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INTRODUCTION

In this paper, our interest is to prove local solvability for equations of the type

Otu — Au — Z ¢*0;0u = 0

1<j4,k<d
(EC) Agj’k — Qj,k(f)u,au)

(u, 8tu)|t:0 = (uo,u1).
where ;1 are quadratic forms on R*1. In all this work, we shall state, for a function u
on [0,7] x RY,

Vu def (O1u, -+ ,0qu), Ou def (Opu, Oy - -+ ,0qu) and g - vy def Z gj’k(?j@ku.

1<j,k<d

When no confusion is possible, we shall also state v def (Vug,u1). This problem of course is
a model one. The general problem consists in considering equations of the type

OPu — Au — Z ¢*0;00u = Z @j,k(f)gj’k,au)
1<j,k<d 1<j,k<d
Aght = Q; 1 (0u, Ou)
(u, Ou)j—o = (uo,u1).

where ij,k are quadratic form on R%T! and where all the quadratic forms are supposed to be
smooth functions of w. This simply complicates a little the estimates without any relevant
new phenomenon. In the frame work of (EC), it makes sense to work with small data and
this simplifies the proofs.

1

Energy methods allow to prove local wellposedness for initial data (ug, u1) in H SHIxH5 3.
More precisely, we have the following theorem.

Theorem 0.1. If d > 3, let (up,u1) be in H%%: x H2"% such that H'yHH%_I is small
enough. Then, a positive times T exists such that a unique solution u of (EC) exists

in C([0,T7; Hg+%) N c([o, TJ; H%_%). Moreover, a constant C' exists (which of course does
not depend on the initial data) such that T > C||v| >
H
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Let us recall that H® is the usual Sobolev space on R? and that H* is the homogeneous
one and we shall state

def o
19124 [ tePelfe) P
Rd
This is an Hilbert space when s < d/2.

The goal of this paper is to go below the regularity H%2+1/2 for the initial data. Let
us have a look to the scaling properties of equation (EC). If u is a solution of (EC),
then wy (¢, z) def u(At, Az) is also a solution of (EC). The space which is invariant under this
scaling is H %. So the above theorem appears to require 1/2 derivative more than the scaling.
The goal of this work is to try to go as closed as possible to the scaling invariant regularity.

Some results in that direction have been proved by the authors (see [1] and [2]) and also
by D. Tataru (see [22]) for quasilinear wave equations of the following type

Pu— Au—Gu)-V3u = F(u)Q(du,u)
(B) 9V =
(u, Ou) =0 (uo,u1)
where G is a smooth function vanishing at 0 with value in K such that Id +K is a convex

compact subset of the set of positive symmetric matrices. Let us recall this results. Let us
notice that the scaling of the two equations (£) and (EC) is the same.

d 1 1
Theorem 0.2. Ifd > 3, let (ug,u1) be in H® x H*! for s > sq with sq = B + = 6 Then,

a positive time T exists such that a unique solution u exists such that

ou e C([0,T); H*Y) n L3([0,T]; L™).

\)

Moreover, a constant C' exists such that T3 +(554) > C||'y||];£71.

This theorem has been proved with 1/4 instead than 1/6 in [1] and then improved a little
bit in [2] and proved with 1/6 by D. Tataru in [22]. Strichartz estimates for quasilinear
equations are the key point of the proofs. Recently, S. Klainerman and S. Rodnianski have
announced a better index. Their proof is based on very different methods. In this case, the
energy methods give the classical index s > d/2+1 and T' > C H'y||1_{lsff o,

The goal of this work is to do the analogous in the case of Equation (EC'). The result will
be the following.

d 1
Theorem 0.3. If d > 5, let (ug,u1) be in H® x H~! with s > 5 + 6 such that ||v||H%_1

is small enough. Then, a positive times T exists such that a unique solution u of (EC')
1 1

Ld_1 Sd_1
exists such that du € C((0,T]; H*~') N L7(B,, ?) where B/, ? is the Besov space defined in
-1

Definition 1.1. Moreover, for any positive o, we have that Tote > C’aH’y\|H%_%+a.

The case of dimension 4 is a little bit different. The theorem is the following.

1
Theorem 0.4. If d = 4, let (ug,u1) be in H® x H*™! with s > 2 + 6 such that |||z is

small enough. Then, a positive times T exists such that a unique solution u of (EC') exists
such that

L1
Ou e C([0,T]; H* YN L3 (B¢,) and dg € Ly(L™).

