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A Commuting Vectorfields Approach to Strichartz type
Inequalities and Applications to Quasilinear Wave Equations

S. Klainerman

June 16, 2000

A large body of knowledge about wave equations can be traced down to two fundamental facts
concerning the standard linear wave equations in Minkowski space-time R"*!,

O ¢ =m"8,d,6 =0

with m,, = diag(—1,1,...,1) the standard Minkowski metric.
The first is the well known energy identity,

E[¢](t) = E[¢](0) (0.1)

where,
B0)t) = [, (1060.2) + 06(t. 00 + -+ 10,00t ) )da:
Therefore, for 0¢ = (01, M@, - .., 0nd),

106 ()] z2 < [104(0)]|z2 (0.2)

The second, which I will refer to as the basic dispersive inequality, has the form,

()| < et TV T 0(0)] (0.3)

In fact 0.3 is not quite right, the correct estimate holds if we replace the L* norm on the left by

the BMO-norm, or, the L' norm on the right by the Hardy norm #!. The inequality 0.3 is true

however, as it stands, if the Fourier transform of the data ¢(0) = f, 9;¢(0) = g have their Fourier
transform supported in a dyadic shell § < |¢| < 2 for some fixed X € 2N.

Interpolating between these two basic facts one derives the so called Strichartz-Brenner result,

16(O)lr < et NV (0)]] 1
with y(r) = (n—=1)(3 = 2) , 1+ L =1, 7 > 2 and scaling condition 2 = —y(r) — o — 1 + %. This

leads, by a standard 77* argument, Hardy -Littlewood-Sobolev inequalities and an application of

the Littlewood-Paley theory, to the generalized Strichartz inequality,



[llzez; < cl|08(0)] ke (0.4)

2
. <7(r),q>2, (g,7,m) # (00,1,3)
1 2 1

— i _%_1_2

g n(2 7") q

The latter plays a crucial role in many recent advances of the theory of nonlinear wave equa-
tions. Observe that the steps involved in deriving 0.4, at fixed frequency, from the energy identity
and dispersive inequality are quite soft, they can be traced back to the Duhamel’s principle and
uniqueness of the initial value problem!. Both apply to general linear wave equations with variable
coefficients? and require very little regularity of the coefficients. Thus the main building blocks of
the Strichartz type inequalities are 0.1 and 0.3.

The identity 0.1, and the corresponding L? estimate, can easily be derived from the Fourier
representation of solutions. The beauty and power of the identity, however, is that it can be derived
directly , in physical space, by a simple integration by parts argument. Thus energy type estimates
are extremely versatile, they can be applied to large classes of linear and nonlinear equations.
On the other hand the classic derivation of the dispersive inequality is based on the method of
stationary phase applied to the specific representation of solutions as Fourier integral operators. In
more complicated situations the Fourier representation of solutions, or rather approximate solutions,
may be quite difficult to derive and not very natural. The main goal of this paper is to outline a
method of proof which avoids an explicit representation of solutions, see [K14] for details.

The dispersive inequality provides two types of information:

1. The precise decay rate of ||¢(t)||z~ as t — oo.
2. Improved regularity properties of ||¢(t)||ze for ¢ > 0.

It is well known that as far as the asymptotic behavior is concerned 0.3 is not very useful in
applications to nonlinear wave equations. A more effective procedure to derive the asymptotic
properties of solutions of the wave equation is based on generalized energy estimates, obtained by
the commuting vectorfields method, together with global Sobolev inequalities. We shall make here a
quick review of this procedure. As far as improved regularity is concerned the estimate 0.3 gains, for
¢t > 0, 251 derivatives when compared to the Sobolev embedding L*(R") C W'"(R"). It thus may
seem that the methods discussed here, based on Sobolev estimates, are not relevant to questions
concerning regularity. The main observation discussed below is that the decay estimates based on
commuting vectorfields do actually imply, after a suitable localization in phase space®, the dispersive
inequality 0.3.We present a different, direct, approach to the derivation of 0.3 based only on energy
estimates, commuting vectorfields, generalized energy estimates and an appropriate localization. In

1See Theorem 1.2. for a straightforward derivation of 0.4 from 0.1 and 0.3

2The uniqueness of the I.V.P. is also a consequence of the basic energy inequality

