

SEMINAIRE

Equations aux Dérivées Partielles 1999-2000

Georgi Popov

KAM Tori and Quantum Birkhoff Normal Forms

Séminaire É. D. P. (1999-2000), Exposé nº XIX, 13 p.

 $<\! http://sedp.cedram.org/item?id\!=\! SEDP_1999\text{-}2000___A19_0 >$

U.M.R. 7640 du C.N.R.S. F-91128 PALAISEAU CEDEX

> Fax : 33 (0)1 69 33 49 49Tél : 33 (0)1 69 33 49 99

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

KAM Tori and Quantum Birkhoff Normal Forms

Georgi Popov

Département de Mathématiques, UMR 6629,
Université de Nantes - CNRS,
B.P. 92208, 44322 Nantes-Cedex 03, France
e-mail: popov@math.univ-nantes.fr

Abstract

This talk is concerned with the Kolmogorov-Arnold-Moser (KAM) theorem in Gevrey classes for analytic hamiltonians, the effective stability around the corresponding KAM tori, and the semi-classical asymptotics for Schrödinger operators with exponentially small error terms. Given a real analytic Hamiltonian H close to a completely integrable one and a suitable Cantor set Θ defined by a Diophantine condition, we find a family Λ_{ω} , $\omega \in \Theta$, of KAM invariant tori of H with frequencies $\omega \in \Theta$ which is Gevrey smooth with respect to ω in a Whitney sense. Moreover, we obtain a symplectic Gevrey normal form of the Hamiltonian in a neighborhood of the union Λ of the KAM tori which can be viewed as a Birkhoff normal form (BNF) of H around Λ . This leads to effective stability of the quasiperiodic motion near Λ . We investigate the semi-classical asymptotics of a Schrödinger type operator with a principal symbol H. We obtain semiclassical quasimodes with exponentially small error terms which are associated with the Gevrey family of KAM tori Λ_{ω} , $\omega \in \Theta$. To do this we construct a quantum Birkhoff normal form (QBNF) of the Schrödinger operator around Λ in suitable Gevrey classes starting from the BNF of H. As an application, we obtain a sharp lower bound for the counting function of the resonances which are exponentially close to a suitable compact subinterval of the real axis.

1 KAM tori and BNFs for analytic hamiltonians in Gevrey classes.

1.1 Classical KAM theorem.

Let $\mathbf{T}^n = \mathbf{R}^n/2\pi\mathbf{Z}^n$, $n \geq 2$, denote by D a bounded domain in \mathbf{R}^n , and set $\mathbf{A}^n = \mathbf{T}^n \times D$, equipped with the standard symplectic two form $\sum d\varphi_j \wedge dI_j$. Consider in \mathbf{A}^n a real analytic hamiltonian $H^0: D \to \mathbf{R}$ which is independent of φ . The Hamiltonian vector field of H^0 is $X_{H^0} = \langle \nabla H^0(I), \partial/\partial \varphi \rangle$, hence, its flow is given by $\exp(tX_{H^0})(\varphi, I) = (\varphi + t\nabla H^0(I), I)$. Suppose H^0 is nondegenerate which means that the "frequency map" $\nabla H^0: D \to \Omega := \nabla H^0(D)$ is a diffeomorphism, and denote by $\omega \to I(\omega)$ the inverse map. In the coordinates (φ, ω) in $\mathbf{T}^n \times \Omega$,

the flow is given by $(t, \varphi, \omega) \to (\varphi + t\omega, I(\omega))$. Thus each torus $\Lambda^0_\omega := \mathbf{T}^n \times \{I(\omega)\}$ is invariant under X_{H^0} , and the restriction of the flow on it is a rotation $R_{t\omega}$ by tw.

