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Abstract

This talk is concerned with the Kolmogorov-Arnold-Moser (KAM) theorem in Gevrey classes
for analytic hamiltonians, the effective stability around the corresponding KAM tori, and the
semi-classical asymptotics for Schrodinger operators with exponentially small error terms.
Given a real analytic Hamiltonian H close to a completely integrable one and a suitable
Cantor set O defined by a Diophantine condition, we find a family A,, w € 0, of KAM
invariant tori of H with frequencies w € © which is Gevrey smooth with respect to w in a
Whitney sense. Moreover, we obtain a symplectic Gevrey normal form of the Hamiltonian
in a neighborhood of the union A of the KAM tori which can be viewed as a Birkhoff normal
form (BNF) of H around A. This leads to effective stability of the quasiperiodic motion
near A. We investigate the semi-classical asymptotics of a Schrédinger type operator with
a principal symbol H. We obtain semiclassical quasimodes with exponentially small error
terms which are associated with the Gevrey family of KAM tori A,, w € ©. To do this we
construct a quantum Birkhoff normal form (QBNF) of the Schrédinger operator around A
in suitable Gevrey classes starting from the BNF of H. As an application, we obtain a sharp
lower bound for the counting function of the resonances which are exponentially close to a
suitable compact subinterval of the real axis.

1 KAM tori and BNFs for analytic hamiltonians in Gevrey
classes.

1.1 Classical KAM theorem.

Let T" = R"/2xZ"™, n > 2, denote by D a bounded domain in R", and set A™ = T" x D,
equipped with the standard symplectic two form ) dy; A dI;. Consider in A" a real analytic
hamiltonian H® : D — R which is independent of ¢. The Hamiltonian vector field of HO is
Xyo = (VH(I),8/0y), hence, its flow is given by exp(tX go)(p, I) = (¢+tVHO(I), I). Suppose
H? is nondegenerate which means that the “frequency map” VH? : D — Q := VH?(D) is a

diffeomorphism, and denote by w — I(w) the inverse map. In the coordinates (p,w) in T™ x 2,
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the flow is given by (¢,¢,w) — (¢ + tw, I(w)). Thus each torus A% := T" x {I(w)} is invariant
under X o, and the restriction of the flow on it is a rotation Ry, by tw.

The classical Kolmogorov-Arnold-Moser (KAM) theorem asserts that a large family of the
invariant tori AY sustain small real analytic perturbations H (¢, I) of H°(I), being just a little
bit deformed. Fix x > 0 and 7 > n — 1. The frequences w of these tori satisfy the following

Diophantine condition:

K n

We denote by =, the set of all w € Q satisfying (1.1) and also having distance > x to the
boundary of 2. Note that =, is a Cantor set and the Lebesgue measure vol(E;) > 0 if  is
small enough. The KAM theorem says that if H is a sufficiently “small” (with respect to x) real
analytic perturbation of H? , then for each w € E, there is an analytic Lagrangian submanifold
A, of A™ close to AY which is invariant under the flow of Xz and the restriction of exp(tXp)
to A, is conjugated to the rotation Ry,. Moreover, A, depend smoothly on w € =, in the sense
of Whitney. The Lagrangian manifolds A, ~ T" are called KAM tori. It turns out that the

family of KAM tori is Gevrey smooth with respect to the frequences w.

1.2 KAM theorem for analytic hamiltonians in Gevrey classes.

We are going to show that for each 7’ > 7 there exists a family of KAM tori A, w € E,, which
is G™'t2-Gevrey regular in the sense of Whitney. For each x> 1, we denote by G*(D) the space
of all Gevrey functions in a domain D C R" of index y, namely f € G¥#(D) if f € C*°(D) and
for every compact subset Y of D there exists C = C(Y) > 0 such that

sup [0¢ f(I)| < CloHatr, VaeZl,
Iey

where Z  stands for the set of all nonnegative integers and a!* = (aq!. .. a,)*, a = (a1,...,an).
Evidently G1(D) coincides with the space of all analytic functions in D, while for z > 1 there
are nontrivial compactly supported G* functions. Given o, u > 1, we say that R € G>*(T" x D)
if for every compact subset Y of D there exists C = C(Y) > 0 such that
sup  |920FR(p,I)| < ClOHIPHLgIo 01k Yo, ez (1.2)
(¢,1)ETnXY

