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On the local well-posedness of the KP equations

N. Tzvetkov∗

1 Introduction

Our goal here is to describe some recent results on the Kadomtsev-Petviashvili (KP)
equations obtained in [13], [21].

The KP equations are two dimensional generalizations of the famous Korteweg-de
Vries (KdV) equation. They occur in many physical contexts as “universal” models for
the propagation of weakly nonlinear dispersive long waves which are essentially one-
directional, with weak transverse effects. The soliton structure of the KdV equation
is not broken down by the transverse perturbation and inverse scattering transform
techniques could be applied to the Cauchy problem associated to the KP equations un-
der appropriate decay assumptions on the initial data (cf. [25]). In addition (cf. [26])
there exists an infinite number of quantities which are conserved by the KP evolution.
These conservation laws may be useful to obtain global solutions of the KP equations
once a low regularity local (in time) well-posedness theory of the respective Cauchy
problem is established. Here we will study this issue. The Cauchy problems for the
KP equations read

(ut + uux + uxxx)x ± uyy = 0, u(0, x, y) = φ(x, y), (t, x, y) ∈ R3. (1)

The (+) sign corresponds to the “defocusing” KP-II equation, while the (−) sign
corresponds to the “focusing” KP-I equation. In the context of water waves, the KP-II
equation models long gravity waves with weak surface tension effects while the KP-I
equation arises for capillary gravity waves, in the presence of strong surface tension
effects. We can write (1) as integral equations

u(t, x, y) = U±(t)(φ(x, y))−
∫ t

0

U±(t− t′)[u(t′, x, y)ux(t
′, x, y)]dt′, (2)

where U±(t) = exp(−t(∂3
x ± ∂−1

x ∂2
y)) are the unitary groups defining the free KP evo-

lutions. The operators U±(t) are actually convolution operators

U±(t)(φ(x, y)) = (E±(t) ? φ)(t, x, y),
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where the convolution is with respect to x, y and E±(t) are defined by the oscillatory
integrals

E±(t) = c

∫ ∞

−∞

∫ ∞

−∞
exp

(
ixξ + iyη + it(ξ3 ∓ η2

ξ
)

)
dξdη.

One can prove (cf. [16]) that

|E±(t)|L∞xy
. |t|−1. (3)

Using (3) one derives the following set of Strichartz inequalities for the free KP evolu-
tions

‖U±(t)(φ(x, y))‖Lq
t (Lr

xy) . ‖φ‖L2 ,
1

q
+

1

r
=

1

2
, 2 ≤ r < ∞.

We note that the above inequalities are the same as the Strichartz estimates for the
two dimensional Schrödinger equation. They play an important role in the local well-
posedness analysis for the KP equations. In the periodic case similar estimates are
not available. However in [4] some versions of the Strichartz inequalities localized in
the frequency spaces are used in the context of the KP-II equation posed on the two
dimensional torus T2.

In order to motivate the choice of the functional space for the initial data in (1), we dis-
cuss some scale invariance properties of the KP equations. Note that if u(t, x, y) solves
(1) with initial data φ(x, y) then (1) is also solved by uλ(t, x, y) := λ2u(λ3t, λx, λ2y)
with initial data φλ(x, y) = λ2φ(λx, λ2y). In addition we have that for (s1, s2) ∈ R2

‖uλ(t, ·, ·)‖Ḣs1,s2 (R2) = λs1+2s2+1/2‖u(λ3t, ·, ·)‖Ḣs1,s2 (R2),

where Ḣs1,s2(R2) are homogeneous anisotropic Sobolev spaces equipped with the norm

‖φ‖Ḣs1,s2 (R2) = ‖(−∂2
x)

s1/2(−∂2
y)

s2/2φ‖L2
x,y

.

Therefore a natural set for the initial data of the KP equations are the anisotropic
Sobolev spaces Hs1,s2(R2) equipped with the norm

‖φ‖Hs1,s2 (R2) = ‖(1− ∂2
x)

s1/2(1− ∂2
y)

s2/2φ‖L2
x,y

.

This talk is devoted to the following question :

For which (s1, s2) ∈ R2 can one solve (2) in a suitable functional space via the contrac-
tion mapping principle for data φ ∈ Hs1,s2(R2) ?