The classical Kolmogorov-Arnold-Moser (KAM) theorem asserts that a large family of the invariant tori Λ_{ω}^{0} sustain small real analytic perturbations $H(\varphi, I)$ of $H^{0}(I)$, being just a little bit deformed. Fix $\kappa > 0$ and $\tau > n-1$. The frequences ω of these tori satisfy the following Diophantine condition:

$$|\langle \omega, k \rangle| \ge \frac{\kappa}{(\sum |k_j|)^{\tau}}, \text{ for all } 0 \ne k = (k_1, \dots, k_n) \in \mathbf{Z}^n.$$
 (1.1)

We denote by Ξ_{κ} the set of all $\omega \in \Omega$ satisfying (1.1) and also having distance $\geq \kappa$ to the boundary of Ω . Note that Ξ_{κ} is a Cantor set and the Lebesgue measure $\operatorname{vol}(\Xi_{\kappa}) > 0$ if κ is small enough. The KAM theorem says that if H is a sufficiently "small" (with respect to κ) real analytic perturbation of H^0 , then for each $\omega \in \Xi_{\kappa}$ there is an analytic Lagrangian submanifold Λ_{ω} of \mathbf{A}^n close to Λ^0_{ω} which is invariant under the flow of X_H and the restriction of $\exp(tX_H)$ to Λ_{ω} is conjugated to the rotation $R_{t\omega}$. Moreover, Λ_{ω} depend smoothly on $\omega \in \Xi_{\kappa}$ in the sense of Whitney. The Lagrangian manifolds $\Lambda_{\omega} \simeq \mathbf{T}^n$ are called KAM tori. It turns out that the family of KAM tori is Gevrey smooth with respect to the frequences ω .

1.2 KAM theorem for analytic hamiltonians in Gevrey classes.

We are going to show that for each $\tau' > \tau$ there exists a family of KAM tori Λ_{ω} , $\omega \in \Xi_{\kappa}$, which is $G^{\tau'+2}$ -Gevrey regular in the sense of Whitney. For each $\mu \geq 1$, we denote by $G^{\mu}(D)$ the space of all Gevrey functions in a domain $D \subset \mathbf{R}^n$ of index μ , namely $f \in G^{\mu}(D)$ if $f \in C^{\infty}(D)$ and for every compact subset Y of D there exists C = C(Y) > 0 such that

$$\sup_{I\in Y}|\partial_I^\alpha f(I)|\ \le\ C^{|\alpha|+1}\alpha!^{\ \mu}\,,\ \forall\,\alpha\in {\bf Z}^n_+\,,$$

where \mathbf{Z}_+ stands for the set of all nonnegative integers and $\alpha!^{\mu} = (\alpha_1! \dots \alpha_n!)^{\mu}$, $\alpha = (\alpha_1, \dots, \alpha_n)$. Evidently $G^1(D)$ coincides with the space of all analytic functions in D, while for $\mu > 1$ there are nontrivial compactly supported G^{μ} functions. Given $\sigma, \mu \geq 1$, we say that $R \in G^{\sigma,\mu}(\mathbf{T}^n \times D)$ if for every compact subset Y of D there exists C = C(Y) > 0 such that

$$\sup_{(\varphi,I)\in\mathbf{T}^n\times Y}|\partial_{\varphi}^{\beta}\partial_I^{\alpha}R(\varphi,I)| \leq C^{|\alpha|+|\beta|+1}\beta!^{\sigma}\alpha!^{\mu}, \ \forall \alpha, \beta\in\mathbf{Z}_+^n.$$
(1.2)

To formulate the "smallness" condition in the KAM theorem we extend H^0 holomorphically in a neighborhood of D. Let D^0 be a bounded domain in \mathbf{R}^n and $r^0 > 0$. Let H^0 be a real

analytic Hamiltonian in $D^0+r^0=\{z\in\mathbf{C}^n:|D^0-z|\leq r_0\}$, where $|D^0-z|=\inf_{z'\in D^0}|z'-z|$. Suppose H^0 is non-degenerate in D^0+r^0 . This means that the map $D^0\ni I\longrightarrow \nabla H^0(I)\in \nabla H^0(D^0)=\Omega^0$ is a diffeomorphism, the Hessian matrix $H^0_{zz}(z)$ of H^0 is non-degenerate in D^0+r^0 , and $|H^0_{zz}|_{D^0+r^0}$, $|(H^0_{zz})^{-1}|_{D^0+r^0}\leq R$ for some R>0, where $|\cdot|_{D^0+r^0}$ stands for the sup-norm in D^0+r^0 . Denote by $\psi_0:\Omega^0\to D^0$ the inverse map. Given $r^0\geq r>0$, s>0, and a subdomain $D\subset D^0$, we set

$$\mathbf{T}^{n} + s = \{z \in \mathbf{C}^{n}/2\pi \mathbf{Z}^{n} : |\text{Im } z| \leq s\}, \ \mathbf{U}_{s,r} = \mathbf{U}_{s,r,D} = (\mathbf{T}^{n} + s) \times (D + r),$$

the latter being equipped with sup-norm $|\cdot|_{s,r}$ and denote $\Omega = \nabla H^0(D)$.