Ld_1
where B¢, ? denotes the Besov space defined in Definition 1.1. Moreover, for any positive a,

a constant Cy, exists such that T+ > CalVI 74 5o
HZ 6te
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Remarks

e If we think in term of small data (i.e. of initial data of the type e(ug,u1)), then energy
methods give a life span in e72. The above theorem gives a life span of order e =6+
for any positive a.

e As we shall see, the case when d > 5 can be treated only with Strichartz estimates

.d_1
simply because if Ou belongs to LQT(BZ;"2 ?) then 9g is in LL(L>).
e The case when d = 4 requires bilinear estimates. This fact appears in the statement of
L1
Theorem 0.4 through the following phenomenon: the fact that du is in L%(B&) does
not imply that the time derivative of g belongs to LL(L°®). Of course this condition
is crucial in particular to get the basic energy estimate. But we have been unable to

exibit a Banach space B which contains the solution v and such that if a function a
is in B, then A~ (a?) belongs to L:(L>).

Acknowledgments We want to thank S. Klainerman for introducing us to this problem
and also for fruitful discussions. We thank J.-M. Bony for very important discussions about
the concept of microlocalized functions.

1. METHOD OF THE PROOF

1.1. Some basic facts in Littlewood-Paley theory. Let us begin by recalling the basis
of Littlewood-Paley theory. Let us denote by C the ring of center 0, of small radius 3/4
and of big radius 8/3. Let us choose two non negative radial functions y and ¢ belonging
respectively to D(B(0,4/3)) and D(C) such that

4D p(27%) =Y p(27%) =1, (1)

qeN qEZ
Ip—q| > 2= Supp ¢(279)NSupp »(277-) =9, (2)
q>1=Supp xNSupp @2 %) =70, (3)

and if C = B(0,2/3) +C, then C is a ring and we have
lp—q| > 5= 2°CNn29C = 0. (4)
Notations
h=F1'¢ and h= F iy,
szw@quzzw/mwwa—w@,
Z Apu=x(279D)u = 2qd/7b(2qy)u(:c —y)dy.

p<g—1

We shall often denote Aju by uy. Let us recall the definition of Besov spaces.

Definition 1.1. Let s be a real number, and (p,r) in [1,00]?. Let us state

def
lull 5o = 112 Aqullr)

qeZ114m(Z)

If s < d/p then the closure of the Compactly smooth functions with respect to this norm is a
Banach space and we have that H® = BQ,Q and the norm || - HB§2 is equivalent to || - || -
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Notations We shall also state

def def def
lalls = llallgg,, » I6llzeey = 1Bllzociey » 1612s0m) = bllLogoyey
def
and [|bllz.s = (16l zzo 5,

Here we want to explain the problems we have to solve to prove Theorem 0.4. As in the
case of Equation (F), the basic fact is energy estimates. This implies the control of

T
/0 10g(t, )| e dt.

In the case of Equation (E), it is obtained by Strichartz estimates. This will be the case
here when d > 5 not when d = 4. Let us follow now ideas of S. Klainerman and D. Tataru
(see [17]). If u is the solution of the constant coefficient wave equation, let us estimate

T
/0 |0A (B5u(t, YOgut, )) | o dt.

As O,A™ (8 u(t, ) Opul(t, )) =A"1 (atajuaku(t, )) + A1 (ajuﬁtaku(t, )), we have to control
expression of the type

T
/ ”Ail (8t8ju8ku(t, ))HLoodt
0

When d > 4, we have that ||A~(9,0;ud,u(t,-))| < C||Qu(t,-)||% ;. So we get that

d

B22,1 2732
T

/ |A 0dyudu(t, )) e < TIOul 4
0 b

Then the proof of Theorem 0.1 is routine. If we want to go below this H 5+3 regularity of the
initial data, we shall use Strichartz estimates. Let us introduce Bony’s decomposition which
consists in writing

ab=">" S, 1aA b+qu 1A+ D Agalg b,
q —1<5<1
q
d
2

When d > 4, we have ||8kuq\|L2T(Loc) < 02153+ )||’Yq”L2~ Then it is easy to prove that

a7 (30 84102, )|
q
The symmetric term can be treated exactly along the same lines. The remainder term

Z 92 UgOUg— ])

71<]<1

gy S O

is much more difficult to treat particulary in dimension 4. The reason why is the following.
When d is greater or equal to 5, the Strichartz estimates tells us that

d_ 1,5
10%ug ]l 2.1y < 275755 | o
XVII-4



So thanks to Bernstein inequality, we infer that

|aat (> atun,s0u)| < 027672 3 2% Iz e e

R Ly (L) —1<5<1
<j< Y
92p—No q2p—No
< ¢ Y 2 OPE2 g e e
—1<y<1
q=2p—No

Convolution and Cauchy-Schwarz inequalities implies that | A~ (9%udu) HLIT(LOO) < CH’yH%_l.