3The localization method, which is the key in the proof of Theorem 1.1, was used in a different context by O.
Liess [L]. The essence of his idea was that, after localization to the unit dyadic region in Fourier space, the L1 — L
dispersive inequality follows from a weighted L? — L inequality. This is done easyly by a further localization in
physical space. I am grateful to T. Tao for pointing this important fact to me.
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what follows I will discuss this approach for the standard wave equation in Minkowski space. I will
also outline how to adapt the new approach to the case of variable coefficients wave equations. I
indicate how the method can be applied to derive Strichartz type results for linear wave equations
with nonsmooth coefficients and improved regularity results for quasilinear wave equations in the
spirit of the works of H.Smith [S1], [S2], Chemin-Bahouri [B-C1], [B-C2] and D.Tataru [T1], [T2].
These results are stated in the Theorems A,B,C below. This paper is a short summary of [K14].

0.1 Commuting vectorfields and global Sobolev inequalities

Let ¢ be the solution of the initial value problem for the standard wave equation,

O¢=0
¢(0) = f, 0,:6(0) =g (0.5)

As discussed in the introduction it it is possible to show, using the explicit form of the fundamental
solution as a Fourier integral operator, that for any &£ > 0,

[VEp(8)] [0 < CJt[7*F (0.6)

as |t| goes to infinity. According to 0.3 the constant C' depends on the L' of appropriate number
of derivatives of the data f,g. In what follows we review the commuting vectorfields method for
deriving the decay rate 0.6. The idea is to use the energy identity 0.1 together with commuting
vectorfields and a global form of the classical Sobolev inequalities.

The Minkowski space-time R™"! is equipped with a family of Killing and conformal Killing
vector fields,

T, =0,
O = 2,0, — 1,0,
K, =—-2z2,5+ <z,x>0,
Here z#, denote the standard variables 2° = ¢, z!, ..., 2", m* = diag(—1,1,...,1) the Minkowski

metric and x, = m,,x". The operator O is defined by O = m®%9,5. The Killing vector fields

T, and O,, commute with [0 while S preserves the space of solutions in the sense that O ¢ =0

implies OS¢ =0as [O,S] =2 0. We split the operators O, into the angular rotation operators

@O = z;0; — x;0; and the boosts O = 2;0,+10;, for i, j,k =1,...,n. Recall the energy norm 0.1,
1

E[#](t) = (f 10sp(t, )2 + [010(E, )| - - - + |0, 0(L, :c)|2dx> *. Based on the commutation properties

described above we define the following “generalized energy norms”

Eﬁﬂ@::( > EﬁXﬁXﬁmX@d)% (0.8)

Xil a'-aXij

with the sum taken over 0 < j < k and over all Killing vector fields T',€,, as well as the scaling
vector field S.
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The crucial point of this method is that the quantities Ej, k¥ > 1 are conserved by solutions to
0.5. Therefore, if for all 0 < k£ < s the data f, g verity,

[+ ) (V@) + (V9@ do < C 09)
for a constant Cy < oo, then for all ¢,

Eonld](t) < Cs. (0.10)

The desired decay estimates of solutions to 0.5 can now be derived from the following global
version of the Sobolev inequalities( see [K11],[K12],[Ho]):

Proposition 0.1 Let ¢ be an arbitrary function in R such that E,[¢] is finite for some integer
s> 4+ 1. Then fort>0
06(t, )| < (L4t + [o) T (1 + [t — |2|[) 2 Ey[ul.
(0.11)

Therefore if the data f, g in 0.5 satisfy 0.9 , for 0 < k£ < s with some s > 2, then for all ¢ > 0,

1
(L+t+|2)) 7 (1 +[¢ = |2))?

|04(t,.)| e < C (0.12)

Clearly this estimate implies 0.6. In fact it provides more information outside the wave zone |z| ~ ¢
which fit very well with the expected propagation properties of the linear equation O ¢ = 0.

In what follows we show that in fact the commuting vectorfields method implies the dispersive
inequality 0.3. The key ingredient in the proof is a simple phase-space localization argument which
I borrow from [L].

Theorem 0.1 The commuting vectorfields method implies the dispersive inequality 0.3.