To formulate the ”smallness” condition in the KAM theorem we extend H° holomorphically

in a neighborhood of D. Let D° be a bounded domain in R and v > 0. Let H® be a real
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analytic Hamiltonian in D%+ 70 = {2 € C": |D% — 2| < o}, where |D? — 2| = inf,ic po |2’ — 2|.
Suppose H? is non-degenerate in D° + r9. This means that the map D° > I — VHO(I) €
VH?(D%) = Q° is a diffeomorphism, the Hessian matrix H2,(z) of H° is non-degenerate in

DY 4 7% and ‘HS

| Dogr0 |(H2z)_1|D0+r0 < R for some R > 0, where |- |po, 0 stands for the

sup-norm in D° + 0. Denote by 1 : Q° — DO the inverse map. Given 7 > r >0, s > 0, and

a subdomain D C D, we set
T'+s = {z€C"/2rZ" : |Im z| < s}, Uy, = Ugpp = (T"+5) x (D+71),

the latter being equipped with sup-norm |- |5, and denote @ = VH?(D).

As it was mentioned above, for each subdomain D of DY there exists #(D) > 0 such that
vol (E,) > 0 for each 0 < k < k(D). For such x, we denote by Q, the set of points of a positive
Lebesgue density in E,;. In other words, w €  if for any neighborhood U of w in Q the
Lebesgue measure of U NZE, is positive. Obviously, 2, and E,; have the same Lebesgue measure.
The advantage of working with Q, is that if R is a C° function in Q and R = 0 on 2, then all
the derivatives of R also vanish on €. This will be used to obtain a BNF of H near a family
of KAM tori with frequences in €.

Fix the constant 7 > n — 1 in the small divisor condition (1.1) and chose 7/ > max (5/2, 1)

and s > 0. Notice that the condition 7/ > 5/2 is required only for dimensions n < 3. Fix an

integer N > 1.

Theorem 1.1 Let H° be real analytic and non-degenerate in D® 4+ 1%, Then there is § > 0 such
that for any domain D C D°, 0 < k < %(D), K <1 <19 and any real analytic Hamiltonian H
in Ugpp with 6 := k= 2|H—HO|s, <6, there is a map f : T"xQ — D of Gevrey class G112
such that each Ay, :={(0, f(O,w)): 6 € T"}, w € Q, is a Lagrangian submanifold of T" x D,
invariant with respect to the flow of X g, and the restriction of exp(tXg) to A, is conjugated to
the rotation Ry, on T™. Moreover, for any 0 < q < 1, there exists L > 0 independent of D, k,

r, dg, such that
DPDA(f(0,w) — < LB -led grst (g T" x Q VAR <N
[4 w(f( ,CU) ’(b()(&))) = K /8 H > ( ,UJ) € X ’ /B € + |O[| >~ -

To prove the theorem we make use of the scheme proposed by Pdschel in [8].
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1.3 BNF and effective stability

As a consequence we obtain a Birkhoff normal form (BNF) of H around the family of KAM
tori Ay, w € Q. It will be said that H admits a G#-BNF around the family of KAM tori with

frequencies in €2 if the following holds:

(BF) There exists a G¥-diffeomorphism w : D — 2 and an exact symplectic transformation
Xo € GYH(T™ x D, T" x D) such that H(xo(@,I)) = Ko(I)+Ro(p,I), where Ky € GH(D)
and Ry € GUH(T™ x D) satisfy D¢Ro(¢,I) = 0 and D¥(VKo(I) — w(I)) = 0 for any
(o, I) € T" x w1(Qy) and a € Z7.

Corollary 1.2 Under the conditions of Theorem 1.1, the Hamiltonian H admits a G*-BNF,
u =742, around the family of invariant tori A, with frequencies in €. Moreover, the exact
symplectic map xo in (BF) has a generating function ® € GY*, and the function ® and the
diffeomorphism w in (BF') satisfy

DEDF(® (0, 1) = (i, )| + |DF (w(l) = VH ()| < LRl gist  wp ez,
for (p,I) € T" x D and |a| < N, where L > 0 is independent of D, k, r, dg.

Recall that a smooth function ® in T™ x D is a generating function of a symplectic map xp of

T" x D into itself, if det (Id — ®y;) # 0, and
xo0 (®r(0,1),I) = (0,%4(0,1)) , (0,I) €T" xD.