The case of dimension 4 is much more delicate. In dimension 4, the Strichartz estimate is
k 414k-1
105 ugll 2. (o) < 91(3=2k=1) |y, || 2.
So the series §%u,0u,—; does not converge in L.(L?) because the only estimate we have is
8 2 .
10Pugdug 13 1) < C25 1gll30 < C2Bdy|1y 7 with S dy=1.
q
To overcome this difficulty, we follow an idea of D. Tataru and S. Klainerman (see [17]).

1.2. Bilinear estimates and precised Strichartz estimates. To explain the basic ideas
of bilinear estimates, let us consider the case of constant coefficient case.

Proposition 1.1. Let u; and uy two solutions of dfuj — Auj = 0 and (Quj);—o = 7;. Then,
ifd> 4,
HaA_lQ(aulaaW)HLlT(Loo) < C&TH’YIH4_1+a”72”g—1+a'

2

The precised Strichartz estimates are described by the following proposition.

Proposition 1.2. Ifd > 3, a constant C' exists such that for any T' and any h < 1, if Supp u;
and Supp F(Ouf(t,-)) are included in a ball of radius h and in the ring C, we have

1
lull 2. (£oey < C (R log(e +T)) 2 ([[u(0) 22 + 10u(0)]| 22 + 1B ullzy (12))-
As usual it is deduced with the TT* argument from the following dispersive inequality.

Lemma 1.1. Let C be a ring of R%. A constant C' exists such that if ug and u; are functions
in LY(R%) such that

Supp (4;) CC and max{d(Supp (uo),(Supp (u1)} < h,
then, for any d between 0 and d — 1, we have

Chi—
lut, lzee < ———(lwollzr + luallz1),
t2

where u denotes the solution of Gfu — Au =0 and 8gu‘t:0 = u;.

This inequality is proved in [17] in the case when d = d — 1. The general case is obtained
by interpolation with the classical Sobolev embedding.

Let us recall that we want to estimate the
HApA_l( 3 Agﬁquﬁauﬂ

—1<5<1
q>p—No

LA.(L)

With scaling, we can assume that ¢ = 1 and let us state h = 2P~9. Let us define (¢, )1<,<n,
a partition of unity of the ring C such that Supp ¢, C B(&,,h). Then, using the fact
XVII-5



that the support of the Fourier transform of the product of two functions is included in the
sum of the support of their Fourier transform, a family of functions (¢,)i1<,<n, exists such
that Supp ¢, C B(—¢&,,2h) and

Nh
x(h~1D)(8%vdv)) ZX h~D) (82, (D)vde,(D)v)). (5)
Applying Proposition 1.2 gives
Nn
IX(h™' D) (@*000))|| s (poey < Ch?log(e +T) Y~ |6 (D)Y ] 21l b (D) 12-
v=1

The Cauchy Schwarz inequality implies that

Nn o 3 Np
Ix (P~ D)(0*000)) |y (1) < Ch?*log(e +T) (Z H%(@WH%) (Z H%(DWH%)
v=1 v=1

=

The almost orthogonality of (au(D)Vl)lgugNh and (¢, (D)y2)1<v<n, implies that
Ix (R~ D)(8%080))|| 1, (1) < Ch21og(e + T) [V L2 [l 2 (6)

So after rescaling, we get that

|87t (3 APun,jou)|| <2 ST dogle+ 21T)22 g 2 g e
-1<i<1 (L% -1<5<1
q>p—Np q>p—No

Ifve H%71%5 then we have

HA”A_1< Z Aqa%Aq—jau)‘ 1 (LOO)S (2PT)~* Z 9—(q-p)(d—4+e)
—1<5<1 T —1<5<1
q=>p—No q=p—No

x 21871 (QIT) 5 | | 22095~ (UT)5 oy o

So the series convergences in LL.(L>) for large p. The case when p is small (low frequencies)
is nothing but Sobolev embeddings.

