p−N0

∆q∂
2u∆q−j∂u

)∥∥∥
L1

T (L∞)
≤ 2p(d−4)

∑
−1≤j≤1
q≥p−N0

log(e+ 2qT )22q‖γq‖L2‖γq−j‖L2 .

If γ ∈ H
d
2
−1+ ε

2 then we have∥∥∥∆p∆−1
( ∑
−1≤j≤1
q≥p−N0

∆q∂
2u∆q−j∂u

)∥∥∥
L1

T (L∞)
≤ (2pT )−ε

∑
−1≤j≤1
q≥p−N0

2−(q−p)(d−4+ε)

× 2q( d
2
−1)(2qT )

ε
2 ‖γq‖L22(q−j)( d

2
−1)(2qT )

ε
2 ‖γq−j‖L2 .

So the series convergences in L1
T (L∞) for large p. The case when p is small (low frequencies)

is nothing but Sobolev embeddings.

The problem we have to solve in this work is to prove this bilinear estimate in the context
of quasilinear wave equation. To do this, we follow the lines of [1] and [2]. As we shall use
geometrical optics technics, we need to deal with smooth functions in time also. This leads
to the following iterative scheme introduced in [2]. Let us define the sequence (u(n))n∈N by
the first term u(0) satisfying{

∂2
t u

(0) −∆u(0) = 0
(u(0), ∂tu

(0))|t=0 = (S0u0, S0u1),

and by the following induction

(Rn)
{
∂2

t u
(n+1) −∆u(n+1) −Gn,T · ∇2u(n+1) = 0

(u(n+1), ∂tu
(n+1))|t=0 = (Sn+1u0, Sn+1u1)

with Gn,T
def= θ(T−1)Gn with Gj,k

n
def= ∆−1Qj,k(∂u(n), ∂u(n)) where θ is a function of D(]−1, 1[)

whose value is 1 near 0. Let us point out that the sequence (u(n))n∈N does depend on T . We
XVII–6



introduce some notations which will be used all along this work. If α is a (small) positive
number, let us define

sα
def=

d

2
+

1
6

+ α and Nα
T (γ) def= T

1
6
+α‖γ‖sα−1.

Let us introduce the assertions we are going to prove by induction.
• If d ≥ 5,

(Pn)


‖∂u(n)‖

L2([0,T ];Ḃ
d
4−

1
2

4,2 )
≤ C0N

α
T (γ)

‖∂u(n)‖T,s−1 ≤ e3‖γ‖s−1 for any s ∈
[
sα − 1,

d

2
+

1
2

]
;

• if d = 4,

(Pn)


‖∂u(n)‖

L2([0,T ];Ḃ
d
6−

1
2

6,2 )
≤ C0N

α
T (γ)

‖∂Gn,T ‖L1([0,T ];L∞) ≤ 2

‖∂u(n)‖T,s−1 ≤ e3‖γ‖s−1 for any s ∈
[3
2

+ α,
d

2
+

1
2

]
·

This paper consists in proving that if ‖γ‖
Ḣ

d
2−1 + Nα

T (γ) is small enough, (P0) is true
and (Pn) implies (Pn+1). The remainder is routine of non linear partial differential equations.

2. Reduction to microlocalized estimates

By microlocalization of the estimates, we mean that we shall prove estimates that are valid
on time intervals whose length depend on the frequency parameter. These techniques have
been introduced in [1] and used in [2] and improved by D. Tataru in [22].

For Λ0 > 0, we shall consider a family of smooth functions G = (GΛ)Λ≥Λ0 defined on IΛ×Rd

such that GΛ is small enough in L∞ norm and for any k ≥ 0, the following quantities

‖G‖0
def= sup

Λ≥Λ0

‖∇GΛ‖L1
IΛ

(L∞) + |IΛ|‖∇2GΛ‖L1
IΛ

(L∞) and (7)

‖G‖k
def= sup

Λ≥Λ0

|IΛ|Λk‖∇k+2GΛ‖L1
IΛ

(L∞) for k ≥ 1. (8)

are finite. Let us denote by PΛ the operator PΛv
def= ∂2

τv −∆v −
∑
j,k

Gj,k
Λ ∂j∂kv.

