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Bohr–Sommerfeld quantization condition for
non-selfadjoint operators in dimension 2.

Joint work with A.Melin

Johannes Sjöstrand

0. Introduction.

We will work on Rn, mainly in the case when n = 2. The Bohr–Sommerfeld
condition is a very efficient tool for finding the eigenvalues of a semi-classical differential
or pseudodifferential operator in dimension 1, mainly in the self-adjoint case. Let us
start by recalling the rough statement of this. See for instance [LaLi], [HeRo], and one
of the exercises in [GrSj].

Let p(x, ξ, z) be a smooth symbol on R2
x,ξ which is bounded together with all

its derivatives and which depends smoothly on z ∈ neigh (0,R) (i.e for z in some
real neighborhood of 0 in R.) Assume that p ≥ Const. > 0 near infinity, and that
p−1(·, 0)(0) is a simple closed curve γ(0) on which dx,ξp is non-vanishing. Let γ(z) =
p−1(·, z)(0) and let

I(z) =
∫

γ(z)

ξdx (0.1)

be the action. Let Pw(z) = pw(x, hDx, z) be the Weyl quantization of p(x, hξ, z) Then
the Bohr–Sommerfeld condition tells us that there exists a real-valued function

θ(z;h) ∼ θ0 + θ1(z)h+ θ2(z)h2 + ..., h→ 0

in C∞0 (neigh (0,Rz)), with (θj smooth in the same neighborhood and) θ0 equal to a
half-integer, such that Pw(z) is non-invertible precisely when

I(z) = (k − θ(z;h))2πh, (BS)

for some integer k. If the z-dependence is non-degenerate in a suitable sense, this gives
a sequence of real “eigenvalues” (solving (BS)), each separated from its right and left
neighbors by a distance which is of the order of h. In this result, the assumptions near
infinity can be generalized, what is important is only that we have ellipticity there.

If we drop the assumption that p be real, but assume instead that p is close to
being real (in a suitable sense) and that p extends to a bounded holomorphic function
in a tubular neighborhood of R2, and depends holomorphically on z ∈ neigh (0,C),
then I(z) can still be defined by integrating along a closed curve in p−1(·, z)(0) close
to the real domain, and becomes a holomorphic function of z. Then we can find a
holomorphic function θ(z;h) with an asymptotic expansion as above, so that (BS)
determines the “eigenvalues” z of Pw(z), i.e. the values for which the operator is not
bijective. See [FuRa] for this type of result, as well as more advanced ones related to
critical points.

In higher dimensions (n > 1), it is still possible to describe the eigenvalues provided
that we assume that p(·; z) is completely integrable and that we have a corresponding
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quantum complete integrability condition. Roughly, we then have that p−1(·, z)(0) is
foliated into an (n−1)-parameter family of Lagrangian (n-dimensional) torii Λz,z2,..,zn
for z2, .., zn ∈ neigh (0,R). Let Ij(z, z2, .., zn), j = 1, 2, .., n, be the actions, i.e. the
integrals of the canonical 1-form ξ · dx along the n fundamental cycles of the torus
Λz,z2,...,zn . Then (under suitable assumptions that we do not recall in detail here),
Pw(z) is non-invertible precisely when there exist z2, ..., zn, such that the following
Bohr–Sommerfeld (Einstein, Keller, Maslov) quantization condition is fulfilled:

Ij(z) = (kj − θj(z, z2, .., zn;h))2πh, (BS)

for some integers kj . Here θj are smooth functions of z, z2, ..., zn with asymptotic
expansions in powers of h as above. See [Vu] and further references given there.

In non-completely integrable situations, it is still possible to describe some part
of the spectrum in some h-dependent set, by means of a BS-condition. This can be
achieved by using Birkhoff normal forms also in the quantized version, sometimes in
combination with the KAM theorem. See Lazutkin [Laz], Colin de Verdière [Co],
Sjöstrand [Sj], Kaidi–Kerdelhué [KaKe], Popov [Po1,2].

In [MeSj], we obtained some rather philosophical results about estimating deter-
minants of h-pseudodifferential operators and the present work started as an attempt
to show that those results are optimal in some more special situations. The attempt
was successful, but what we obtained is probably of independent interest: For a class
of non self-adjoint pseudodifferential operators in dimension 2 with analytic symbols
and with no complete integrability assumption, we have:
1) A complex KAM theorem without exceptional sets caused by small divisors,
2) A BS-condition which gives all eigenvalues in some h-independent open set set in
C.