As it was mentioned above, for each subdomain D of D^0 there exists $\widetilde{\kappa}(D) > 0$ such that $\operatorname{vol}(\Xi_{\kappa}) > 0$ for each $0 < \kappa < \widetilde{\kappa}(D)$. For such κ , we denote by Ω_{κ} the set of points of a positive Lebesgue density in Ξ_{κ} . In other words, $\omega \in \Omega_{\kappa}$ if for any neighborhood U of ω in Ω the Lebesgue measure of $U \cap \Xi_{\kappa}$ is positive. Obviously, Ω_{κ} and Ξ_{κ} have the same Lebesgue measure. The advantage of working with Ω_{κ} is that if R is a C^{∞} function in Ω and R = 0 on Ω_{κ} then all the derivatives of R also vanish on Ω_{κ} . This will be used to obtain a BNF of H near a family of KAM tori with frequences in Ω_{κ} .

Fix the constant $\tau > n-1$ in the small divisor condition (1.1) and chose $\tau' > \max(5/2, \tau)$ and s > 0. Notice that the condition $\tau' > 5/2$ is required only for dimensions $n \leq 3$. Fix an integer $N \geq 1$.

Theorem 1.1 Let H^0 be real analytic and non-degenerate in $D^0 + r^0$. Then there is $\delta > 0$ such that for any domain $D \subset D^0$, $0 < \kappa < \widetilde{\kappa}(D)$, $\kappa \le r \le r^0$, and any real analytic Hamiltonian H in $\mathbf{U}_{s,r,D}$ with $\delta_H := \kappa^{-2}|H - H^0|_{s,r} \le \delta$, there is a map $f: \mathbf{T}^n \times \Omega \to D$ of Gevrey class $G^{1,\tau'+2}$, such that each $\Lambda_{\omega} := \{(\theta, f(\theta, \omega)) : \theta \in \mathbf{T}^n\}$, $\omega \in \Omega_{\kappa}$, is a Lagrangian submanifold of $\mathbf{T}^n \times D$, invariant with respect to the flow of X_H , and the restriction of $\exp(tX_H)$ to Λ_{ω} is conjugated to the rotation $R_{t\omega}$ on \mathbf{T}^n . Moreover, for any 0 < q < 1, there exists L > 0 independent of D, κ , r, δ_H , such that

$$\left|D^{\beta}_{\theta}D^{\alpha}_{\omega}(f(\theta,\omega)-\psi_{0}(\omega))\right| \ \leq \ L^{|\beta|+1}\,\kappa^{1-|\alpha|}\,\,\beta!\,\delta^{q}_{H}\,\,,\,\,\forall\,(\theta,\omega)\,\in\,\mathbf{T}^{n}\times\Omega\,\,,\,\,\beta\,\in\,\mathbf{Z}^{n}_{+}\,,\,|\alpha|\leq N.$$

To prove the theorem we make use of the scheme proposed by Pöschel in [8].

1.3 BNF and effective stability

As a consequence we obtain a Birkhoff normal form (BNF) of H around the family of KAM tori Λ_{ω} , $\omega \in \Omega_{\kappa}$. It will be said that H admits a G^{μ} -BNF around the family of KAM tori with frequencies in Ω_{κ} if the following holds:

(BF) There exists a G^{μ} -diffeomorphism $\omega: D \to \Omega$ and an exact symplectic transformation $\chi_0 \in G^{1,\mu}(\mathbf{T}^n \times D, \mathbf{T}^n \times D)$ such that $H(\chi_0(\varphi, I)) = K_0(I) + R_0(\varphi, I)$, where $K_0 \in G^{\mu}(D)$ and $R_0 \in G^{1,\mu}(\mathbf{T}^n \times D)$ satisfy $D_I^{\alpha}R_0(\varphi, I) = 0$ and $D_I^{\alpha}(\nabla K_0(I) - \omega(I)) = 0$ for any $(\varphi, I) \in \mathbf{T}^n \times \omega^{-1}(\Omega_{\kappa})$ and $\alpha \in \mathbf{Z}_+^n$.