Theorem 2.1. Let C be a ring of Rd and ε0 a positive real number. Let us assume that ‖G‖0

is small enough. For any positive real number ε ≤ ε0, a constant Cε exists which satisfies
the following properties. Let f1 and f2 two functions in L1

IΛ
(L2) and γ1 and γ2 two functions

of L2; let us assume that all the spectrum of those functions is included in C. Let us assume
that |IΛ| ≤ Λ2−ε. Then if v1,Λ and v2,Λ are solutions of

(EΛ)
{

PΛvj,Λ = fj

∂vj,Λ|τ=0 = γj

we shall have the following properties:

• if d ≥ 5, we have ‖∂vj,Λ‖L2
IΛ

(L4) ≤ C(‖γj‖L2 + ‖fj‖L1
IΛ

(L2)).

• if d = 4, we have ‖∂vj,Λ‖L2
IΛ

(L6) ≤ C(‖γj‖L2 + ‖fj‖L1
IΛ

(L2)).
XVII–7



• if d ≥ 3, then we have, for any h ≤ 1 and any ε > 0,

‖χ(h−1D)(∂v1,Λ∂v2,Λ)‖L1
IΛ

(L∞) ≤ Cεh
d−2−ε log(e+ |IΛ|)

×
(
‖γ1‖L2 + ‖f1‖L1

IΛ
(L2)

)(
‖γ2‖L2 + |f2‖L1

IΛ
(L2)

)
.

If h is small enough, this is Sobolev embedding. Using Bernstein inequality, we can write

‖χ(h−1D)(∂v1,Λ∂v2,Λ)‖L1
IΛ

(L∞) ≤ hd‖∂v1,Λ∂v2,Λ‖L1
IΛ

(L1)

≤ hd|IΛ| ‖∂v1,Λ‖L∞IΛ
(L2)‖∂v2,Λ‖L∞IΛ

(L2)

≤ hd|IΛ|
(
‖γ1‖L2 + ‖f1‖L1

IΛ
(L2)

)(
‖γ2‖L2 + ‖f2‖L1

IΛ
(L2)

)
.

So when hd|IΛ| ≤ hd−2−ε, the above bilinear estimate is proved. From now on, we assume
that |IΛ| ≥ h−2−ε.

3. Approximation of the solution and geometrical optics

3.1. The approximation of the solution. The key point is the use of Hamilton-Jacobi
equation. The following proposition (and its proof) is a small modification of Proposition 6.1
of [1].

Proposition 3.1. Let F be a real valued smooth function on Rd × RN bounded as all its
derivatives such that

F (ζ,G) = ±
(
|ζ|2 +G(ζ, ζ)

) 1
2 for all ζ ∈ C̃.

For any positive real number ε, a positive real number α exists such that, if ‖G‖0 ≤ α, then,
for any Λ ≥ Λ0, for any η, a solution ΦΛ of the equation

(H̃JΛ)
{
∂τΦΛ(τ, y, η) = FΛ(τ, y, ∂yΦΛ(τ, y, η))
ΦΛ(0, y, η) = (y|η) with FΛ(τ, z, ζ) def= F (ζ,GΛ(τ, z)).

exists and is smooth on IΛ×Rd×Rd. Moreover, the family defined by Φ def= (ΦΛ)Λ≥Λ0 satisfies
the following properties: For any couple of integer (k, `), a constant Ck,` (independant of ε)
exists such that

sup
Λ≥Λ0

‖∂y∂ηΦΛ − Id ‖L∞(IΛ×R2d) ≤ εC , (9)

sup
Λ≥Λ0

|IΛ|Λk‖∂`
η∇2+kΦΛ‖L∞(IΛ×R2d) ≤ εCk,` and (10)

sup
Λ≥Λ0

‖∂`+2
η ΦΛ‖L∞(IΛ×R2d) ≤ εC`|IΛ|. (11)

The link between the solution of the Hamilton-Jacobi equation and the hamiltonian flow
is decribed by the two following lemmas.