The answer to the above question is satisfactory enough in the KP-II context, while for
the KP-I equation we have only negative results. Define the bilinear forms B±(u, v) as

B±(u, v) :=
1

2

∫ t

0

U±(t− t′)∂x[u(t′, x, y)v(t′, x, y)]dt′.
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Boundedness of the bilinear forms in some functional framework are an essential in-
gredient of the proof of local well-posedness results for (1) via a Picard fixed point
argument. Now we state our result concerning the KP-II equation.

Theorem 1 (The KP-II case, cf. [4, 21])
Fix s1 > −1/3, s2 ≥ 0 and a positive real number T . Then there exists a space XT

continuously embedded in C([−T, T ], Hs1,s2(R2)) such that

‖U+(t)(φ(x, y))‖XT
. ‖φ‖Hs1,s2 (R2), φ ∈ Hs1,s2(R2) (4)

and

‖B+(u, v)‖XT
. ‖u‖XT

‖v‖XT
, u, v ∈ XT . (5)

We note that the implicit constants in (4), (5) may depend on T . In addition by
‖U+(t)(φ(x, y))‖XT

we mean the XT norm of the restriction of the free evolution
U+(t)(φ(x, y)) to [−T, T ]× R2.

Theorem 1 was first proved by Bourgain [4] for s1 ≥ 0 and s2 ≥ 0 (in [4] the same
result is established in the periodic setting). The result of [4] was further improved in
[21]. The proof performed in [21] is typical for the continuous case (problem posed on
R2). In particular it uses the Strichartz inequalities and some “simple calculus argu-
ments” due to Kenig, Ponce, Vega, first introduced in the KdV context (cf. [10]). A
consequence of Theorem 1 is the following local well-posedness result.

Theorem 2 (cf. [21]) Let s1 > −1/3 and s2 ≥ 0. Then for any φ ∈ Hs1,s2(R2), there
exist a positive T = T (‖φ‖Hs1,s2 )( limρ→0 T (ρ) = ∞) and a unique solution u(t, x, y) of
the KP-II equation with initial data φ on the time interval [−T, T ] satisfying u ∈ XT .

We note that, due to the L2 conservation law, in the case s1 = s2 = 0 Theorem 2
implies the global well-posedness of the KP-II equation for data in L2(R2). Further
improvements of this result are possible. More precisely in [8], [20], [24] global well-
posedness of the KP-II equation with data below L2(R2) are obtained. The method
of the proof, due to Bourgain (cf. [6]), is based on a decomposition of the initial data
into low and high Fourier modes and the studying the high-low frequency interactions.
We will not further discuss this issue here.

We now state our result concerning the KP-I equation.

Theorem 3 (The KP-I case, cf. [13])
Fix (s1, s2) ∈ R2 and a positive real number T . Then there exists no space XT contin-
uously embedded in C([−T, T ], Hs1,s2(R2)) such that

‖U−(t)(φ(x, y))‖XT
. ‖φ‖Hs1,s2 (R2), φ ∈ Hs1,s2(R2) (6)
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and

‖B−(u, v)‖XT
. ‖u‖XT

‖v‖XT
, u, v ∈ XT . (7)

It is shown in [17] that the KP-I equation is locally ill-posed for data in Hs,0(R2),
s < −1/2 (the scaling exponent). The proof uses the existence of solitary wave solutions

uc(t, x, y) =
8c(1− c

3
(x− ct)2 + c2

3
y2)

(1 + c
3
(x− ct)2 + c2

3
y2)2

of the KP-I equation. The special form of uc(t, x, y) is needed in the proof as well as the
scaling properties if uc(t, x, y) and its decay at infinity. As far as we know the idea of
using the solitary wave solution to prove local ill-posedness results was first employed
in [1, 2]. In general it gives ill-posedness below the scaling exponent. In a recent work
of Kenig, Ponce, Vega (cf. [11]) it is shown that some additional symmetry (Galilean
invariance) can be used in order to obtain ill-posedness results above the scaling expo-
nent for several dispersive models such as the cubic 1D nonlinear Scrödinger equation.

Notations. We denote by ·̂ or F the Fourier transform. For any positive A and
B the notation A . B (resp. A & B) means that there exists a positive constant c
such that A ≤ cB (resp. A ≥ cB). The notation A ∼ B means that A . B . A. The
notation a± means a± ε for arbitrary small ε > 0.