Corollary 1.2 Under the conditions of Theorem 1.1, the Hamiltonian H admits a G^{μ} -BNF, $\mu = \tau' + 2$, around the family of invariant tori Λ_{ω} with frequencies in Ω_{κ} . Moreover, the exact symplectic map χ_0 in (BF) has a generating function $\Phi \in G^{1,\mu}$, and the function Φ and the diffeomorphism ω in (BF) satisfy

$$\left|D_{\varphi}^{\beta}D_{I}^{\alpha}(\Phi(\varphi,I)-\langle\varphi,I\rangle)\right| \,+\, \left|D_{I}^{\alpha}(\omega(I)-\nabla H^{0}(I))\right| \,\,\leq\,\, L^{|\beta|+1}\,\kappa^{1-|\alpha|}\,\beta!\,\delta_{H}^{q}\,\,,\,\,\forall\beta\in\mathbf{Z}_{+}^{n}\,,$$

for $(\varphi, I) \in \mathbf{T}^n \times D$ and $|\alpha| \leq N$, where L > 0 is independent of D, κ , r, δ_H .

Recall that a smooth function Φ in $\mathbf{T}^n \times D$ is a generating function of a symplectic map χ_0 of $\mathbf{T}^n \times D$ into itself, if $\det(\mathrm{Id} - \Phi_{\theta I}) \neq 0$, and

$$\chi_0 \left(\Phi_I(\theta, I), I \right) = \left(\theta, \Phi_\theta(\theta, I) \right), \quad (\theta, I) \in \mathbf{T}^n \times D.$$

Set $E_{\kappa} = \omega^{-1}(\Omega_{\kappa})$ and denote by Y a compact neighborhood of E_{κ} in D. Then each torus $\mathbf{T}^n \times \{I\}$, $I \in E_{\kappa}$, is invariant under the flow of $\widetilde{H}(\varphi, I) = H(\chi_0(\varphi, I))$, and there we have $\exp(tX_{\widetilde{H}})(\varphi, I) = (\varphi + t\nabla K_0(I), I)$. Since R is G^{μ} with respect to $I \in D$, and its Taylor series vanishes at each $I \in E_{\kappa}$, there exist positive constants C_1 and c depending only on the constant C in (1.2) such that for every $\alpha, \beta \in \mathbf{Z}^n_+$ the following estimate holds

$$|\partial_{\varphi}^{\beta} \partial_{I}^{\alpha} R_{0}(\varphi, I)| \leq C_{1}^{|\alpha| + |\beta| + 1} \beta!^{\sigma} \alpha!^{\mu} \exp\left(-c |E_{\kappa} - I|^{-\frac{1}{\mu - 1}}\right), \tag{1.3}$$

for any $(\varphi, I) \in \mathbf{T}^n \times Y$, $I \notin E_{\kappa}$, where $|E_{\kappa} - I| = \inf_{I' \in E_{\kappa}} |I' - I|$ is the distance to the compact set E_{κ} .

The symplectic normal form (BF) obtained in Corollary 1.2 leads immediately to effective stability of the quasiperiodic motion around the invariant tori.

Corollary 1.3 There is $\widetilde{C}_0, \widetilde{C} > 0$ such that for each $0 < \varepsilon \le 1$, and any initial data $(\varphi_0, I_0) \in \mathbf{T}^n \times Y$ with $|E_{\kappa} - I_0| \le \varepsilon$ we have

$$|\exp(tX_{\widetilde{H}})(\varphi_0, I_0)| - (\varphi_0 + t\nabla K_0(I_0), I_0)| \leq \widetilde{C}_0 \varepsilon,$$

provided that

$$|t| \le \widetilde{C} \varepsilon \exp\left(\frac{c}{2} \varepsilon^{-1/(\tau'+1)}\right).$$

Effective stability (of the action) for analytic perturbations of completely integrable Hamiltonians was first studied by Nekhoroshev. The Nekhoroshev theorem states that the variation of the action $I(t) - I_0$ on each orbit $(\varphi(t), I(t)) = \exp(tX_{H_{\varepsilon}})(\varphi_0, I_0)$ of an analytic Hamiltonian $H_{\varepsilon} = H_0 + O(\varepsilon)$ remains ε -small in a finite but exponentially long time interval $0 \le t \le T \exp(\varepsilon^a)$, T > 0, a > 0, if H_0 satisfies certain generic steepness conditions (see [5], [9], and the references there).