Lemma 3.1. Let ΦΛ be the solution of the above Hamilton-Jacobi equation (H̃JΛ) and ΨΛ

the Hamiltonian flow of −FΛ(τ, Y ) i.e. the solution of{
dΨΛ

dτ
(τ, y, η) = −HFΛ

(τ,ΨΛ(Y ))
ΨΛ(0, y, η) = (y, η).

Then we have

(∂ηΦΛ)(τ,Ψy
Λ(τ, y, η), η) = y and

(∂yΦΛ)(τ,Ψy
Λ(τ, y, η), η) = Ψη

Λ(τ, y, η).
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Lemma 3.2. A constant C0 exists such that for any couple of positive number (r, h) such
that |IΛ| ≥ h−2 then if

ga(dy2, dη2) def=
dy2

K2
+
dη2

h2
with K = C|IΛ|h

then, we have the following two properties.

• For any couple (Y, Z)and for any τ ∈ IΛ, we have

1
C0

ga(Y − Z) ≤ ga(ΨΛ(τ, Y )−ΨΛ(τ, Z)) ≤ C0 ga(Y − Z). (12)

• For any couple of points (Y0, Zτ ) of T ?Rd such that ga(Zτ ,ΨΛ(τ, Y0))
1
2 ≥ C0r, if we

have (z, η) ∈ Bga(Y0, r) and (y, ζ) ∈ Bga(Zτ , r) then

ga(∇ηΦΛ(τ, y, η)− z,∇yΦΛ(τ, y, η)− ζη) ≥ 1
C0
ga(Zτ ,ΨΛ(τ, Y0)).

Let us state the approximation theorem which tells us that the solution can be represented
by a Fourier integral operator up to arbitrary small error term (i.e. terms which are smaller
than any given power of Λ−1).

Theorem 3.1. Let us assume that ‖G‖0 is small enough and that |IΛ| ≤ Λ2−ε. Then, for
any integer N , two families of functions (σ±Λ ) (with value in R2) on IΛ×R2d and a constant C
exist such that the following properties are satisfied.

• Let (vΛ)Λ≥Λ0 be the family of solutions of (EΛ) with f = 0 and with initial data γ =
(γ0, γ1); if we state

I±Λ (γ) def=
∫

Rd

eiΦ
±
Λ (τ,y,η)σ±Λ (τ, y, η) · γ̂±(η)dη then (13)

‖∇(vΛ − I+
Λ (γ)− I−Λ (γ))‖L∞IΛ

(L2) ≤ CΛ−N‖γ‖L2 . (14)

• We have

‖∂α
τ,y∂

β
η σ

±‖L∞(IΛ×R2d) ≤ Cα,βΛ−|α|.

The proof of this is done in [1] and [2].

3.2. The precised Strichartz estimate. The theorem is the following.

Theorem 3.2. Let C be a ring of Rd and let us assume that G0 is small enough. For any
positive real number ε, a constant Cε exists which satisfies the following properties. Let f
be a function in L1

IΛ
(L2) and γ a function of L2; let us assume that those two functions have

their support included in C and of diameter less than h. Let us assume |IΛ| ≤ Λ2−ε. Then
if vΛ is the solution of

(EΛ)
{

PΛvΛ = f
∂vΛ|τ=0 = γ.

we have

‖vΛ‖L2
IΛ

(L∞) ≤ Ch
d−2
2
(
log(e+ |IΛ|)

) 1
2
(
‖γ‖L2 + ‖f‖L1

IΛ
(L2)

)
.

The proof of this theorem consits in an adaptation of [17] which leads to following dispersive
inequality

‖vΛ(τ, ·)‖L∞ ≤ C
hd−2

t
‖γ‖L1 .

Then the classical TT ? argument concludes the proof of Theorem 3.2.
XVII–9



4. The concept of microlocalized functions

In this section, we present the concept of microlocalized functions introduced by J.-M.
Bony in [5]. This is related to the Weyl-Hörmander calculus (see [10], [7]).