Set E, = w !(Q4) and denote by Y a compact neighborhood of E, in D. Then each torus
T x {I}, I € E,, is invariant under the flow of H(p,I) = H(xo(p,I)), and there we have
exp(tXz)(p,I) = (¢ +tVEKy(I),I). Since R is G* with respect to I € D, and its Taylor series
vanishes at each I € E,, there exist positive constants C; and ¢ depending only on the constant

C in (1.2) such that for every a, 8 € Z"t the following estimate holds
+
0207 Ro(p.I)| < CL* P proat exp (—c|B, —1)77T) | (1.3)

for any (p,I) € T" xY, I ¢ E,, where |E, — I| = infpcg_|I' — I| is the distance to the
compact set Ej.
The symplectic normal form (BF') obtained in Corollary 1.2 leads immediately to effective

stability of the quasiperiodic motion around the invariant tori.
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Corollary 1.3 There is éo, C > 0 such that for each 0 < e <1, and any initial data (po,ly) €
T" x Y with |E, — Iy| < ¢ we have

lexp(tX ) (@0, lo) — (po+tVKo(lo),Io)| < Coe,

provided that
lt| < Ceexp (%6_1/(T,+1)> .

Effective stability (of the action) for analytic perturbations of completely integrable Hamilto-
nians was first studied by Nekhoroshev. The Nekhoroshev theorem states that the variation of
the action I(t) — Ip on each orbit (p(t),I(t)) = exp(tXg.)(po,1lo) of an analytic Hamiltonian
H. = Hy+0O(e) remains e-small in a finite but exponentially long time interval 0 < ¢ < T exp(e?),
T >0, a>0,if Hy satisfies certain generic steepness conditions (see [5], [9], and the references

there).

1.4 KAM tori near an elliptic equilibrium.

Consider the Hamiltonian Py(z,¢) = |¢|> + V(z), where V(z) > V(0) = 0 has a nondegenerate
minimum at £ = 0 and V is analytic in a neighborhood of 0. There is a linear change of the
coordinates in x such that Py(z,&) = 374 a(2% +€2)/2 + O(|(x,€)[?) near the origin, where
ag > 0.

This is a special case of an analytic Hamiltonian Py with an elliptic equilibrium at some
00 = (z9,&) with the characteristic exponents +ia?, ..., +ia?, a? > 0. Set a® = (a,...,a0).
To apply Theorem 1.1 we exclude the resonances of order < 4. In other words, we assume that
(a® k) # 0 for each k = (k1,...,k,) € Z" with 0 < }_ |k;| < 4. Then there exists an analytic
polar symplectic change of the variables (z,£) = x1(¢,I), such that H(p,I) := Py(x1(p,1))

admits the following Birkhoff normal form
H(p,I) = H'(I) + O(I]°?) , as |I| = 0, H'(I) = Py(ao) + (a°,I) +(QI,1), (1.4)

where () is a n x n matrix, ¢ € T" and I belongs to a proper open cone I' C R/} with a vertex
at 0. We suppose that H is nondegenerated, which amounts to det Q # 0.

To avoid the singularity of H at I = 0, we consider

DY={IeR": |[;| < Ciay, j=1,...,n},
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where 0 < ag < 1 and C; > 1. Obviously H° is nondegenerate in D° + ag. For each 0 < a < ag
weset D =D, ={I €Tl: C’l_la <I; < Cia, j =1,...,n}. Next we choose Kk = K, = €a,

where 0 < ¢ < 1 is fixed, then fix 0 < s < 1, and take » = a. The perturbation H satisfies
|H — HO\S’T < K209al/? < K26,

for each 0 < a < ag choosing ag small enough. Hence, applying Theorem 1.1 and Corollary 1.2,

we obtain:

Corollary 1.4 Let gg be an elliptic equilibrium of a real analytic Hamiltonian Py without res-
onances of order < 4. Denote by H(p,I) = HO(I) + Hy(p, I) the corresponding BNF (1.4}) and
suppose that det Q # 0. Then for each 0 < a < ag, ag K 1, there exists a symplectic diffeomor-
phism xo of Gevrey class G**, u = 7' + 2, mapping T" x D into itself, a G*-diffeomorphism
w:D —Q, and K € GH(D) such that the Hamiltonian H = H o xo € GM*(T" x D) has the
form H(p,I) = Ko(I) + Role,I), where Ry and w(I) — VEKy(I) are flat on T" x E, and
E. = w 1(Q) respectively. The symplectic map xo has a generating function ® € G*(T™ x D)

and for each |a| <1 and 0 < ¢ < 1, we have
DEDF(@(p, 1) — (p,1))| + |DF(w(I) = VH(I))

< ClalHlBlIHL g3¢/2-lel g1 g ¢ z"

for any (p,I) € T™ x D, where C does not depend on a.