1.4 KAM tori near an elliptic equilibrium.

Consider the Hamiltonian $P_0(x,\xi) = |\xi|^2 + V(x)$, where $V(x) \geq V(0) = 0$ has a nondegenerate minimum at x = 0 and V is analytic in a neighborhood of 0. There is a linear change of the coordinates in x such that $P_0(x,\xi) = \sum_{j=1}^n \alpha_j^0(x_j^2 + \xi_j^2)/2 + O(|(x,\xi)|^3)$ near the origin, where $\alpha_j^0 > 0$.

This is a special case of an analytic Hamiltonian P_0 with an elliptic equilibrium at some $\varrho_0 = (x_0, \xi_0)$ with the characteristic exponents $\pm i\alpha_1^0, \ldots, \pm i\alpha_n^0, \alpha_j^0 > 0$. Set $\alpha^0 = (\alpha_1^0, \ldots, \alpha_n^0)$. To apply Theorem 1.1 we exclude the resonances of order ≤ 4 . In other words, we assume that $\langle \alpha^0, k \rangle \neq 0$ for each $k = (k_1, \ldots, k_n) \in \mathbf{Z}^n$ with $0 < \sum |k_j| \leq 4$. Then there exists an analytic polar symplectic change of the variables $(x, \xi) = \chi_1(\varphi, I)$, such that $H(\varphi, I) := P_0(\chi_1(\varphi, I))$ admits the following Birkhoff normal form

$$H(\varphi, I) = H^{0}(I) + O(|I|^{5/2}), \text{ as } |I| \to 0, H^{0}(I) = P_{0}(\varrho_{0}) + \langle \alpha^{0}, I \rangle + \langle QI, I \rangle,$$
 (1.4)

where Q is a $n \times n$ matrix, $\varphi \in \mathbf{T}^n$ and I belongs to a proper open cone $\Gamma \subset \mathbf{R}^n_+$ with a vertex at 0. We suppose that H^0 is nondegenerated, which amounts to $\det Q \neq 0$.

To avoid the singularity of H at I=0, we consider

$$D^0 = \{ I \in \mathbf{R}^n : |I_j| < C_1 a_0, \ j = 1, \dots, n \},\,$$

where $0 < a_0 \ll 1$ and $C_1 > 1$. Obviously H^0 is nondegenerate in $D^0 + a_0$. For each $0 < a \le a_0$ we set $D = D_a = \{I \in \Gamma : C_1^{-1}a \le I_j \le C_1a, j = 1, ..., n\}$. Next we choose $\kappa = \kappa_a = \varepsilon a$, where $0 < \varepsilon \ll 1$ is fixed, then fix $0 < s \ll 1$, and take r = a. The perturbation H satisfies

$$|H - H^0|_{s,r} \le \kappa^2 C_2 a^{1/2} \le \kappa^2 \delta,$$

for each $0 < a \le a_0$ choosing a_0 small enough. Hence, applying Theorem 1.1 and Corollary 1.2, we obtain:

Corollary 1.4 Let ϱ_0 be an elliptic equilibrium of a real analytic Hamiltonian P_0 without resonances of order ≤ 4 . Denote by $H(\varphi,I) = H^0(I) + H_1(\varphi,I)$ the corresponding BNF (1.4) and suppose that $\det Q \neq 0$. Then for each $0 < a \leq a_0$, $a_0 \ll 1$, there exists a symplectic diffeomorphism χ_0 of Gevrey class $G^{1,\mu}$, $\mu = \tau' + 2$, mapping $\mathbf{T}^n \times D$ into itself, a G^{μ} -diffeomorphism $\omega: D \to \Omega$, and $K \in G^{\mu}(D)$ such that the Hamiltonian $\widetilde{H} = H \circ \chi_0 \in G^{1,\mu}(\mathbf{T}^n \times D)$ has the form $\widetilde{H}(\varphi,I) = K_0(I) + R_0(\varphi,I)$, where R_0 and $\omega(I) - \nabla K_0(I)$ are flat on $\mathbf{T}^n \times E_{\kappa}$ and $E_{\kappa} = \omega^{-1}(\Omega_{\kappa})$ respectively. The symplectic map χ_0 has a generating function $\Phi \in G^{1,\mu}(\mathbf{T}^n \times D)$ and for each $|\alpha| \leq 1$ and 0 < q < 1, we have