Without loss of generality we may assume that 0,90 = g = 0 and that the Fourier transform of
f = ¢(0) is supported in the shell 3 < [£| < 2 for some A € 2N. By a simple scaling argument
we may in fact assume A = 1. Since ¢AS, the Fourier transform of ¢ relative to the space variables
x, is also supported in the same shell it suffices to prove the estimates for V¢ or VF¢. Next we
cover R" by an union of discs D; centered at points I € Z"™ with integer coordinates such that each
Dy intersects at most a finite number ¢, of discs D; with ¢, depending only on the dimension n.
Consider a smooth partition of unity (x;)7ez» with supp x; C Dr and each x; positive. Clearly we
can arrange to have, for all &,

> IVExi(2)] < Gy (0.13)

IeZn

uniformly in z € R". For k = 0 we have in fact Cy, = 1.



Now set, f; = x1- f, and ¢; the corresponding solution to 0.5 with data ¢;(0) = fr, 9,¢:(0) = 0.
Clearly f =3 f1, ¢ = > ¢;. It suffices to prove that for all I,

3 n+k+1 ]
IV¥r ()| < Cop(14+8)7% Y ||DIfirl| s (0.14)
j=0
with a constant C),  depending only on n and k. Indeed if 0.14 holds true we easily infer that,
et n+k+1 ]
IV¥$)llze < Coge(X+8)7= 30 12 Vixallzell flle
j=0 I
and therefore, in view of 0.13

V()| oo < Cope(1+8)" T |||l 0

It therefore remains to check 0.14. Without loss of generality, by performing a space translation,
we may assume that I = 0. Applying the Prop. 0.11 to 1) = V¢, we derive, for s, the first integer
strictly larger than § + 1,

[9()]|Le <
S n—1
Since the support of ¢q is included in in the ball of radius 1 centered at the origin we have,
sx+1 )
E,.[¢o](0) < Cn Y- 1D fol 22
=0
Finally, according to the standard Sobolev inequality in R", ||f||z2 < ¢||V2 f]||z1, we conclude with,

n+2+1

9|z < c(L+8)7T 3 1D follm
j=0

as desired.

In what follows I will present a way of deriving the weaker decay estimate t~17¢ in any dimension
n > 3, using only the Morawetz vectorfield Ky = (% + |z|*)0; + 2tx'0; and its associated first order
operator Ky¢ + (n — 1)t¢. Let

1
Qaﬂ = 8a¢8ﬂ¢ - Emaﬁ (muyau¢au¢)

the energy momentum tensor associated to the equation O ¢ = 0 with m,, the Minkowski metric
of R"*!. If ¢ is a solution of the equation we have, aﬁQag = 0. We recall the following classical
fact, see [C-K1],



Proposition 0.2 Let ¢ be a solution of O ¢ = 0 and Q.p the corresponding energy momentum
tensor. Let X be a conformal Killing vectorfield, i.e. X)m = Lxm = Qm, and trm = mPm,g.
It is easy to check that T Q = 0; in fact, in the particular case of X = Ky, Q = 4(n + 1)t. Let

Po = QupX? + 25 tr OV ng0ad — 5250, (trX)m)¢?. Then, if O ¢ =0,

0°P, = 0.

Applying the proposition to [0 ¢ = 0 and X = K and integrating the corresponding divergence
free equation on a time slab [to,t] x R" we infer the following*:

Proposition 0.3 Let Q(Ko, Ty) = Q(Ko, To) + (n — 1)t¢ds — 592, with To = 0, the unit normal
to ¥ and ¢ a solution to O ¢ = 0.

i.) The following conformal conservation law holds true,

Aﬁ%ﬁ@=éﬁwmn) (0.15)

0

ii.) Moreover we have,

/EtQ(Ko,To) = %(/2 QZ(L'¢)2+At2(t2+r2)w¢\2+/zt uZ(L'¢)2) (0.16)

where L=0;4+0,, L=0,— 0, u=t—71, u=1t+7r and ul'(¢) = uL(p) + (n — 1)¢, ul'($) =
uL(¢) + (n —1)¢.

iii.) Also, if n > 3, there exists a constant ¢ > 0 such that,

/EtQ(KO’TO) > C(/zit u?(Lo)? +/§;t2(t2 +T2)|Y7¢‘2+/2t uz(Lqﬁ)Z) (0.17)

To prove the last two parts of the proposition one starts by expressing K, 7" as linear combinations
of the null vectorfields L, L,

1

Ky, = §(Q2L+U2L) (0.18)
1

Ty = S(L+1) (0.19)

with w = t—r, u = t+r. Observe that u is a special solution of the Eikonal equation m®?9,udsu = 0.
This will play an important role in the variable coefficient case.
We easyly check the formulas:

L, L L(¢)?
Qrr=Q(L, L) = [V¢[
Qur=Q(L, L) = L(¢)?