1. A complex KAM-theorem.
In the remainder of this talk we take n = 2. Let p(x, ξ) be holomorphic and

bounded in a tubular neighborhood of R4
x,ξ. Assume that on R4 we have:

Γ0 := R4 ∩ p−1(0) is connected, |p| ≥ 1
C

for |(x, ξ)| ≥ C, (1.1)

dp, dp are linearly independent at the points of Γ0, (1.2)

|1
i
{p, p}| is sufficiently small on Γ0 (1.3)

Here in (1.3), we adopt the convention that we consider a family of functions p which
fulfill all the other assumptions uniformly. As usual,

{a, b} =
2∑
1

( ∂a
∂ξj

∂b

∂xj
− ∂a

∂xj

∂b

∂ξj

)

denotes the Poisson bracket of the two functions a and b.
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If we strengthen (1.3) to the assumption that the Poisson bracket 1
i {p, p} vanishes

on Γ0, then this set becomes a Lagrangian manifold carrying a complex elliptic vec-
torfield Hp = HRe p + iHIm p. It is a well-known fact that a smooth compact surface
carrying an elliptic (complex) vectorfield must be (diffeomorphic to) a torus, so we
conclude in this case that Γ0 is a Lagrangian torus.

Under the general assumptions above, we can project Hp to Γ0 and still get an
elliptic vectorfield on this surface, so we still have a torus which however will not be
Lagrangian in general.

Theorem 1.1. In a small complex neighborhood of Γ0 = p−1(0) ∩R4, there exists a
smooth torus Γ ⊂ p−1(0) of real dimension 2, close to Γ0 in the C1 sense, with σ|Γ = 0,
such that Ij(Γ) ∈ R for j = 1, 2.

Here σ =
∑2

1 dξj∧dxj denotes the complex symplectic (2,0)-form, and the actions
are defined as in the case of real Lagrangian torii, by integration of the canonical
(1,0)-form ξ · dx along two fundamental cycles. From the proof, we actually get a
family of torii on which σ vanishes, parametrized by one of the actions. The other
action becomes a holomorphic function of the selected one, and there is a unique real
value of the parameter for which both actions are real. The torus in the theorem is
not unique, but the corresponding flow-out, {exp t̂Hp(ρ); t ∈ C, |t| < 1

C }, C À 0,
becomes a complex Lagrangian manifold, and different choices of Γ give rise to the
same Λ near the real domain. Here we treat Hp =

∑(
∂p
∂ξj

∂
∂xj
− ∂p

∂xj
∂
∂ξj

)
as a complex

vectorfield of type (1,0) and if v is a general vectorfield of type (1,0), we let v̂ denote
the corresponding real vectorfield (in the complex domain) which acts the same way
as v as a differential operator on holomorphic functions; v̂ = v + v.

We notice that E. Chirka [Ch] has studied complex foliations under non-compact-
ness assumptions (so that the leafs are open rather than compact as in our case). As
was pointed out to me by D. Bambusi and S. Graffi, the fact that one can sometimes
get less problems with small denominators in the complex domain, has been used by
Bazzani–Turchetti [BaTu] and by Marmi–Yoccoz.

The remainder of this section is an outline of the proof of Theorem 1.1. We say
that a multivalued function on a torus or on a small neighborhood of a torus is grad-
periodic if its gradient is a single-valued function. Let x1, x2 be grad-periodic, real and
analytic on Γ0, with the property that (x1, x2) induces a diffeomorphism: Γ0 → R2/L
for some lattice L. Extend x1, x2 to be real and analytic grad-periodic functions in a
neighborhood of Γ0 with

{x1, x2} = 0.

Then
σ|Γ0

= f(x)dx1 ∧ dx2,

with f small: f = O(ε) (in a suitable space of functions). Since σ is exact, its restriction
to Γ0 is also exact, and it follows that

σ|Γ0
= d(γ1dx1 + γ2dx2), γj = O(ε).
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Let ξj be the single-valued functions defined near Γ0, which solve:

ξj |Γ0
= γj , Hxjξk = −δj,k.

The following result is then quite straight forward to show:

Lemma 1.2. x, ξ form a system of symplectic coordinates.