$$\begin{split} \left| D_{\varphi}^{\beta} D_{I}^{\alpha}(\Phi(\varphi,I) - \langle \varphi,I \rangle) \right| \; + \; \left| D_{I}^{\alpha}(\omega(I) - \nabla H^{0}(I)) \right| \\ \\ \leq \; C^{|\alpha| + |\beta| + 1} \, a^{3q/2 - |\alpha|} \; \beta! \, , \; \forall \beta \in \mathbf{Z}_{+}^{n} \, , \end{split}$$

for any $(\varphi, I) \in \mathbf{T}^n \times D$, where C does not depend on a.

2 Quantum Birkhoff normal forms and quasimodes with exponentially small errors.

2.1 Quantum Birkhoff normal forms.

Let M be either \mathbf{R}^n or a compact real analytic manifold of dimension $n \geq 2$ and let

$$\mathcal{P}_h = \sum_{j=0}^{J} P_j(x, hD) h^j, \ 0 < h \le h_0,$$
 (2.1)

be a formally selfadjoint h-differential operator acting on half densities in $C^{\infty}(M,\Omega^{\frac{1}{2}})$, where $P_j(x,\xi)$ are polynomials of ξ with analytic coefficients, and $D=(D_1,\ldots,D_n),\ D_j=-i\partial/\partial x_j$. The principal symbol of \mathcal{P}_h is $P_0(x,\xi),\ (x,\xi)\in T^*(M)$, and we suppose that the subprincipal symbol is zero. Our main example will be the Schrödinger operator $\mathcal{P}_h=-h^2\Delta+V(x)$, where

 Δ is the Laplace-Beltrami operator on M, associated with a real analytic Riemannian metric and V(x) is a real analytic potential on M bounded from below.

We suppose that there exists a real analytic exact symplectic diffeomorphism $\chi_1: \mathbf{T}^n \times D \longrightarrow U \subset T^*(M)$, where D is a domain in \mathbf{R}^n such that the Hamiltonian $H(\varphi,I):=(P_0\circ\chi_1)(\varphi,I)$ admits a $G^{\tau'+2}$ -BNF given by (BF) around a family of invariant tori with frequencies in Ω_κ . The map χ_1 provides "action-angle" coordinates for the "completely integrable part" of P_0 and it can be constructed by the Liouville-Arnold theorem. For example, if we take $M=\mathbf{R}^n$, $\mathcal{P}_h=-h^2\Delta+V(x)$, and suppose that V has a nondegenerate minimum V(0) and that there are no resonances of order ≤ 4 , then Corollary 1.3 holds. We set $\chi=\chi_1\circ\chi_0$, where χ_0 is given by (BF). Then $P_0(\chi(\varphi,I))=K_0(I)+R_0(\varphi,I)$. Staring from the $G^{\tau'+2}$ -BNF of the Hamitonian P_0 , we are going to obtain a QBNF of the operator \mathcal{P}_h in suitable Gevrey classes of pseudodifferential operators.

Let Λ be the union of the invariant tori $\Lambda_{\omega} = \chi(\mathbf{T}^n \times \{I(\omega)\})$ of P_0 with frequencies $\omega \in \Omega_{\kappa}$, where $\Omega \ni \omega \to I(\omega) \in D$ is the inverse to the frequency map $D \ni I \to \omega(I) \in \Omega$. The Maslov class of Λ_{ω} , $\omega \in \Omega_{\kappa}$, can be identified with an element ϑ of $H^1(\mathbf{T}^n; \mathbf{Z}) = \mathbf{Z}^n$ via the symplectic map χ . Notice that $\vartheta = (2, \ldots, 2)$ in the case when V has a nondegenerate minimum $E_0 = V(0)$. As in [3] we consider the flat Hermitian line bundle \mathbf{L} over \mathbf{T}^n which is associated to the class ϑ . The sections f in \mathbf{L} can be identified canonically with functions $\tilde{f}: \mathbf{R}^n \to \mathbf{C}$ so that $\tilde{f}(x+2\pi p) = e^{i\frac{\pi}{2}\langle\vartheta,p\rangle}\tilde{f}(x)$ for each $x \in \mathbf{R}^n$ and $p \in \mathbf{Z}^n$. It is easy to see that an orthonormal basis of $L^2(\mathbf{T}^n; \mathbf{L})$ is given by e_m , $m \in \mathbf{Z}^n$, where