4.1. A simplified version of pseudo-differential calculus. In this paragraph, we shall
consider a positive quadratic form g on T ?Rd such that the symplectic conjugate defined by

gσ(T ) def= sup
W 6=0

[T,W ]
g(W )

2

satisfies the uncertainty principle gσ ≥ g. Here [·, ·] denotes the basic symplectic form on T ?Rd

[(x, ξ), (y, η)] =
d∑

j=1

(
ξjyj − ηjxj

)
.

In all this paper, we are going to be in the case when

g(dx, dξ) =
dx2

K2
+
dξ2

h2
·

In this case, we have gσ = λ2g with λ = Kh. The uncertainty principle means that λ ≥ 1.
We shall mesure the length of derivatives of smooth functions on T ?Rd with respect to this

metric g. More precisely, let us define, for any smooth function ϕ on T ?Rd,

‖ϕ‖j,g
def= sup

k≤j
X∈T ?Rd

sup
(T`)1≤`≤k

g(T`)≤1

|Dkϕ(X)(T1, ·, Tk)|.

Now, to a function ϕ in D(T ?Rd), we associate the operator ϕD defined by

(ϕDu)(x) = (2π)−d

∫
T ?Rd

ei(x−y|ξ)ϕ(y, ξ)u(y)dydξ.

This choice of the quantization process makes the computation of section 5 simpler. If the
function ϕ(x, ξ) is equal to ϕ1(x)ϕ2(ξ), then ϕDu = F−1

(
ϕ2(F(ϕ1u)

)
. Moreover we have

F(ϕDu)(ξ) =
∫

Rd

e−i(y|ξ)ϕ(y, ξ)u(y)dy.

Later on in this paper we shall need to decompose L2 functions whose Fourier transform is
supported in the ring C using these operators ϕD. These two lemmas are proved in [6].

Lemma 4.1. A sequence (Xν)ν∈Z exists such that two sequencies (ϕν)ν∈Z and (ψν)ν∈Z
which satisfy the following properties.

• the support of ϕν is included in a ball Bν
def= Bg(Xν , r),

• A sequence (Cj)j∈N exists (which depends only on r and not in K and h) such that

∀ν ∈ Z , ‖ϕν‖j,g ≤ Cj ,

• the functions ψν are not supported in Bν but confined, i.e. a sequence (CN )N∈N exists
such that

∀ν ∈ Z , ‖ψν‖N,g,X
def= sup

k≤N
X∈T ?Rd

(1 + λ2g(X −Bν))N sup
(T`)1≤`≤k

g(T`)≤1

|Dkψν(X)(T1, ·, Tk)| ≤ CN ,
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• For any function u of L2 whose Fourier transform has a support included in C, we
have ∑

ν∈Z
ϕD

ν ψ
D
ν u =

∑
ν∈Z

ϕD
ν u = u.

Such partitions of unity are ”compatible” with L2 in the following sense.

Lemma 4.2. A constant C exists such that

C−1‖u‖2
L2 ≤

∑
ν

‖ϕD
ν u‖2

L2 ≤ C‖u‖2
L2 and

∑
ν

‖ψD
ν u‖2

L2 ≤ C‖u‖2
L2 .

Lemma 4.3. The operator ϕD maps Lp into Lp for any p ∈ [1,∞]. More precisely, a
constant C and an integer N exists such that

∀X0 ∈ T ?Rd , ‖ϕDa‖Lp ≤ C‖ϕ‖N,g,X0‖a‖Lp .

Now we can define the concept of microlocalized function.

Definition 4.1. Let X0 be a point of T ?Rd and (C0, r) a couple of positive real numbers. A
function u in L2(Rd) is said to be (C0, r)-microlocalized in X0 if a sequence of integer (kN )N∈N
exists such that, for any N , the quantities

MC0,r
X0,N (u) def= sup

g(X−X0)
1
2≥C0r

λ2Ng(X −X0)N sup
ϕ∈D(Bg(X,r))
‖ϕ‖kN ,g≤1

‖ϕDu‖L2

are finite (Bg(X, r) denotes the set of points of T ?Rd such that g(Y −X)
1
2 ≤ r).

A basic example of microlocalized functions is given by the following proposition which is
a corollary of Theorem 2.2.1. of [7].