4Part i and ii of the proposition are due to C. Morawetz [M]. For part iii see [K13], pages 310-313.

h
h
Il
O
—~
SN—
Il
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where V¢ denotes the induced covariant derivatives on the spheres of intersection between the level
surfaces of ¢t and those of r. Thus,

Q(Ko,To) = %(MzQLL + (U2 + u2)QLL + U2QLL)
= L (2L0? + W + )| TOP +7L(6))
Therefore,
LTy = [ (o + w4 )PP + w*(Lo)?)
n—1
+ (=) [ tage-"= [ ¢

One then proceeds by a carefull integration by parts procedure. One shows, for example, that in
dimension n > 3,

QU To) 2 ¢ [ (167 +w? Lol + (8 + %) V9 + o |LoJ?).
t t
To derive the desired decay estimate we make use of the following Lemmas:

Lemma 0.1 Let u(x) be a smooth, compactly supported function on R", n >3 . Foranyp >n—1,
021-1—%—%, we have

1
()] < Oz (I Vel + e ) (020)

where YV denotes the induced covariant derivative along the spheres r = const.

To prove the Lemma we write, in polar coordinates = = r¢ with £ € R"

u(ré)? = —p / T 0 u(AE)uP T (AE)dA

Hence,

u(r€Pdo(€) < e [ ITullu()lay.

l¢1=1

Hence, for o > 5 — 2 + 1,

=S

1 1
[ wrepdo(©) < e (19l oy + 0, ) < el
Finally, using the Sobolev inequality on the unit sphere S"~! we infer that, for z = r¢ and r # 0,

ju(z)] < %(IIU(T Wersn-1) + [ (rYu) (r -)IILp(sn1)>

which combined with the inequality above proves the desired result.
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Now let

i) = [ (167 + 2100 + (@ + V0P +7|LoP) (0.21)
Ealdl®) = 3 (V4] (0.22)

In view of the Lemma 0.1 we immediately derive the result of the Proposition below in the exterior
region |z| > £. For the interior region |z| < £ the result follows from the fact that,

el > et [ [V

lz[<5
combined with the standard H*(R") C L*°,s > % Sobolev embedding. Thus,

Proposition 0.4 Let ¢(t,z) be a smooth function in R™** compactly supported in x for each fized
t > 0. The following inequality holds true for anyn >3, p>n—1andk >3+ %5 — %

106(t)]| e < (1 +8) ™7 Ex(t).

In view of the conservation of the integrals [y, Q(Ko, Tp) as well as® [, Q(Ty, To) applied to the
standard derivatives 0y, 0y, ...d, of solutions to O ¢ = 0, as well as part iii of 0.2 we obtain the
following:

Proposition 0.5 Let 0 ¢ = 0 subject to the initial conditions ¢p(0) = f,0:¢(0) = g with f,g
smooth and compactly supported in the ball |v| < 2. Then, for allt >0, k >3+ § — -

n—1

106(0llz < O+ 074 (1flls + lglhe-s). (023)

0.2 Main Theorems and their reduction to Dispersive Inequalities

In what follows we state the main results see[K14], Theorems A-C. These are not new® they are due
in fact to the combined pioneering efforts of H. Smith [S1], [S2], Bahouri-Chemin [B-C1],[B-C2] and
D.Tataru”. The method of proof, however, is very different. Instead of constructing parametrices
we rely on a variation of the vectorfield approach presented in the previous section. The crucial
new ingredients are the construction of a modified Morawetz vectorfield and generalized conformal
energy estimates.

5This is needed to control small ¢ > 0.
6Using a variation of the approach described here, Rodniansky and I( see [KI-R]) were recently able to improve

the result of Theorem C from o > %, due to Tataru( see [T2]), to o > 2’2‘/5 for n = 3.

"The precise statements of Theorem A and B and the optimal result of Theorem C is due to Tataru, see [T2].
His results connected to Theorems A, B are however more general.




Theorem A Consider the wave operator O} = —0? + h"9;0; defined in a space-time slab Dy =
[0,T] x R", n > 3. Assume that the coefficients h = (h")},_, verify the following assumptions:

A1 Foradll (t,x) € Dr, £ € R",

CYE? < Bt x)&€; < C|E

A2 For all 0 <1<k, and some fized constant 1 > 1,
Ti“aHihHLtngo(DT) < C/ﬂ

Then,

k_ k.
108112150y < CT (5100l e ooy + 71| O3ty (0.24)
for any s = ”T_l—i-e.