$$\tilde{e}_m(x) = \exp(i\langle m + \vartheta/4, x \rangle).$$

Set $\nu = \tau + n + 1$ and fix τ' such that $\tau + n - 1 > \tau' > \max(\tau, 5/2)$. Then fix μ_0 such that $\nu > \mu_0 > \tau' + 2$, choose $\sigma > 1$ sufficiently close to 1 such that $\nu > \mu_0 > \sigma(\tau' + 1) + 1$, and set $\varrho = \sigma \nu$. Thus ϱ could be any number bigger than ν and sufficiently close to ν . Set $\ell = (\sigma, \mu_0, \varrho)$ and consider the class of Gevrey symbols $S_{\ell}(\mathbf{A}^n)$, $\mathbf{A}^n = \mathbf{T}^n \times D$, defined as follows: First we introduce a class of formal Gevrey symbols $FS_{\ell}(\mathbf{A}^n)$. Consider a sequence of smooth functions $p_j \in C_0^{\infty}(\mathbf{A}^n)$, $j \in \mathbf{Z}_+$ such that supp p_j is contained in a fixed compact subset of \mathbf{A}^n . We say that $\sum_{j=0}^{\infty} p_j(\varphi, I) h^j$ is a formal Gevrey symbol in $FS_{\ell}(\mathbf{A}^n)$ if there exists a positive constant C such that p_j satisfies the estimates

$$\sup_{\mathbf{A}_n} |\partial_{\varphi}^{\beta} \partial_I^{\alpha} p_j(\varphi, I)| \leq C^{j+|\alpha|+|\beta|+1} \beta!^{\sigma} \alpha!^{\mu} j!^{\varrho}$$

for any α, β and j. The function $p(\varphi, I; h)$, $(\varphi, I) \in \mathbf{A}^n$, is called a realization in \mathbf{A}^n of the formal symbol given above, if for each $0 < h \le h_0$ it is smooth with respect to (φ, I) , p is compactly supported in $I \in D$ uniformly with respect to (φ, h) , and if there exists a positive constant C_1 such that

$$\sup_{\mathbf{Q}} |\partial_{\varphi}^{\beta} \partial_{I}^{\alpha}(p(\varphi,I,h) - \sum_{j=0}^{N} p_{j}(\varphi,I)h^{j})| \leq |h^{N+1} C_{1}^{N+|\alpha|+|\beta|+2} \beta!^{\sigma} \alpha!^{\mu} (N+1)!^{\varrho}$$

for any multi-indices α, β and $N \in \mathbf{Z}_+$, where $\mathbf{Q} = \mathbf{A}^n \times (0, h_0]$. For example, one can take

$$p(\varphi, I, h) = \sum_{j < \eta h^{-1/\varrho}} p_j(\varphi, I) h^j,$$

where $0 < \eta \le \eta_0$ and $\eta_0 > 0$ depends only on the constant C and the dimension n. We denote by $S_{\ell}(\mathbf{A}^n)$ the corresponding class of symbols. Moreover, $g \in S_{\ell}^{-\infty}(\mathbf{A}^n)$ if

$$\sup_{\mathbf{Q}} |\partial_{\varphi}^{\beta} \partial_{I}^{\alpha} g(\varphi, I; h)| \leq h^{N} C^{N+|\alpha+\beta|+1} \beta!^{\sigma} \alpha!^{\mu} N!^{\varrho}$$

for $0 < h \le h_0$, $\forall N \in \mathbf{Z}_+$, and any multi-indices $\alpha, \beta \in \mathbf{Z}_+^N$, or equivalently

$$\sup_{\mathbf{Q}} |\partial_{\varphi}^{\beta} \partial_{I}^{\alpha} \, g(\varphi,I;h)| \,\, \leq \,\, C_{1}^{|\alpha+\beta|+1} \, \beta!^{\,\sigma} \, \alpha!^{\,\mu} \, \exp(-ch^{-1/\varrho})$$

for some C_1 , c > 0, and any $h \in (0, h_0], \alpha, \beta \in \mathbf{Z}_+^n$.