In these coordinates Γ0 takes the form ξ = γ(x), where we may view γ as an
L-periodic function on R2. We can then write

p(x, ξ) =
2∑
1

aj(x)(ξj − γj(x)) +
∑

j,k

bj,k(x, ξ)(ξj − γj(x))(ξk − γk(x))

︸ ︷︷ ︸
F (x,ξ−γ(x))=O((ξ−γ)2)

.

Look for Γ = Γφ of the form ξ = φ′x(x), where φ is grad-periodic and complex-valued.
Then σ|Γ = 0 and we get the eikonal equation

p(x, φ′(x)) = 0, (1.4)

which can also be written as

Zφ+ F (x, φ′ − γ) + r(x) = 0, (1.5)

where Z =
∑
aj(x) ∂

∂xj
is an elliptic vectorfield, and r = −∑

aj(x)γj(x) = O(ε). Try
φ = ε̃ψ, ε¿ ε̃¿ 1. Then we get

Zψ + ε̃G(x, ψ′ − γ

ε̃
, ε̃) +

r(x)
ε̃

= 0,

where
G(x, ξ, ε̃) =

1
ε̃2
F (x, ε̃ξ)

is bounded in some fixed neighborhood of Γ0, when ε̃ tends to 0.
Since Z is an elliptic vectorfield on a torus, it is well-known that there exist new

(grad-periodic) coordinates x1, x2, so that

Z = A(x)
∂

∂x
,
∂

∂x
=

1
2

(
∂

∂x1
− 1
i

∂

∂x2
),

where A(x) is a non-vanishing function. After division with A we get with new func-
tions G and r:

∂ψ

∂x
+ ε̃G(x, ψ′ − γ

ε̃
, ε̃) +

r

ε̃
= 0. (1.6)
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Look for ψ = ψper +ax+bx = ax+u(x) with ψper periodic, where we let the parameter
a vary in some neighborhood of 0 in C, and try to solve (1.6) by a simple iteration
putting u0 = 0 and solving the linear Cauchy-Riemann equations:

∂uj+1

∂x
+ ε̃G(x, a+ u′j(x)− γ

ε̃
, ε̃)− r

ε̃
= 0, (1.7)

with uj = ψj,per + bjx. Wee can apply standard estimates for Calderon–Zygmund
integral operators and see that this procedure converges for the norm ‖ψ′j,per‖Cm + |bj |,
with m > 0 non-integer. See [BeJoSc]. In this construction it is also easy to understand
how the actions vary with the parameter a, and this allows us to see that there is a
unique a for which both actions are real.

2. The BS-condition.

Now let p(x, ξ, z) be a holomorphic family of p’s as above for z in some neighbor-
hood of zero in the complex plane. Let P (z) = pw(x, hDx, z) be the h-Weyl quantiza-
tion of p(·, z). Then we can choose Γ = Γ(z) associated to p(·, z) as in Theorem 1.1,
depending smoothly on z. The map

z 7→ I(z) = (I1(z), I2(z)) ∈ R2, Ij(z) = Ij(Γ(z)), (2.1)

is therefore smooth and it can be showed that it satisfies a kind of modified d-bar
system. Our main result is

Theorem 2.1. There exists θ0 ∈ ( 1
2Z )2 such that the following holds for z in some

neighborhood Ω of 0 in C and for h > 0 small enough:

1) There exists a function θ(z;h) ∼ θ0 + θ1(z)h+ ... in C∞0 (Ω) such that Pw(z) : L2 →
L2 is non-bijective precisely when

I(z)
2πh

= k − θ(z;h) for some k ∈ Z 2. (2.2)

2) When I is a local diffeomorphism, all eigenvalues (i.e. solutions to (2.2)) are simple
in a suitable sense.

The proof uses the machinery of HΦ-spaces and associated operators (see [Sj2,3]),
and we can here only give some hints about the main ideas.