Theorem B Assume that Theorem A holds for a fized k > 1. Consider a metric h which verifies
only the assumptions A1 and A2 for k=0, p=1;

||8h||Lt1L;°(DT) <c

Then,
10¢l1z22 o) < C(T°N DI BGllsoresiory + T DI D dllinseon)  (025)

_ n—1 k
for any s = 5= and o0 > ST

Here and throughout the paper whenever we write ||1/(| .2, or simply ||¢[|za5, we mean ([ [[4(?) ||‘fgdt)%
with B a Banach norm with respect to the space variables z = (z',...,2"). Theorem B has an
immediate application to quasilinear equations of the form,

O higy® = N(¢,09) (0.26)

subject to the initial conditions at ¢ = 0,

$(0) = po 9:(0) = ¢ (0.27)

Here O, ¢ = —0;¢ + h($)0;0;¢. Assume that h(¢) = (hV(¢));_; is a smooth matrix valued
function of ¢. Assume also that N is a smooth function of ¢, ¢ and depending quadratically on

6.

Theorem C Assume that Theorem A is valid for some fired 1 < k and p = 1. Consider the
initial value problem 0.27 for the quasilinear wave equation 0.26 in R"™, n > 3 Assume that the

coefficients h;;(¢) verify; B
cTHEP < hY(9)6i8; < clgf (0.28)

uniformly for |¢| < M and £ € R".



Assume also that the initial data in 0.27 verify the assumptions (pg, 1) € H®* x H*™! with
M
5 -

s=2+1+0 foroc> 2(2157+1) Moreover assume that ||@ol Lo (py) < Then there exists a time

T > 0 and a unique solution of 0.26, 0.27 verifying,

¢ € L*([0,T); H*) N Lip([0, T); H ™)
0¢ € L*([0,T); L™)
and ||¢[|ze(py) < M.

Remark 1 A more general sharper form of Theorem A, for all wave admissible Strichartz expo-

nents, has been proved by Tataru in [T2] for k = 1. In particular, the optimal known result in

conection to Theorem Cis o = é. The first improved regularity result is due to Chemin-Bahouri

[B-C1]. They later improved the result in [B-C2).
Proof of Theorem B from Theorem A:

Step 1. It clearly suffices to prove Theorem B for T = 1. Moreover we can reduce the proof to
the following dyadic case®,
Set hy =~ S A h and ¢) = A,¢ with A, the standard frequency cut-off operator corresponding

to the space-time Fourier region A < |7] +[¢] < 2A. Set O = O}, . Then, for all A suficiently
large, say A > 28, it suffices to prove that

10¢AllL2Lee(p) < CN° <A0||3¢A||L°°L2(D) +A77 O IA¢A||L,}L3(D)) (0.29)

with D = D;.

Step 2. Split ¢y = O)udr + Ry, for some 0 < a < 1 to be chosen later. Here O.¢\ =
—07 + h%.0;0; with b = S 1 yah. Observe that

IRl ziz2p) < A°10R]| 11 oo () 100l Loe L2(D)
Therefore the estimate 0.29 follows from the following,
10022500y < CN° (/\U||8¢A||L°°L2(D) + A7 O &a(ﬁ”L}Lg(D)) (0.30)

provided that ¢ = 1_Ta On the other hand it is easy to see that the metric hya = S 1 \a P verifies
the conditions, A1, A2 of Theorem A. More precisely,

||al+ih)\“||L,}Lg°(D) < /\ai”ah”L,}Lg"(D) <

with g = A%,
Finally 0.30 follows from Theorem A applied to the metric h$ for 4 = A3 and a chosen such
that %kkﬁ =12 ie a= 2’%11 Therefore o = 352 = 2(2157+1) as desired.

Step 3. It suffices to prove Theorem A for the special case ;= 1. This is essentially the proof of
Tataru in [T2]

8The reduction is standard, see [B-C1], [B-C2] and [T1], [T2].
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Sketch of the proof of Theorem A for y =1.

Step 1. Proceeding precisely as the proof of Theorem B it suffices to prove the dyadic version of
the Strichartz estimate of Theorem A( u = 1) for T =1 and X sufficiently large.