The problem we have to solve in this work is to prove this bilinear estimate in the context
of quasilinear wave equation. To do this, we follow the lines of [1] and [2]. As we shall use
geometrical optics technics, we need to deal with smooth functions in time also. This leads
to the following iterative scheme introduced in [2]. Let us define the sequence (u(™),en by
the first term «(©) satisfying

{ (U(O)vatu(o))\t:o = (Souo, Sou),

and by the following induction

{ atQu(nJrl) — Ayt Gn,T V2t =

Rn
(Ra) (™), 0u ),y = (Sps1u0, Snru1)

with G € 0(T-1)G,, with G5 % A=1Q; 4 (9ul™, 0ul™) where 6 is a function of D(]—1,1])

whose value is 1 near 0. Let us point out that the sequence (u(”))neN does depend on T'. We
XVII-6



introduce some notations which will be used all along this work. If « is a (small) positive
number, let us define

fd 1 f 1
8ad:e §+6+a and N%(y)d:e Té+0<||7”5a71_
Let us introduce the assertions we are going to prove by induction.
o If d > 5,
|8 | a1 < CoNg(y)
(7) ) LQ([O7T]7B£2 2
" (n) 3 d 17
[ou'™ |51 < €’||y|ls=1 forany se€ [Sa -1, 3 + 5l
o if d =4,
ou™ < (CopN%
10N omdy S CONEE)
(Pn) 10Gn |l orirey < 2 5 o
106 <l forany s [S+a S+ 3]

This paper consists in proving that if H’yHH%fl + N(7) is small enough, (Pp) is true
and (Py,) implies (P,+1). The remainder is routine of non linear partial differential equations.

2. REDUCTION TO MICROLOCALIZED ESTIMATES

By microlocalization of the estimates, we mean that we shall prove estimates that are valid
on time intervals whose length depend on the frequency parameter. These techniques have
been introduced in [1] and used in [2] and improved by D. Tataru in [22].

For Ay > 0, we shall consider a family of smooth functions G = (G )a>a, defined on I x R
such that G, is small enough in L* norm and for any k£ > 0, the following quantities

def

IGlo = sup [IVGallz (zo) + [IalIV?Gallzy (1) and (7)
A>Ag A A

(S)

def
Gk = sup [IA|AFIV2GAll L (poey for k> 1. (8)
AZAO A

are finite. Let us denote by Pj the operator Pyv def 6311 — Av — Z G{{kﬁjakv.
gk
Theorem 2.1. Let C be a ring of R? and g a positive real number. Let us assume that ||G||o

is small enough. For any positive real number ¢ < gg, a constant C. exists which satisfies
the following properties. Let fi1 and fo two functions in L}A (L?) and 71 and 7o two functions

of L?; let us assume that all the spectrum of those functions is included in C. Let us assume
that |In| < A>~¢. Then if vi A and vg A are solutions of

Proja = f;
E s J
( A) { anJ'vA\T:O = 7
we shall have the following properties:
o ifd 5, we have [9uallzz ity < Cllullee + 15ilzy o).

o ifd =4, we have [[Qvjalirz (o) < Cllvsllee + 5l (22)-
XVII-7



e if d > 3, then we have, for any h < 1 and any € > 0,
Hx(h_lD)(avl,Aava)||L}A(Loo) < C-h™2Flog(e + |1a)
x (Inllze + 11l o) (hellze + allzg o).
If h is small enough, this is Sobolev embedding. Using Bernstein inequality, we can write

HX(hilD)(avLAavll\)HL}A(LOO) < hdHavl,AavaHL}A(Ll)

IN

WAL 0v1allLgs (221002l (z2)

Il (1l + 1f1llzy (z2) (vl 2 + 1fallzy (z2)-

IA

So when h?|Iy| < h9=27%_ the above bilinear estimate is proved. From now on, we assume
that |[I5] > h=27¢,

3. APPROXIMATION OF THE SOLUTION AND GEOMETRICAL OPTICS

3.1. The approximation of the solution. The key point is the use of Hamilton-Jacobi
equation. The following proposition (and its proof) is a small modification of Proposition 6.1

of [1].
Proposition 3.1. Let F be a real valued smooth function on R? x RY bounded as all its
derivatives such that
1 ~
F(¢,G) = £([¢* +G(¢,¢)2 forall ¢eC.

For any positive real number ¢, a positive real number « exists such that, if ||G||o < «, then,
for any A > Ag, for any n, a solution ®, of the equation

(ﬁj“{ aéqi?gf%?) _ @ﬁfyg’yﬁy%(w’")) with Fa(r,2,¢) & F(¢,Ga(r, 2)).

exists and is smooth on Iy x R% x R%. Moreover, the family defined by ® def (PA)A>n, satisfies
the following properties: For any couple of integer (k,¢), a constant Cy, ; (independant of ¢)
exists such that

sup ”ayan(I)A —1d HLoo(IAXRQd) < EC, (9)
>Ao

sup |[IA|AF (|0 V2@ || oo 1, xp2ay < €Chye  and (10)
Z 130

IN

sup Haf;—‘rQ@AHLoo(IAXRQd) eCy|In|. (11)
A> Ao

The link between the solution of the Hamilton-Jacobi equation and the hamiltonian flow

is decribed by the two following lemmas.