2 On the proof of Theorem 1

The proof of Theorem 1 is based on the Fourier transform restriction method intro-
duced by Bourgain in [3]. Fix s1 > −1/3, s2 ≥ 0. This method has a special advantage
for the quadratic nonlinearities and has been first applied to the nonlinear Schrödinger
equation and to the KdV equation. An essential element of the method is the intro-
duction of Fourier transform restriction spaces strongly related to the symbol of the
respective equation. We now describe these spaces in the context of the KP-II equation.
For b ∈ R, we define the space Xb(R3), equipped with the norm

‖u‖Xb = ‖〈τ − ξ3 + ξ−1η2〉b〈ξ〉s1〈η〉s2(1 + 〈ξ〉−
1
3 〈τ − ξ3 + ξ−1η2〉

1
6
+)û(τ, ξ, η)‖L2

τξη

We note there is an extra factor (1 + 〈ξ〉− 1
3 〈τ − ξ3 + ξ−1η2〉 1

6
+) in the definition of the

space Xb comparing to the corresponding spaces in the KdV case. This factor is typical
in the KP context in order to obtain the needed integrability with respect to η, the
Fourier dual variable of y, in the integral representation of the crucial bilinear estimate
(cf. (ii) below). It is also used in order to deal with the small frequency interactions.
Further for a positive T we define the space Xb

T equipped with the norm

‖u‖Xb
T

= inf
w∈Xb

{
‖w‖Xb , w(t, x, y) = u(t, x, y) on [−T, T ]× R2

}
.

XV–4



The space Xb
T should be understood as a restriction space.

A one dimensional Sobolev embedding yields that for b > 1/2 the space Xb
T is contin-

uously embedded in C([−T, T ], Hs1,s2(R2)). Since

‖u‖Xb = ‖〈τ〉b〈ξ〉s1〈η〉s2(1 + 〈ξ〉−
1
3 〈τ〉

1
6
+)F(U+(−·)(u))(τ, ξ, η)‖L2

τξη

one can easily obtain that

‖U+(t)(φ(x, y))‖Xb
T

. ‖φ‖Hs1,s2 (R2), φ ∈ Hs1,s2(R2).

In order to prove the bound for B+(u, v), we write B+(u, v) = (B1oB2)(u, v), where
B2(u, v) = ∂x(uv) and B1(F ) = 1

2

∫ t

0
U+(t− t′)F (t′)dt′. The proof of Theorem 1 results

from the next two statements:

(i) For b = 1
2
+ the linear operator B1 is continuous from Xb−1

T to Xb
T .

(ii) For b = 1
2
+ the bilinear operator B2 is continuous from Xb

T ×Xb
T to Xb−1

T .

We note that (i) describes quite a general property which does not depend on the
particular structure of U+(t). The analysis is one dimensional. If one replace U+(t)
by the identity operator (no dispersion) then (i) becomes a trivial statement : an in-
tegration gains a derivative. On the other hand to prove (ii) one needs to use heavily
the special dispersive relation and nonlinearity of the KP-II equation. An important
role is played by a smoothing relation for the symbol of the linearized KP-II operator.
This relation is needed to compensate the loss of a derivative in the nonlinear term (cf.
[4]). The corresponding arithmetic relation in the KP-I context is an essential ingre-
dient in the constructions involved in the proof of Theorem 3 (cf. the next section).
After duality and polarization arguments (ii) can be seen as a weighted convolution
multilinear estimate1. One uses the asymmetric structure of this estimate, arguments
due to Kenig, Ponce, Vega and the Strichartz estimates injected into the framework of
the Fourier transform restriction spaces Xb. An interpolation argument is needed in
order to deal with the small frequencies interactions. We refer to [21] for the details of
the proof. In [21] we also discuss the sharpness of the couple (s1, s2) = (−1/3, 0) with
respect to the boundedness of the bilinear form B2.