2 Quantum Birkhoff normal forms and quasimodes with expo-
nentially small errors.

2.1 Quantum Birkhoff normal forms.

Let M be either R" or a compact real analytic manifold of dimension n > 2 and let

J
Pn = Y Pj(z,hD)W , 0 < h < hy, (2.1)

Jj=0
be a formally selfadjoint h-differential operator acting on half densities in C*°(M, Q%), where
Pj(z,£) are polynomials of { with analytic coefficients, and D = (Dy,...,Dy), D; = —id/0z;.
The principal symbol of Py, is Py(z, &), (x,£) € T*(M), and we suppose that the subprincipal

symbol is zero. Our main example will be the Schrédinger operator P, = —h?A + V (x), where
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A is the Laplace-Beltrami operator on M, associated with a real analytic Riemannian metric
and V(x) is a real analytic potential on M bounded from below.

We suppose that there exists a real analytic exact symplectic diffeomorphism x; : T" XD —
U C T*(M), where D is a domain in R" such that the Hamiltonian H(p,I) := (Py o x1)(p,I)
admits a G™ T2-BNF given by (BF) around a family of invariant tori with frequencies in Q.
The map 1 provides “action-angle” coordinates for the “completely integrable part” of Py and
it can be constructed by the Liouville-Arnold theorem. For example, if we take M = R",
P, = —h?A+V(z), and suppose that V has a nondegenerate minimum V (0) and that there are
no resonances of order < 4, then Corollary 1.3 holds. We set x = x1 © xo, where xq is given by
(BF). Then Py(x (i, 1)) = Ko(I)+ Ro(p, I). Staring from the G™ t2-BNF of the Hamitonian Py,
we are going to obtain a QBNF of the operator Py, in suitable Gevrey classes of pseudodifferential
operators.

Let A be the union of the invariant tori A, = x(T" x {I(w)}) of Py with frequencies w € Q,,
where Q 5 w — I(w) € D is the inverse to the frequency map D 5 I — w(I) € Q. The
Maslov class of A,, w € Q, can be identified with an element ¥ of H'(T";Z) = Z" via the
symplectic map x. Notice that ¥ = (2,...,2) in the case when V has a nondegenerate minimum
Ep =V(0). As in [3] we consider the flat Hermitian line bundle L over T" which is associated to
the class ¥. The sections f in L can be identified canonically with functions f :R™ — C so that
f(z +2rp) = €392 f(z) for each z € R™ and p € Z". It is easy to see that an orthonormal

basis of L?(T™; L) is given by e,;,, m € Z", where
em(r) = exp(i(m+9/4,z)).

Set v = 7+ n+1 and fix 7’ such that 7 +n — 1 > 7’ > max(7,5/2). Then fix py such that
v > ug > 7' + 2, choose o > 1 sufficiently close to 1 such that v > ug > o(7' + 1) + 1, and set
0 = ov. Thus p could be any number bigger than v and sufficiently close to v. Set £ = (o, ug, 0)
and consider the class of Gevrey symbols S¢(A™), A™ = T" x D, defined as follows: First we
introduce a class of formal Gevrey symbols F'S;(A™). Counsider a sequence of smooth functions
pj € C§°(A™), j € Z such that suppp; is contained in a fixed compact subset of A”. We say
that 3°72, pj(w, 1) R is a formal Gevrey symbol in F'Sy(A") if there exists a positive constant