Lemma 3.1. Let &5 be the solution of the above Hamilton-Jacobi equation (EIT]A) and Uy
the Hamiltonian flow of —F(1,Y’) i.e. the solution of

dv
{ TTA(TJ/W) = _HFA(T, \IJA(Y))
\IIA(O7y7n) = (y;n)
Then we have
(an(bA)(T? \IJ?\(TJ%”)???) =y and
Oy ®n) (T, U (T, y,m),m) = WR(7,y,m).

XVII-8



Lemma 3.2. A constant Cy exists such that for any couple of positive number (r, h) such
that |In| > h™=? then if

d d
galdy?, dn?) i + hi? with K = C|Iz|h
then, we have the following two propert1es.

e For any couple (Y, Z)and for any T € I\, we have
1
?Oga(Y —2Z) < go(UA(T,Y) = UA(1,2)) < CogaY — Z2). (12)

e For any couple of points (Yo, Z;) of T*R? such that go(Z,, V(r, YO))% > Cor, if we
have (z,n) € By, (Yo,7) and (y,() € By, (Z-,r) then

1
ga(vn(pA(T) Y, 77) -z, vy(pA(Tv Y, 7’) - C77) Z goga(ZTﬂ ‘IJA(T7 }/0))

Let us state the approximation theorem which tells us that the solution can be represented
by a Fourier integral operator up to arbitrary small error term (i.e. terms which are smaller
than any given power of A~1).

Theorem 3.1. Let us assume that ||G||o is small enough and that |Ix| < A?>~¢. Then, for
any integer N, two families of functions (o%) (with value in R?) on Iy x R** and a constant C
exist such that the following properties are satisfied.

o Let (vaA)a>na, be the family of solutions of (Ex) with f = 0 and with initial data v =
(7°,41); if we state

def ot (r N
Ti) & [ ROV () Faldy then (13)

IV (oA =X () = Ty (D)o 22 < CA™N |yl 2 (14)

e We have

102,08 0% || oo (7, xr2a) < CopAlol,

The proof of this is done in [1] and [2].

3.2. The precised Strichartz estimate. The theorem is the following.

Theorem 3.2. Let C be a ring of R% and let us assume that Gy is small enough. For any
positive real number €, a constant C. exists which satisfies the following properties. Let f
be a function in L}A (L?) and v a function of L?; let us assume that those two functions have

their support included in C and of diameter less than h. Let us assume |I5| < A*>~¢. Then

if vp is the solution of
Pyoy = f
E
( A){ 8UA|7':0 = 7
we have X
loallzs (ree) < Ch*Z" (log(e + 11al)) 2 (Il 2 + ||f”L}A(L2))'

The proof of this theorem consits in an adaptation of [17] which leads to following dispersive
inequality
hd 2

loa (7, )L < C——|lyl[Lr-

Then the classical TT* argument concludes the proof of Theorem 3.2.
XVII-9



4. THE CONCEPT OF MICROLOCALIZED FUNCTIONS

In this section, we present the concept of microlocalized functions introduced by J.-M.
Bony in [5]. This is related to the Weyl-Hérmander calculus (see [10], [7]).
4.1. A simplified version of pseudo-differential calculus. In this paragraph, we shall

consider a positive quadratic form g on T*R¢ such that the symplectic conjugate defined by

def [T, W]?

o) pby
g7(T) = w0 9(W)
satisfies the uncertainty principle g° > g. Here [-, -] denotes the basic symplectic form on T*R?
d
[(z, Z 5] Yj — ud 2 j
7j=1

In all this paper, we are going to be in the case when

diL' de?
g(dz, d§) = -5 + 55
In this case, we have ¢ = A?¢ with A\ = Kh. The uncertainty principle means that A > 1.
We shall mesure the length of derivatives of smooth functions on T*R? with respect to this

metric g. More precisely, let us define, for any smooth function ¢ on T*R?,

def
leljg = sup  sup  |[DFo(X)(Th,-,Tk)l.
k<j  (Te)i<e<k
XeT*R? g(T)<1

Now, to a function ¢ in D(T*R?), we associate the operator ¢ defined by

(6Pu)(z) = (2m)~° / &0 oy, €)uly)dyde.
T*Rd

This choice of the quantization process makes the computation of section 5 simpler. If the
function ¢(z,€) is equal to ¢y (z)p2(£), then ¢Pu = F 1 (pa(F(p1u)). Moreover we have

FePu)(©) = [ (. ulr)dy

Later on in this paper we shall need to decompose L? functions whose Fourier transform is
supported in the ring C using these operators . These two lemmas are proved in [6].