In [9], Kenig, Ponce, Vega have developed a method for studying the local well-
posedness of the generalized KdV equation based on some estimates on the unitary
group describing the free KdV evolution. This method differs from the Fourier trans-
form restriction method of Bourgain in the choice of the functional space where one
applies a fixed point argument (the space XT ). The choice of the spaces in [9] is made

1We refer to the recent paper [22] for a systematic study of such estimates related to the KdV,
Schrödinger and wave equations.
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according to the following three type of estimates : energy estimates, sharp version
of Kato smoothing effect, maximal function inequalities. The method of [9] does not
make a special advantage of the quadratic nonlinearities. Since the KP equations are
generalizations of the KdV equation one may try to adapt some of the arguments of
[9] in a KP context.

3 On the proof of Theorem 3

Suppose that a space XT such that (6) and (7) hold exists. Take u = v = U−(·)φ in
(7). Then using (6) one obtains

‖B−(U−(·)φ, U−(·)φ)‖XT
. ‖φ‖2

Hs1,s2 (R2), φ ∈ Hs1,s2(R2).

Since XT is supposed continuously embedded in C([−T, T ], Hs1,s2(R2)) one has for a
fixed t > 0∥∥∥∥∫ t

0

U−(t− t′)
[
(U−(t′)φ(x, y))(U−(t′)φ(x, y))x

]
dt′

∥∥∥∥
Hs1,s2 (R2)

. ‖φ‖2
Hs1,s2 (R2). (8)

The goal is to show that (8) fails. Define φα,N by its Fourier transform as

φ̂α,N(ξ, η) = α−
3
2 1lD1(ξ, η) + α−

3
2 N−s1−2s21lD2(ξ, η).

Here the positive parameters N and α are such that N � 1, α � 1 and D1, D2 are
the rectangles in R2

ξ,η:

D1 = [α/2, α]× [−6α2, 6α2], D2 = [N, N + α]× [
√

3N2,
√

3N2 + α2].

We note that ‖φα,N‖Hs1,s2 . 1. In order to compute the left hand-side of (8) we need
the following lemma.

Lemma 1 (cf. [13]) The following identity holds∫ t

0

U−(t− t′)F (t′, x, y)dt′ = c

∫
R3

eixξ+iyη+it(ξ3+ η2

ξ
) e

it(τ−ξ3− η2

ξ
) − 1

τ − ξ3 − η2

ξ

F̂ (τ, ξ, η)dτdξdη

whenever both terms are well defined.

Set

χ(ξ, ξ1, η, η1) := 3ξξ1(ξ − ξ1)−
(ηξ1 − η1ξ)

2

ξξ1(ξ − ξ1)
.

We note that

χ(ξ, ξ1, η, η1) = (τ1 − ξ3
1 −

η2
1

ξ1

) + (τ − τ1 − (ξ − ξ1)
3 − (η − η1)

2

ξ − ξ1

)− (τ − ξ3 − η2

ξ
).
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Therefore, taking into account Lemma 1, one obtains that χ(ξ, ξ1, η, η1) appears as a
phase function in the representation of the second KP-I iteration, with data φα,N . In
this context the large set of zeros of χ(ξ, ξ1, η, η1) is crucial for our analysis. We remark
that the function corresponding to χ(ξ, ξ1, η, η1) in the KP-II context is zero only for
zero ξ frequencies. Using Lemma 1 we can write the expression∫ t

0

U−(t− t′)
[
(U−(t′)φα,N(x, y))(U−(t′)φα,N(x, y))x

]
dt′

as
c(f1(t, x, y) + f2(t, x, y) + f3(t, x, y)),

where f1, f2, f3 are defined by their Fourier transforms with respect to (x, y)

F(x,y) 7→(ξ,η)(f1)(t, ξ, η) =
c ξeit(ξ3+ η2

ξ
)

α3

∫
(ξ1,η1)∈D1

(ξ−ξ1,η−η1)∈D1

e−itχ(ξ,ξ1,η,η1) − 1

χ(ξ, ξ1, η, η1)
dξ1dη1

F(x,y) 7→(ξ,η)(f2)(t, ξ, η) =
c ξeit(ξ3+ η2

ξ
)

α3N2(s1+2s2)

∫
(ξ1,η1)∈D2

(ξ−ξ1,η−η1)∈D2

e−itχ(ξ,ξ1,η,η1) − 1

χ(ξ, ξ1, η, η1)
dξ1dη1

F(x,y) 7→(ξ,η)(f3)(t, ξ, η) =
c ξeit(ξ3+ η2

ξ
)