C such that p; satisfies the estimates

sup [050f'pj (¢, D] < 7L BT gl e
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for any «, 3 and j. The function p(p, I;h), (p,I) € A", is called a realization in A" of the
formal symbol given above, if for each 0 < h < hq it is smooth with respect to (p,I), p is
compactly supported in I € D uniformly with respect to (p,h), and if there exists a positive

constant (' such that

N
sgpwga?(p(so,f, ) =3 pile, DY) < RNHLOY TR gro grn (v 4 1y1e
§=0

for any multi-indices «, 5 and N € Z, where Q = A" x (0, hg]. For example, one can take

ple,Ih) = > pile,I)h7,
J<nh=1/e

where 0 < < g and 1y > 0 depends only on the constant C' and the dimension n. We denote

by S¢(A™) the corresponding class of symbols. Moreover, g € S, (A") if
sup 050% g(i0, I;h)| < KN CNFletBlHL grogri N1e
for 0 < h < hg, VN € Z,, and any multi-indices o, 3 € Zﬂ\_’ , or equivalently
sup 0337 glip, ;| < OL /1™ 51t exp(—ch ?)

for some C1, ¢ >0, and any h € (0,h), a, B € Z".
To each symbol p € Sy(A™) we associate an h-pseudodifferential operator Py, : C*°(T",L) —
C>(T",L) by

Prula) = @rh)™ [ v/t pla, ¢, h) y)dédy, u € C(T" L)
It is well defined modulo exp(—ch~1/2). Indeed, for any p € S, °° we have
[Paullz2 < Cexp(—ch™/0)|[ullz2, u e L*(T", L),
with some positive constants ¢ and C.

Theorem 2.1 Suppose that there exists a real analytic exact symplectic map x1 : T" x D —
U C T*(M) such that the Hamiltonian H(p,I) = Py(x1(e, 1)), (¢, I) € T™ x D, satisfies (BF)
for uw = 7" + 2. Then there exist a family of uniformly bounded h-Fourier integral operators
Uy : L>(T™ L) — L*(M), 0 < h < hg, associated with the canonical relation graph (x) such that
the following holds:
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(¢) UpUp—1d is a pseudodifferential operator with a symbol in the Gevrey class Sy(T™ x D)
which belongs to S, °° on T" XY, where Y is a subdomain of D containing E,,
(1) PpoU, = UpoP, and the full symbol p°(¢,I,h) of P has the form p°(p,I,h) =
K°(I,h) + R%p,I,h), where the symbols
KI,h) = Y Kj(DW and R%p,I,h) = > Ri(e, DKW
0<j<nh—1/e 0<j<nh—1/e

belong to the Gevrey class Se(A™), n > 0 is a constant, K° is real valued, and R° is equal to

zero to infinite order on the Cantor set T" X Ej.

The idea of the proof of Theorem 2.1 is as follows: Conjugating Py, with suitable Fourier integral
operator with a Gevrey symbol we obtain a pseudodifferential operator 75h with principal symbol
Ky + Ry, subprincipal symbol 0, and full symbol p(¢p, I; ) in SZ(T” x D), l= (o, o, o+ po—1).
Then we transform P, to a normal form ’P,? conjugating it with an elliptic pseudodifferential
operator Aj, with a symbol a(p, I, h) in S;(A™). Denote by poa the symbol of P, A,. The main

technical part in the proof is the following:

Theorem 2.2 There exist symbols a and p° in Sy(T™ x D), £ = (o, po, 0), given by

oo

(,O,Ih Z ‘-P;Ih ij 0,1 ’

where ag = 1, pS(p,I) = Ko(I) + Ro(,I), p? = 0, the functions p?(cp, I) —p?(O,I), j >0, are
flat at T" x E,;, and poa—aop® € S, °(T" x Y).

2.2 Quasimodes with exponentially small errors
We define a G¢ (Gevrey) quasimode Q of Py, as follows:
Q = {(um(-,h), Am(h)) : m € My},

where up, (-, h) € C§°(M) has a support in a fixed bounded domain independent of h, Ay, (h) are

real valued functions of h € (0, ho], M, is a finite index set for each fixed h, and
() [1Prtm — An(h)umllpe < Ce™™* me My,
(1) |(tmm, i) — Oyl < Ce™M® mle My,
for 0 < h < hg. Here C and c are positive constants, and 6,,; is the Kronecker index.
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We define the G¢ micro-support M S¢(Q) C T*(M) of Q as follows: (z¢,&) ¢ MS?(Q) if
there exist compact neighborhoods U of g and V of ¢y in a given local chart such that for any

G? function v with support in U
/ e KBy () upy (z, h)dz = O (e_c/hl/g) , as h \(0,

uniformly with respect to m € My and £ € V.