Lemma 4.1. A sequence (X,),cz exists such that two sequencies (¢, )yez and (¥ )ycz
which satisfy the following properties.

e the support of ¢, is included in a ball B, g (X0, 1),

o A sequence (C});en exists (which depends only on r and not in K and h) such that
VveZ, |levllig < Cy,

e the functions v, are not supported in B, but confined, i.e. a sequence (Cn)nen exists
such that

def
v e Z, |[dullngx = sup (1+Mg(X = B,))Y  sup  [D*9(X)(Th,, Ti)| < Cn,
<

< (Te)r1<e<k
XeT*RE 9(Te)<1

XVII-10



e For any function u of L? whose Fourier transform has a support included in C, we

have
S @Pulu=3 gPu—u.

VvEZ VvEZ
Such partitions of unity are ”compatible” with L? in the following sense.

Lemma 4.2. A constant C exists such that
- D D
CHul <> llelulis < Cllullf and > [Iplull}s < Cllul3s.
14 14

Lemma 4.3. The operator P maps LP into LP for any p € [1,00]. More precisely, a
constant C' and an integer N exists such that
VXo € T'R?, [l¢PallLr < Cllelingxollal Lo
Now we can define the concept of microlocalized function.
Definition 4.1. Let Xy be a point of T*R? and (Cy,r) a couple of positive real numbers. A

function u in L?(RY) is said to be (Cy, r)-microlocalized in Xy if a sequence of integer (kx)nen

exists such that, for any N, the quantities
Co, def
Miin(u) = sup AN g(X = Xo)N (SUI() ) " ull L2
XX 2SO ©€D(By(X,r
90X~ Xo)2=Cor lelliy o<1

are finite (By(X,r) denotes the set of points of T*R? such that g(Y — X)% <r).
A basic example of microlocalized functions is given by the following proposition which is

a corollary of Theorem 2.2.1. of [7].

Proposition 4.1. A sequence of integers (kn)nen and a sequence of positive real num-
bers (Cn)nen exist such that the following properties are satisfied. Let Xy be a point
of T*R%, ¢y a function in D(By(Xo,7)) and u a function of L*>(R%). Then the function ¢fu
is (3, r)-microlocalized in Xy and, for any N, we have

3,
MXZ,Nyg(u) < COnlleolliy gllullze-

The concept of uniformly microlocalized families of functions will be a basic tool.

Definition 4.2. Let g def (ga)aca be a family of metrics, X def (Xa)aca a family of points

of T*R? and (Cy,r) a pair of positive real numbers. A family of functions U def (Ug)aca
of L?(RY) is said to be uniformly (Cy,r)-microlocalized in X with respect to g if, for any
integer N,

Co,r
MN(?X,g<U) =

4.2. A lemma about the product. Using suitable integrations by part, we prove in [3]
the following lemma.

Lemma 4.4. A constant Cy exists such that, for any integer N, a constant Cy and an
integer ky exist which satisfy the following properties.

If uy and uy are two L? functions on RY, if x is a function of D(R?) supported in an
euclidian ball of radius r, if @1 and @y are two functions of D(T*R?) respectively supported

in By(Y1,7) and in By(Ya,r), then if g(Y; — }/2)% > Cyr, for any N, we have
_ - -N
[X(A' D) (ePwrzus) || < Onllonllig gllo2lli.g (1 +Ag(Y1 = Y2)) ™ lua | ol 2

where we are defined V % (y,—n) if Y = (y,n).
XVII-11




5. THE PROPAGATION THEOREM
Let us prove that microlocalization properties propagates along the flow of Pj.

Theorem 5.1. A constant Cy exists which satisfies the following property.

Let us consider a point Yy = (yo,10) of T*R® such that 1y belongs to C, a smooth function ¢
supported in By, (Yy,r) and a function ~ of L?. Then T3 (¢P~)(r,-) is (Co, r)-microlocalized
near \I/X(T, Yy). Moreover, for any integer N, a constant C' and an integer k exist (which
depend only on N) such that

MG vy v ge @R N)()) < C L1l g 22

In the following proof of this theorem, we shall drop the exponent * for sake a simplicity
of the notations. By definition of the microlocalized functions, we have to estimate

T € F (02 Ta(6P) (7, )

where Z, is a point of T*R? such that g,(Z, — WA (T, YO))% > Cyr. By definition, we have

JE) = IR{d/C(C,z)'y(z)alz with

def —q 7 T —i(z
K(¢, 2) < /dee WO +i®a (1,y,m)—i( |n)¢ZT(y7 O oa(r,y,n)d(z, n)dydn.