Proposition 4.1. A sequence of integers (kN )N∈N and a sequence of positive real num-
bers (CN )N∈N exist such that the following properties are satisfied. Let X0 be a point
of T ?Rd, ϕ0 a function in D(Bg(X0, r)) and u a function of L2(Rd). Then the function ϕD

0 u
is (3, r)-microlocalized in X0 and, for any N , we have

M3,r
X0,N,g(u) ≤ CN‖ϕ0‖kN ,g‖u‖L2 .

The concept of uniformly microlocalized families of functions will be a basic tool.

Definition 4.2. Let g
def= (ga)a∈A be a family of metrics, X def= (Xa)a∈A a family of points

of T ?Rd and (C0, r) a pair of positive real numbers. A family of functions U
def= (ua)a∈A

of L2(Rd) is said to be uniformly (C0, r)-microlocalized in X with respect to g if, for any
integer N ,

MC0,r
N,X,g(U) def= sup

a∈A
MC0,r

Xa,N,ga
(ua) <∞.

4.2. A lemma about the product. Using suitable integrations by part, we prove in [3]
the following lemma.

Lemma 4.4. A constant C0 exists such that, for any integer N , a constant CN and an
integer kN exist which satisfy the following properties.

If u1 and u2 are two L2 functions on Rd, if χ is a function of D(Rd) supported in an
euclidian ball of radius r, if ϕ1 and ϕ2 are two functions of D(T ?Rd) respectively supported

in Bg(Y1, r) and in Bg(Y2, r), then if g(Y̌1 − Y2)
1
2 ≥ C0r, for any N , we have∥∥χ(h−1D)(ϕD

1 u1ϕ
D
2 u2)

∥∥
L1 ≤ CN‖ϕ1‖kN ,g‖ϕ2‖kN ,g

(
1 + λ2g(Y̌1 − Y2)

)−N‖u1‖L2‖u2‖L2

where we are defined Y̌
def= (y,−η) if Y = (y, η).
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5. The propagation theorem

Let us prove that microlocalization properties propagates along the flow of PΛ.

Theorem 5.1. A constant C0 exists which satisfies the following property.
Let us consider a point Y0 = (y0, η0) of T ?Rd such that η0 belongs to C, a smooth function φ

supported in Bga(Y0, r) and a function γ of L2. Then I±Λ (φDγ)(τ, ·) is (C0, r)-microlocalized

near Ψ±
Λ(τ, Y0). Moreover, for any integer N , a constant C and an integer k exist (which

depend only on N) such that

MC0,r

Ψ±Λ (τ,Y0),N,ga

(
I±Λ (φDγ)(τ, ·)

)
≤ C ‖φ‖k,ga‖γ‖L2 .

In the following proof of this theorem, we shall drop the exponent ± for sake a simplicity
of the notations. By definition of the microlocalized functions, we have to estimate

J def= F
(
ϕD

Zτ
IΛ(φDγ)(τ, ·)

)
where Zτ is a point of T ?Rd such that ga(Zτ −ΨΛ(τ, Y0))

1
2 ≥ C0r. By definition, we have

J (ζ) =
∫

Rd

K(ζ, z)γ(z)dz with

K(ζ, z) def=
∫

R2d

e−i(y|ζ)+iΦΛ(τ,y,η)−i(z|η)ϕZτ (y, ζ)σΛ(τ, y, η)φ(z, η)dydη.

The proof consists in integrations by parts in the above integral with respect to L defined by

Lf def=
1

1 + |Θ|2

(
f − i|IΛ|−

1
2 Θy∂ηf − i|IΛ|

1
2 Θη∂yf

)
with

Θ def= (Θy,Θη) def=
(
|IΛ|−

1
2
(
(∇ηΦΛ(τ, y, η)− z

)
, |IΛ|

1
2
(
∇yΦΛ(τ, y, η)− ζ

))
.

It is obvious that L
(
e−i(y|ζ)+iΦΛ(τ,y,η)−i(z|η)

)
= e−i(y|ζ)+iΦΛ(τ,y,η)−i(z|η). So as usual, we have

K(ζ, z) =
∫

R2d

e−i(y|ζ)+iΦΛ(τ,y,η)−i(z|η)(tL)N
(
ϕZτ (y, ζ)σΛ(τ, y, η)φ(z, η)

)
dydη

Let us state the following technical lemma.