α3N s1+2s2

∫
(ξ1,η1)∈D1

(ξ−ξ1,η−η1)∈D2

e−itχ(ξ,ξ1,η,η1) − 1

χ(ξ, ξ1, η, η1)
dξ1dη1

+
c ξeit(ξ3+ η2

ξ
)

α3N s1+2s2

∫
(ξ1,η1)∈D2

(ξ−ξ1,η−η1)∈D1

e−itχ(ξ,ξ1,η,η1) − 1

χ(ξ, ξ1, η, η1)
dξ1dη1

It is easy to see that the supports of F(x,y) 7→(ξ,η)(f1)(t, ξ, η), F(x,y) 7→(ξ,η)(f2)(t, ξ, η),
F(x,y) 7→(ξ,η)(f3)(t, ξ, η) are disjoint. Therefore

‖u2(t, ·, ·)‖Hs1,s2 (R2) ≥ ‖f3(t, ·, ·)‖Hs1,s2 (R2).

The essential part of the proof is to minorize ‖f3(t, ·, ·)‖Hs1,s2 (R2). For that purpose we
use the next lemma.

Lemma 2 (cf. [13]) Let

(ξ1, η1) ∈ D1, (ξ − ξ1, η − η1) ∈ D2

or
(ξ1, η1) ∈ D2, (ξ − ξ1, η − η1) ∈ D1

Then
|χ(ξ, ξ1, η, η1)| . α2N.
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Choose now α and N so that α2N = N−ε, where 0 < ε � 1. Then using Lemma 2 we
obtain ∣∣∣∣e−itχ(ξ,ξ1,η,η1) − 1

χ(ξ, ξ1, η, η1)

∣∣∣∣ = |t|+ O(N−ε)

for (ξ1, η1) ∈ D1, (ξ − ξ1, η − η1) ∈ D2 or (ξ1, η1) ∈ D2, (ξ − ξ1, η − η1) ∈ D1. Hence

‖f3(t, ·, ·)‖Hs1,s2 (R2) & α
3
2 N ∼ N

1
4
− 3ε

4 .

Therefore

1 & ‖φα,N‖2
Hs1,s2 (R2) & ‖u2(t, ·, ·)‖Hs1,s2 (R2) ≥ ‖f3(t, ·, ·)‖Hs1,s2 (R2) & α

3
2 N ∼ N

1
4
− 3ε

4

Contradiction for N � 1, 0 < ε � 1.

4 Related results

In [13] the local well-posedness of the KP-I equation via compactness arguments for
data in Hs1,s2(R2), s1 > 3/2, s2 > 1/2 is obtained. The proof does not make use of the
dispersive nature of the equation. In particular it works in the absence of dispersion
operator. However, it seems possible to extend the compactness argument by involving
some dispersive estimates such as the Strichartz inequalities. The main point is to low
as much as possible (s1, s2) in an estimate∫ t

0

‖ux(t
′)‖L∞xy

dt′ ≤ C(‖φ‖Hs1,s2 )

for a smooth solution of the KP-I equation.

The construction used in the proof of Theorem 3 implies some properties of the flow
map data-solution for the KP-I equation with initial data in Hs1,s2(R2). More precisely
the flow map fails to be of class C2 from Hs1,s2(R2) to Hs1,s2(R2) (cf. [13] Theorem
5.1)2. We note that, in general, an iterative method applied to the integral formulation
of a nonlinear PDE with smooth nonlinearity provides the smoothness of the map data
solution.

The failure of C2 regularity of the flow map in the KP-I context implies the failure of
the “natural” bilinear estimates in Bourgain spaces associated to the KP-I equation.
Suppose that such estimates hold. Then the linear estimates (cf. [7]) would imply the
local well-posedness of the KP-I equation via an iterative method in Bourgain spaces.
This would imply in particular smoothness of the flow map which is a contradiction.

2In [5], [23] similar questions in the context of the KdV equation are considered.
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In [13] counterexamples covering all possible parameters involved in the definition of
Bourgain spaces associated to the KP-I equation are performed. The corresponding
examples in the periodic setting are constructed in [19].