As a consequence of Theorem 2.1 we obtain a G¢ - quasimode Q of Pj, with an index set
My = {meZ": |E;, — h(im+9/4)| < h}

where ¢ = €(ug) € (0,1). It is easy to see that

#{m e My} = mVol (T" x E,)(1+ o(1))
1

where Vol (A) stands for the Lebesgue measure of the union A of the invariant tori in 7%*(M).
Corollary 2.3 Let upy,(z,h) = Uy(en)(z), and Ay (k) = K°(h(m + %29), h), form € Mp,. Then
Q = {(um(z,h), Am(h)) : m € Mp}

is a G?-quasimode of Py. Moreover, MS?(Q) = A.

Notice that ¢ > 7 4+ n + 1 could be any number > 2n choosing 7 > n — 1 sufficiently small. To
prove Corollary 2.2 we write PY = K} + RY, where the symbols of K7 and R are K°(I,h) and

R%(p,I,h) respectively. It is easy to see that
P(em)(®) = (Am(h) + R%(¢,h(m +9/4), h)) em ()
for any m € Mp. On the other hand,
IDIDFR(p,1,h)| < Cl*IFFL g0l | (o, T,h) € T" x Y x (0, ho],

where Y is a fixed compact neighborhood of E,, in D. Then there exist two positive constants
C1 and ¢ depending only on the constant C' such that for every o, 8 € Z’} the following estimate
holds

020 R, 1) < CI1PH g1t exp (—e|B— 1) 7T )
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for each (p,I,h) € T" xY x (0,ho], I ¢ E. Using the inequality puo < v < p, and choosing
appropriately ¢ we prove that Q satisfies (7). On the other hand (i7) follows directly from the
definition of the index set My, the orthogonality of e, and (i) in Theorem 2.1. O

The construction of quasimodes with polynomially small error terms (C* quasimodes) is

well known (see [3], [4], and the references there).

2.3 Applications to resonances.

Consider a selfadjoint second order differential operator in R"

Pr= Y. aalz)(hD)* 1.

lo|+i<2

As in [13] we impose the following hypothesis:

(H1) The coefficients a,(z) are real analytic and they can be extended holomorphically to
{rw: we C" dist(w,S") <e,re€C, |r| >R, argr € [—¢,0) — €|}

for some € > 0 and 6y > 0 and the coefficients of — h>A — P}, tend to zero as |z| — oo in

that set uniformly with respect to h.

(H2) For some C > 0 we have
Y aa(@)€® = CIEP, (2,6 € THR™).
|a|=2

Then the resonances Res Py, of Py, close to the real axis can be defined in a conic neighborhood
T of the positive half axis in the lower half plain by the method of complex scaling (see [10] and

[11]). They coincide in I' with the poles of the meromorphic continuation of the resolvent
(Pn—2)""t Lemp®R") = Hp (R™), Imz > 0.

Thang and Zworski [13] obtained lower bounds of the number of resonances Res P}, of P, close
to the real axis for any h € (0, ho], provided that there exists a quasimode Q for P,. Stefanov
[12] obtained sharp lower bounds, he showed that for each h € (0, hg] the number of resonances
of Py, close to the real axis is not less than the cardinality of the index set M}, of the quasimode

Q. Fix o > 2n and set
Ny, = #{\€ResP;: Rel € [Ey, E], 0 < —Tm A < h~"2e=¢/h/?
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where the resonances are counted with multiplicities, ¢ > 0 is the constant in the definition of
Q, and Ey < inf(Py(A)) and E > sup(Py(A)). Combining Corollary 2.3 with Theorem 1.1 in
[12] (which holds also for non-compactly supported perturbations of —h2A satisfying (H;) and
(H3)), and using (2.2), we obtain the following:

Theorem 2.4 Suppose that Py, satisfies (Hi), (Hz), and the assumptions of Theorem 2.1. Then

Ny > ﬁVol(A)(l—#o(l)), h ™\, 0.

On the other hand, it is known from Burq [1] that there exists € > 0 and C > 0 such that there
are no resonances of Py, 0 < h < hg, in

{AeC: ReA€[Ey,E],0 < —Im\ < ee ¢/},

The details of the proof of the results above will appear in [6] and [7]. Quasimodes with exponen-
tially small errors associated with a broken elliptic ray in an analytic manifold with boundary is
constructed in [2]. Similar results could be obtained also for Gevrey smooth Hamiltonians but

the proof will be technically more complicated.
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