1063 ll200) < OX (108l 22) + | D adallsacn)) (031)

with s = 2% + € and D = D;. We have, roughly , hy = Sah, ¢ = Ax¢ and 0% = 0},

Step 2. Proceeding as in step 2 of the proof of Theorem B it suffices to prove the estimate
109l L2250 (D) < C)\S<||8¢A||L°°L2(D) + | O I)\¢A||Lt1L§(’D)> (0.32)

for a metric h = h¥ verifying the assumptions A1, A2 in the region D = [0,1] x R" and whose
space-time Fourier transform is supported in the region

1
0 < || +[¢] < VA (0.33)

Step 3. Let h = h¥ verify A1, A2 as well as 0.33. Define h,(t,z) = h(%, ). Clearly,

cYEP <hi&E < el (0.34)
10" hall i psoimyy < CA™F forall 0<i<k (0.35)
10 * Rl psoipyy < CATFF forall 0<j (0.36)

Moreover the space-time Fourier transform of hy is supported in the region 0 < |7| + [¢] <

16\/)\
Under these conditions it suffices to prove the Strichartz inequality,

109 L2130 (D) < CAC(IIWIIL%H(DA) +[ O %WIILILZ’(D») (0.37)

for all ) whose space-time Fourier transform is supported in the region 0 < |7] + [¢] < 2.

Step 4. Define the positive definite metric g = g, to be the inverse of the matrix hy. Whenever
there is no danger of confusion we shall also denote by g = g, the Lorentzian metric with g;;,
i,j =1...n as above and goo = —1,go; = 0 for ¢ = 1...n. Denote |g| = det(g;;). Let O, be the
associated wave operator,

1
| g — aﬂa at at wa
] (\/‘ |97 0s) /— \/ /— V| 1970;).

Observe that

Og,% = IZI}L + Ry

py = 20Dy, A0l
e IN

X-11



Clearly, || Rat|| pizoo(ny) < CllOha||p1roo(y)||0% || oo 2. Therefore 0.37 follows easily from,
109 Lazeo(pry < C<||a1/)I|L°°L2(,D)\) + | O 9A¢||L1L2(DA)) (0.38)

Observe also that the assumptions 0.34-0.36 for h A remain satisfied for for the inverse metric g\ =
(INL,\)_I, with different constants. This is obvious for 0.34. The others follow multiple applications
of the chain rule and a Gagliardo-Nirenberg type inequality:

The proof of Theorem A(y = 1) can be thus reduced to the following:

Theorem 0.2 Let gy be a familly of smooth metrics, A > Ao > 1, defined in the region Dy = [, xR"
with I a time interval of length X, in which the following assumptions are satisfied,

e < ggied < el (0.39)
uniformly for all (z,t) € Dy, £ € R" and A > X.
Also,
||61+ig>\”L%Lg°(D>\) < G forall 0<i<k (0.40)
10" g llrrsemy) < Crgh ™% forall 0< (0.41)

Under these assumptions we have,
1001122500 < C (106 l=s200 + 1 O ¥l (0.42)

for all 4 whose Fourier transform supported in the region % <|r|+ € < 2.

The next important step is to prove that the Theorem 0.2 can be reduced to the following
dispersive inequality:

Theorem 0.3 Under the same assumptions on the metric g, as those of Theorem 0.2, if ¢ is a
solution of the homogeneous equation O 4, ¢ =0, in the domain Dy = Iy xR", I, = [0,t.], |I,| < A
with the Fourier transform of the data ¢(to), 0;p(to) supported in 0 < |&| < 4, then;,

10¢(#) [z < C(1+ [t — to]) (|0 (t0) | (0.43)

Theorem 0.3 implies the following

Theorem 0.4 Consider the initial value problem

Og¢ = 0
¢(0) = %o 3t¢(0) = ¢
2

in the region D) = [0, A] x R", in which the assumptions of Theorem 0.2 hold true. Let q = T
q' the dual exponent. Let P be the operator defined by Po(t,z) = [R~ e (E)d(t, €) with ¢ the

X-12



space Fourier transform of ¢ and x a compactly supported smooth function, x(§) = 1 for [£| < 2,

x(§) = 0 for [¢] = 4.
There exists a sufficiently large M , independent on X, such that,

10PGll 13220 (o7 < MIIOS(O)]] 2. (0.44)

Theorem 0.2 follows easily from the following Corrolary of Theorem 0.4. This is due to the fact
that for the ¢ of theorem 0.2 we have P = 1.