The idea of the proof of Theorem 3 can be employed in some other contexts. For
instance, in [15] a semilinear heat equation is considered. It is proved that the flow
map fails to be C2 above the scaling Sobolev exponent. This seems to be the first
known semilinear parabolic equation with such a property. Moreover the failure of C2

regularity of the flow map of the Benjamin-Ono and related equations in 1D is estab-
lished in [14].

A totally different approach to solve globally the KP equations is described in [25].
It is based on a generalization of Poincaré perturbation theory for finite dimensional
Hamiltonian systems to infinitely many degrees of freedom. It applies to the case of
periodic boundary conditions. In the KP-II context there exists a canonical transfor-
mation writing the KP-II equation into a Normal form. As a consequence the KP-II
equation is solvable for smooth initial data which is small in L2(T2). In addition asymp-
totic states exist, they are solutions of the free problem and coincide at +∞ and −∞.
In the KP-I case a similar canonical transformation does not exist because of small
denominators problems. It is interesting to mention that the small denominators are
related to the zeroes of the function χ(ξ, ξ1, η, η1) occurring in the proof of Theorem 3.

We finally note that an iterative method applied to a KP-I type equation can how-
ever be successful. This is for example the case of the fifth order KP-I equation (cf.
[18]) or a dissipative KP-I equation (cf. [12]). In both cases one can develop the local
well-posedness theory for rough data and in particular to obtain global finite energy
solutions.
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(1996), 163-187.

[8] P. Isaza, J. Mejia, Problemas de Cauchy local y global para la ecuacion de
Kadomtsev-Petviashvili (KP-II) en espacios de Sobolev con indices negativos,
Preprint.

[9] C. E. Kenig, G. Ponce, L. Vega, Well-posedness and scattering results for the
generalized KdV equations via the contraction principle, Comm. Pure Appl. Math.
46 (1993), 527-620.

[10] C. E. Kenig, G. Ponce, L. Vega, A bilinear estimate with applications to the KdV
equations, J. AMS, 9 (1996), 573-603.

[11] C. E. Kenig, G. Ponce, L. Vega, On the ill-posedness of some canonical dispersive
equations, Preprint 2000.

[12] L. Molinet, F. Ribaud, The global Cauchy problem in Bourgain’s type spaces for a
dissipative semilinear equation, Preprint 2000.

[13] L. Molinet, J.C. Saut, N. Tzvetkov, Well-posedness and ill-posedness for the
Kadomtsev-Petviashvili-I equation, Preprint 2001.

[14] L. Molinet, J.C. Saut, N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and
related equations, Preprint 2001.

[15] F. Ribaud, A. Youssfi, Well-posedness and ill-posedness for a semilinear heat equa-
tion, Preprint 2001.

[16] J. C. Saut, Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana
Univ. Math. J., 42 (1993), 1017-1029.

[17] J.C. Saut, N. Tzvetkov, The Cauchy problem for higher order KP equations, J.
Diff. Eq. 153 (1999), 196-222.

XV–10



[18] J.C. Saut, N. Tzvetkov, The Cauchy problem for the fifth order KP equations, J.
Math. Pures Appl. 79 (2000), 307-338.

[19] J. C. Saut, N. Tzvetkov, On periodic KP-I type equations , Preprint 2000.

[20] H. Takaoka, Global well-posedness for the Kadomtsev-Petviashvili II equation, Dis-
crete Contin. Dynam. Systems, 6 (2000), 483–499.

[21] H. Takaoka, N. Tzvetkov, On the local regularity of Kadomtsev-Petviashvili-II
equation, IMRN 8 (2001), 77-114.

[22] T. Tao, Multilinear weighted convolution of L2 functions, and applications to non-
linear dispersive equations, Amer. J. Math. (to appear).

[23] N. Tzvetkov, Remark on the local ill-posedness for KdV equation, C. R. Acad. Sci.
Paris, 329 (1999), 1043-1047.

[24] N. Tzvetkov, Global low regularity solutions for Kadomtsev-Petviashvili equation,
Diff. Int. Eq. 13 (2000), 1289-1320.

[25] V. Zakharov, Weakly nonlinear waves on the surface of an ideal finite depth fluid,
Amer. Math. Soc. Transl. 182 (1998), 167-197.

[26] V. Zakharov, E. Schulman, Degenerative dispersion laws, motion invariants and
kinetic equations, Physica 1D (1980), 192-202.

XV–11