Using that the actions of Γ(z) are real one first sees that there exists an IR-
manifold Λz ⊂ C4 close to R4 which contains Γ(z). (Recall that an IR-manifold
is a smooth submanifold of C4 of real dimension 4, on which the restriction of σ is
real and non-degenerate.) Using a semi-classical Bargman transform, we can define
a corresponding Hilbert space H(Λz) on which Pw(z) acts with leading symbol p|Λz .
(On the transform side this is a weighted space of entire functions.) Now Γ(z) can be
viewed as a ”real” Lagrangian submanifold of Λ(z), and the spectral problem becomes
microlocalized to a small neighborhood of Γ(z). Here we cannot go into any details
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at all, and we just mention that at one point we get a simple spectral problem on the
torus, namely to determine if the equation

(A(x)
∂

∂x
+ V (x))u = v(x) (2.3)

is solvable say for L-periodic functions, where L is a lattice in C, and A, V are L-
periodic with A is non-vanishing. After division by A and conjugation by a factor of
the form eφ, with φ smooth and periodic, we get the equivalent problem with new
functions u, v:

(
∂

∂x
+ (

∂φ

∂x
+
V

A
))u = v. (2.4)

Here we choose φ such that
∂φ

∂x
+
V

A
= F(

V

A
)(0),

the Fourier coefficient of V/A at 0. Then (2.4) becomes an equation with constant
coefficients, which can be completely analyzed on the level of Fourier series. In this
way one encounters the Bohr–Sommerfeld condition.

3. Saddle point resonances.

Consider the operator

P = −h
2

2
∆ + V (x), x ∈ R2, (3.1)

where V is a real-valued analytic potential, which extends holomorphically to a set
{x ∈ C2; |Imx| < 1

C 〈Rex〉}, with V (x)→ 0, when x→∞ in that set. The resonances
of P can be defined in an angle {z ∈ C; −2θ0 < arg z ≤ 0} for some fixed θ0 > 0 as
the eigenvalues of P|eiθ0Rn . In [HeSj], they were also defined, using an FBI transform.
(See also Lahmar-Benbernou–Martinez [LahMa], for a simplified version of the theory.)

Let E0 > 0. Let p(x, ξ) = ξ2 + V (x). We assume that the union of trapped Hp-
trajectories in p−1(E0) ∩R4 is reduced to a single point (x0, ξ0). Necessarily, ξ0 = 0
and after a translation, we may also assume that x0 = 0. (Recall for instance from
[GeSj] that a trapped trajectory is a maximally extended trajectory which is contained
in a bounded set.) It follows that 0 is a critical point for V and that V (0) = E0.
Assume,

0 is a non-degenerate critical point of V, of signature (1,−1). (3.2)

After a linear change of coordinates in x and a corresponding dual one in ξ, we may
assume that

p(x, ξ)−E0 =
λ1

2
(ξ2

1 + x2
1) +

λ2

2
(ξ2

2 − x2
2) +O((x, ξ)3), (x, ξ)→ 0. (3.3)

Under the assumptions above, but without any restriction on the dimension and
without the assumption on the signature in (3.3), we determined in [Sj4] all resonances
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in a disc D(E0, Ch) for any fixed C > 0, when h > 0 is small enough. Under the same
assumptions plus a diophantine one on the eigenvalues of V ′′(0), Kaidi and Kerdelhué
[KaKe] determined all resonances in a disc D(E0, h

δ) for any fixed δ > 0 and for h > 0
small enough. In the two dimensional case, their diophantine condition follows from
(3.2), and we recall their result in that case.

Theorem 3.1. ([KaKe]). Under the assumptions from (3.1) to (3.2), let λj > 0 be
defined in (3.3). Fix δ > 0. Then for h > 0 small enough, the resonances in D(E0, h

δ)
are all simple and coincide with the values in that disc, given by:

z = f(2πh(k − θ0);h), k ∈ N2, (3.4)

where θ0 ∈ ( 1
2Z)2 is fixed, and f(θ;h) is a smooth function of θ ∈ neigh (0,R2), with

f(θ;h) ∼ f0(θ) + hf1(θ) + h2f2(θ) + .. , h→ 0, (3.5)

in the space of such functions. Further,

f0(θ) =
1

2π
(λ1θ1 − iλ2θ2) +O(θ2).

For ε0, C1 > 0, we consider now the set

hδ ≤ |z| < 1
C1
, −π

2
+ ε0 < arg z < −ε0, (3.6)

Theorem 3.2. The description of the resonances in Theorem 3.1 extends to the set
of z in (3.6), provided that C1 there is sufficiently large as a function of ε0 > 0 and
that h > 0 is small enough.

The proof consists in combining Theorem 2.1, a scaling argument and the theory
of [HeSj].
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