Corollary 0.5.1 Under the same assumptions as above consider the inhomogeneous equation,

Oaptv=1f

Then,
0P 53150y < M (1061 20,) + I flz1220) ) (0.45)

The proof of the Corollary is an immediate consequence of Theorem 0.4 and the standard form of
the Duhamel principle.

The proof of Theorem 0.4 is based on the standard 7T7*- argument. Yet, because we don’t have a
parametrix representation for our solutions significantly different from the corresponding results in

The proof of Theorem 0.2 reduces thus to that of Theorem 0.3. We can perform one more
reduction based on the phase space localization described in the proof of Theorem 0.1. Therefore
Theorem 0.3 is a consequence of the following:

Theorem 0.5 Assume that the metric gy verifies the same assumptions as those of Theorem 0.2.
Consider solutions of the homogeneous wave equation O 4 ¢ = 0 in the domain Dy, with initial
data ¢(ty), 0ud(to), to € I, supported in a ball of radius 2. Then, for a sufficiently large positive
integer N,

109(0) = < O+ It~ to) 1000 v e (0.46)

The hard part of our procedure reduces thus to the proof of the Theorem 0.5. This is done by
constructing a vectorfield analogous to K, and using it to derive weighted energy estimates. We
ouline below the main steps. We start by discussing our main energy estimate.

Let X be an arbitrary timelike vectorfield with deformation tensor X)m = Lxg, We write
7 = X7 in the form 7 = 7—Qg with Q a given scalar function. Let Qap = 0,030 — %galg (g"0,90,)
be the energy momentum tensor associate to O ;¢ = F'. If ¢ is a solution to the equation we have

DPQup = FO,6.
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Therefore, setting the X — momentum 1-form P, = Q.3X B we have
D*P, = Q“ﬂwaﬂ + FX(¢)
1
= S(QVas + OMQ) + FX(9)

= Qs + 0T 0,00,0) + FX(9)

Now,
Q¢" 0,60, = D"(Qp0,¢) — 0" (2)90,p — Qp O 4¢
= DMQp0, — %gzﬂauﬂ) + %¢2 0,0 — QpF
Therefore,
DRy = 30~ " (DH(O906 — 380,9) + 167 0,0) + (X6 + "9 F

or, setting

P,=P,+" n L opa,e— " S 20,0 (0.47)
we derive ) 1 n_1 n1

D°P, = iQaﬂfra[; -3 > 0,0+ (X + Tqu)F (0.48)

Now, integrating on the time slab [to,¢] x R", and observing that d; is the future unit normal to
the hypersurfaces ¥; we derive,

Proposition 0.6 Let ¢ verify O ¢ = F and X an arbitrary vectorfield with deformation tensor

X)7r =mw. Let Q be an arbitrary scalar function and @ = m — Qg. Define, for another vectorfield Y,
_ -1 -1
Q(X,Y) = QUX,Y) + ——9Y$ - ——¢*Y ()
We have,
_ _ 1
X,0)dv, = [ QX d)dv,+ [ B pdtd 0.49
L eecayi, = [ QX0+ [ o Q Fasdide (0.49)
n—1 9 n—1
— O ,Qdtd X Qo) Fdtd
8 Jlto1xR” 9" By Vo F [to,t]xR"( o+ ?) Yo

Observe that 0.49 implies the energy identity 0.15 in the particular case of the Minkowski space,
X = Ky and F = 0. In that case Q = n%ltm = 4t, trm = g*7p and # = # = 0. In a curved
background however 7 is not zero. In order to control the error terms involving m we need a
vectorfield X which is as close as possible to the vectorfield Ky = (t* + 72)0; + ¥, 2tx'0; in flat
space. We do this with the help of a special solution u of the Eikonal equation

(Opu)® — g" (¢, 2)Oudju = 0 (0.50)
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whose level hypersurfaces are forward light cones, C',, with vertices on the time axis G' given by the
points of coordinates (¢,0). The optical function u can be viewed as the analogue of the function
t — |z| in Minkowski space. It corresponds to the interior optical function introduced in section
9.2 of [C-K2]. We also define the null outgoing vectorfield L = —g"9,ud, = dud; — (9" diu) 9;,
analogous to 0; + 0,, and with the help of L and 0;, the null incoming vectorfield L, analogous to

0; — 0,. Finally we can set u = 2t — u and define
L/, 2
K, = 5(@ L+u L)-
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