The proof consists in integrations by parts in the above integral with respect to £ defined by

def 1 S 7oL .
Lf = 1_’_|®|2<f_1|IA‘ nganf_”IAP@ﬂayf) with

def def

6 = (0%,07) (I3 ((Vy®@a(ry,m) = 2), |13 (V,@a(r,5.m) = C) ).

It is obvious that £(e_i(y‘OHq)A(T’y’”)_i(zm) = e WO+ Ay —izn) Q6 ag usual, we have

K(¢, 2) = /R y e~ WIOHIRAym) =i (LN (7 (y, Oaa(T,y,1)B(2, 1)) dydn

Let us state the following technical lemma.

Lemma 5.1. For any integer N, a family of functions (La,N )ja|<n €Xists such that La n(Y,))
is a smooth function from T*R? x (T*R*)~ and such that

N+|8]|

10 Lo (Vo) oo mayiny < Covga (L4 V)72 (15)
Moreover, they satisfy

CONf= Y Lan(0,(0°0)5<n)0" f
la|<N

where & denotes differentiation of length 1 for the metric g, defined by
~ def _
Ja(dy?, dn®) = || ' dy? + |Laldn® = Aga(dy?, dn?).

As the metric g, is greater than gy def A~2dz%+4-dn?, we have thanks to Leibniz formula that
derivatives of gg-length 1 of vz (y,{)oa(T,y,1n)¢(2,n) are bounded uniformly with respect
to the involved parameters. So using Lemma 5.1, we have

(LN (2, (5, Qoalr,y.m)d(z ) |< Cx(1+ [OF)
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So by definition of © and g,, we infer that, for any integer N, we have

’K;(Cv Z)’ S CN/ (1 + )\ga(vnq)A(Tay>n) - Z7vy(I>A(7_>y7n) - C))

|ly—zr|<rK
[n—ngl<rh

N
dydn.

Now let us apply Lemma 3.2. Using the fact that g,(Z-, \I/A(T,}/E)))% is greater than Cyr,
that (z,7) belongs to By, (Yo,7) and (y, () to By, (Z-,r) we infer that

—N —-N
(G 2)] < On (14 Aga(Zr = a7, 30)) ) (14 Agal(2,0) = (w0, WA(7, 7))
8 / —2r|<rK . N’
\ngnz)\_ﬁrh <]- + )\ga (vn(bA(Tv Y, n) -z, qu)A(Tv Y, 77) - <))
Let us state the change of variables
_1 1
y' = I72(Vy@a(r,y,n) —2) and 5" = |I]2(V,@a(r,y,7) — ().
As the jacobian of this change of variables is closed to 1, it turns out that
_N —
(¢ 2)] < On (14 Aga(Zr = Wa(7,30)) ) (14 Agal(2,0) = (w0, Wh(7,70)))
Immediate integrations imply that
d d —
14 [0 e+ 1l [ K216 < Cn {1+ Agu(Z, = Wa(r,¥9)
By Schur’s lemma we get that, for any NV
—N
17022 < Cn (L4 Aga(Zr = UA(7,Y0))) " 1]l 2

As go(Z; — Up(7,Y))2 > Cor, then Aga(Zr — UA(1,Y))) > CorAga(Z, — U (7,Y0))2. So
Theorem 5.1 is proved.

N

N

6. THE CONCLUSION OF THE PROOF

To conclude the proof of theorem 2.1 let us first apply Lemma 4.4 and Theorem 5.1 to
concentrate on real interaction. Because variable coefficents do not respect the localization
in frequency space, we shall need to decompose the interval I,. In this section, we shall state

def —
J(7,9) = x(h' D) (Za(31) (7, )T (32) (7)) -
The equivalent of Identity (5) of the constant coefficient case is the following lemma.
Lemma 6.1. Let J = (TJ,Tj) be a subinterval of Iy such that
7| < Bl and [[VGallg ) < AIVGAlL (1)
A
Then two families (¢,) and (6,,) of confined symbols exists such that, for any integer N,

Vi, ||¢HHN7Qa7‘PA(7—J7Yu) + HH#HN,ga,\i’A(TJyﬁ =Cn

and, for any N, a constant Cp exists such that
1T = Tllpypeey < CNBAN(AIR)R 2 il 22l 2 with
I T3 D) (P Ta (PP ) (7.) % 6T (0huls) (7)) and
y’EMAH
Ay < W) gV — a1y, 0a(75,Y,)) < Cr}.
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Now we shall decompose the interval I, on subintervals J such that the above lemma can
be applied on J. Let us introduce the following function on the interval Zx