Lemma 5.1. For any integerN , a family of functions (Lα,N )|α|≤N exists such that Lα,N (Y,Y)
is a smooth function from T ?Rd × (T ?Rd)MN and such that

‖∂β
Y Lα,N (Y, ·)‖L∞((T ?Rd)MN ) ≤ CN,|β|(1 + |Y |2)−

N+|β|
2 . (15)

Moreover, they satisfy

(tL)Nf =
∑
|α|≤N

Lα,N (Θ, (∂βΘ)|β|≤N )∂̃αf

where ∂̃ denotes differentiation of length 1 for the metric g̃a defined by

g̃a(dy2, dη2) def= |IΛ|−1dy2 + |IΛ|dη2 = λga(dy2, dη2).

As the metric g̃a is greater than gΛ
def= Λ−2dx2+dη2, we have thanks to Leibniz formula that

derivatives of g̃a-length 1 of ϕZτ (y, ζ)σΛ(τ, y, η)φ(z, η) are bounded uniformly with respect
to the involved parameters. So using Lemma 5.1, we have

∀N , ∃CN /
∣∣∣(tL)N

(
ϕZτ (y, ζ)σΛ(τ, y, η)φ(z, η)

)∣∣∣≤ CN (1 + |Θ|2)−
N
2 .
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So by definition of Θ and g̃a, we infer that, for any integer N , we have

|K(ζ, z)| ≤ CN

∫
|y−zτ |≤rK
|η−η0|≤rh

(
1 + λga

(
∇ηΦΛ(τ, y, η)− z,∇yΦΛ(τ, y, η)− ζ

))−N
dydη.

Now let us apply Lemma 3.2. Using the fact that ga(Zτ ,ΨΛ(τ, Y0))
1
2 is greater than C0r,

that (z, η) belongs to Bga(Y0, r) and (y, ζ) to Bga(Zτ , r) we infer that

|K(ζ, z)| ≤ CN

(
1 + λga

(
Zτ −ΨΛ(τ, Y0)

))−N(
1 + λga

(
(z, ζ)− (y0,Ψ

η
Λ(τ, Y0)

))−N

×
∫
|y−zτ |≤rK
|η−η0|≤rh

dydη(
1 + λga

(
∇ηΦΛ(τ, y, η)− z,∇yΦΛ(τ, y, η)− ζ

))N
·

Let us state the change of variables

y′ = |I|−
1
2
(
∇ηΦΛ(τ, y, η)− z

)
and η′ = |I|

1
2
(
∇yΦΛ(τ, y, η)− ζ

)
.

As the jacobian of this change of variables is closed to 1, it turns out that

|K(ζ, z)| ≤ CN

(
1 + λga

(
Zτ −ΨΛ(τ, Y0)

))−N(
1 + λga

(
(z, ζ)− (y0,Ψ

η
Λ(τ, Y0)

))−N
.

Immediate integrations imply that

|IΛ|−
d
2

∫
|K(ζ, z)|dz + |IΛ|

d
2

∫
|K(ζ, z)|dζ ≤ CN

(
1 + λga(Zτ −ΨΛ(τ, Y0))

)−N
.

By Schur’s lemma we get that, for any N

‖J ‖L2 ≤ CN

(
1 + λga(Zτ −ΨΛ(τ, Y0))

)−N‖γ‖L2 .

As ga(Zτ − ΨΛ(τ, Y0))
1
2 ≥ C0r, then λga(Zτ − ΨΛ(τ, Y0)) ≥ C0rλga(Zτ − ΨΛ(τ, Y0))

1
2 . So

Theorem 5.1 is proved.

6. The conclusion of the proof

To conclude the proof of theorem 2.1 let us first apply Lemma 4.4 and Theorem 5.1 to
concentrate on real interaction. Because variable coefficents do not respect the localization
in frequency space, we shall need to decompose the interval IΛ. In this section, we shall state

J (τ, y) def= χ(h−1D)
(
IΛ(γ1)(τ, y)IΛ(γ2)(τ, y)

)
.