1
def 2 2
1O (S 1zaeR ot ol ) (S IR uP el
Iz I
Using precised Strichartz estimates, we get that

142
“IA(WE¢57j)"L§A(LW) < C(log(e + [1a])) 2h = |47 -

So, using Cauchy-Schwartz inequality and Lemma 4.2, we get that

Olog(e + 1) -2 (Z uw,%u%?) : (Z \\wﬁ?fyzr%z) 2
1 1

C(log(e + [Ia)) A" 2 mlI 2217

As in section 2, we decompose I in intervals J such that

H(r)dr

IN

Iy

IA

|J| < h|1p], HVGAHLb(Loo) < h||VGA||L} (L) and /H(T)dT <h [ H(r)dr.
A J Iz

Let us estimate HlHLb(Lm). Lemma 4.3 implies that

1T (e < S NZa(@20P7) (7,) | oo 1T (0200 Br2) (7, ) Bigr oo
I
MIEAH

Because the number of elements of A, is bounded uniformly with respect to u, by Cauchy-
Schwarz inequality, we infer that || J(7)|| e~ < H(7). So by construction of J,

1T 1l 1 () < Ch(log(e + [Ia) R 2|1 2|7

As in section 2, the number of intervals J is less than Ch™1. As A = |I|h?, the theorem is
proved if we apply Lemma 6.1 with N large enough.

REFERENCES

[1] H. Bahouri and J.-Y. Chemin, Equations d’ondes quasilinéaires et inégalités de Strichartz, American
Journal of Mathematics, 121, 1999, pages 1337—-1377.

[2] H. Bahouri and J.-Y. Chemin, Equations d’ondes quasilinéaires et effet dispersif, International Mathe-
matical Research News, 21, 1999, pages 1141-1178.

[3] H. Bahouri and J.-Y. Chemin, Microlocal analysis, bilinear estimates and cubic quasilinear wave equation,
in preparation.

[4] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles
non linéaires, Annales de U’Ecole Normale Supérieure, 14, 1981, pages 209-246.

[5] J.-M. Bony, personnal communication.

[6] J.-M. Bony and J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hoérmander, Bulletin de
la Société Mathématique de France, 122, 1994, pages 77-118.

[7] J.-M. Bony and N. Lerner, Quantification asymptotique et microlocalisation d’ordre supérieur, Annales
de UEcole Normale Supérieure, 22, 1989, pages 377—433.

[8] J.-Y. Chemin and C.-J. Xu, Inclusions de Sobolev en calcul de Weyl-Hormander et systémes sous-
elliptiques, Annales de UEcole Normale Supérieure, 30, 1997, pages 719-751.

[9] J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, Journal of Functional
Analysis, 133, 1995, page 50—68.

[10] L. Hormander, The analysis of linear partial differential equations, Springer Verlag, 1983.
[11] L. Kapitanski, Some generalization of the Strichartz-Brenner inequality, Leningrad Mathematical Journal,
1, 1990, pages 693-721.
XVII-14



[12]
13
[14]
[15]
[16]
17)
18]
[19]
[20]
[21]

22]

S. Klainerman, The null condition and global existence to non linear wave equations, Communications
in Pure and Applied Mathematics, 38, 1985, pages 631-641.

S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem,
Communications in Pure and Applied Mathematics, 46, 1993, pages 1221-1268.

S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications, Duke Mathemat-
ical Journal, 81, 1995, pages 99-133.

S. Klainerman and M. Machedon, On the regularity properties of a model problem relates to wave maps,
Duke Mathematical Journal, 87, 1997, pages 553-589.

S. Klainerman and M. Machedon, Estimates for null forms and the spaces Hy s, International Mathemat-
ical Research News, 15, 1998, pages 756—774.

S. Klainerman and D. Tataru, On the optimal local regularity for the Yang-Mills equations in R**?,
Journal of the American Mathematical Society, 12, 1999, pages 93-116.

H. Lindblad, A sharp couternexample to local existence of low regularity solutions to non linear wave
equations, Duke Mathematical Journal, 72, 1993, pages 503-539.

G. Ponce and T. Sideris, Local regularity of non linear wave equations in three space dimensions, Com-
munications in Partial Differential Equations, 18, 1993, pages 169-177.

H. Smith, A parametrix construction for wave equation with C'' coefficients, Annales de 1’Institut
Fourier, 48, 1998, pages 797-835.

D. Tataru, Local and global results for wave maps I, Communications in Partial Differential Equations,
23, 1998, pages 1781-1793.

D. Tataru, Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients III,
preprint

XVII-15