The equivalent of Identity (5) of the constant coefficient case is the following lemma.

Lemma 6.1. Let J = (τJ , τ+
J ) be a subinterval of IΛ such that

|J | ≤ h|IΛ| and ‖∇GΛ‖L1
J (L∞) ≤ h‖∇GΛ‖L1

IΛ
(L∞).

Then two families (φµ) and (θµ) of confined symbols exists such that, for any integer N ,

∀µ , ‖φµ‖N,ga,ΨΛ(τJ ,Yµ) + ‖θµ‖N,ga,Ψ̌Λ(τJ ,Yµ) ≤ CN

and, for any N , a constant CN exists such that

‖J − J ‖L1
J (L∞) ≤ CNhλ

−N (|IΛ|h2)hd−2‖γ1‖L2‖γ2‖L2 with

J (τ) def=
∑

µ
µ′∈Aµ

χ(h−1D)
(
φD

µ IΛ

(
ϕD

µ ψ
D
µ γ1

)
(τ, ·)× θD

µ IΛ

(
ϕD

µ′ψ
D
µ′γ2

)
(τ, ·)

)
and

Aµ ⊂
{
µ′ / ga(Yµ′ −ΨΛ(τJ , Ψ̌Λ(τJ , Yµ)) ≤ Cr

}
.
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Now we shall decompose the interval IΛ on subintervals J such that the above lemma can
be applied on J . Let us introduce the following function on the interval IΛ

H(τ) def=
(∑

µ

‖IΛ(ϕD
µ ψ

D
µ γ1)(τ, ·)‖2

L∞

) 1
2
(∑

µ

‖IΛ(ϕD
µ ψ

D
µ γ2)(τ, ·)‖2

L∞

) 1
2

.

Using precised Strichartz estimates, we get that

‖IΛ(ϕD
µ ψ

D
µ γj)‖L2

IΛ
(L∞) ≤ C

(
log(e+ |IΛ|)

) 1
2h

d−2
2 ‖ψD

µ γj‖L2 .

So, using Cauchy-Schwartz inequality and Lemma 4.2, we get that∫
IΛ

H(τ)dτ ≤ C
(
log(e+ |IΛ|)

)
hd−2

(∑
µ

‖ψD
µ γ1‖2

L2

) 1
2
(∑

µ

‖ψD
µ γ2‖2

L2

) 1
2

≤ C
(
log(e+ |IΛ|)

)
hd−2‖γ1‖2

L2‖γ2‖2
L2 .

As in section 2, we decompose IΛ in intervals J such that

|J | ≤ h|IΛ| , ‖∇GΛ‖L1
J (L∞) ≤ h‖∇GΛ‖L1

IΛ
(L∞) and

∫
J
H(τ)dτ ≤ h

∫
IΛ

H(τ)dτ.

Let us estimate ‖J ‖L1
J (L∞). Lemma 4.3 implies that

‖J (τ)‖L∞ ≤
∑

µ
µ′∈Aµ

∥∥IΛ

(
ϕD

µ ψ
D
µ γ1

)
(τ, ·)

∥∥
L∞

∥∥IΛ

(
ϕD

µ′ψ
D
µ′γ2

)
(τ, ·)βigr‖L∞ .

Because the number of elements of Aµ is bounded uniformly with respect to µ, by Cauchy-
Schwarz inequality, we infer that ‖J (τ)‖L∞ ≤ H(τ). So by construction of J ,

‖J ‖L1
J (L∞) ≤ Ch

(
log(e+ |IΛ|)

)
hd−2‖γ1‖2

L2‖γ2‖2
L2 .

As in section 2, the number of intervals J is less than Ch−1. As λ = |IΛ|h2, the theorem is
proved if we apply Lemma 6.1 with N large enough.
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de l’École Normale Supérieure, 22, 1989, pages 377–433.
[8] J.-Y. Chemin and C.-J. Xu, Inclusions de Sobolev en calcul de Weyl-Hörmander et systèmes sous-
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