To each symbol $p \in S_{\ell}(\mathbf{A}^n)$ we associate an h-pseudodifferential operator $P_h : C^{\infty}(\mathbf{T}^n, \mathbf{L}) \to C^{\infty}(\mathbf{T}^n, \mathbf{L})$ by

$$\widetilde{\mathcal{P}_h u}(x) = (2\pi h)^{-n} \int_{\mathbf{R}^{2n}} e^{i\langle x-y,\xi\rangle/h} p(x,\xi,h) \, \widetilde{u}(y) d\xi dy, \, u \in C^{\infty}(\mathbf{T}^n, \mathbf{L}).$$

It is well defined modulo $\exp(-ch^{-1/\varrho})$. Indeed, for any $p \in S_{\ell}^{-\infty}$ we have

$$||\mathcal{P}_h u||_{L^2} \le C \exp(-ch^{-1/\varrho})||u||_{L^2}, \ u \in L^2(\mathbf{T}^n, \mathbf{L}),$$

with some positive constants c and C.

Theorem 2.1 Suppose that there exists a real analytic exact symplectic map $\chi_1: \mathbf{T}^n \times D \to U \subset T^*(M)$ such that the Hamiltonian $H(\varphi, I) = P_0(\chi_1(\varphi, I)), \ (\varphi, I) \in \mathbf{T}^n \times D$, satisfies (BF) for $\mu = \tau' + 2$. Then there exist a family of uniformly bounded h-Fourier integral operators $U_h: L^2(\mathbf{T}^n; \mathbf{L}) \to L^2(M), \ 0 < h \le h_0$, associated with the canonical relation graph (χ) such that the following holds:

- (i) $U_h^*U_h$ -Id is a pseudodifferential operator with a symbol in the Gevrey class $S_{\ell}(\mathbf{T}^n \times D)$ which belongs to $S_{\ell}^{-\infty}$ on $\mathbf{T}^n \times Y$, where Y is a subdomain of D containing E_{κ} ,
- (ii) $\mathcal{P}_h \circ U_h = U_h \circ \mathcal{P}_h^0$, and the full symbol $p^0(\varphi, I, h)$ of \mathcal{P}_h^0 has the form $p^0(\varphi, I, h) = K^0(I, h) + R^0(\varphi, I, h)$, where the symbols

$$K^{0}(I,h) = \sum_{0 < j < \eta h^{-1/\varrho}} K_{j}(I)h^{j} \quad and \quad R^{0}(\varphi,I,h) = \sum_{0 < j < \eta h^{-1/\varrho}} R_{j}(\varphi,I)h^{j}$$

belong to the Gevrey class $S_{\ell}(\mathbf{A}^n)$, $\eta > 0$ is a constant, K^0 is real valued, and R^0 is equal to zero to infinite order on the Cantor set $\mathbf{T}^n \times E_{\kappa}$.

The idea of the proof of Theorem 2.1 is as follows: Conjugating \mathcal{P}_h with suitable Fourier integral operator with a Gevrey symbol we obtain a pseudodifferential operator $\widetilde{\mathcal{P}}_h$ with principal symbol $K_0 + R_0$, subprincipal symbol 0, and full symbol $p(\varphi, I; h)$ in $S_{\widetilde{\ell}}(\mathbf{T}^n \times D)$, $\widetilde{\ell} = (\sigma, \mu_0, \sigma + \mu_0 - 1)$. Then we transform $\widetilde{\mathcal{P}}_h$ to a normal form \mathcal{P}_h^0 conjugating it with an elliptic pseudodifferential operator A_h with a symbol $a(\varphi, I, h)$ in $S_{\ell}(\mathbf{A}^n)$. Denote by $p \circ a$ the symbol of $\widetilde{\mathcal{P}}_h A_h$. The main technical part in the proof is the following:

Theorem 2.2 There exist symbols a and p^0 in $S_{\ell}(\mathbf{T}^n \times D)$, $\ell = (\sigma, \mu_0, \varrho)$, given by

$$a(\varphi, I, h) \sim \sum_{j=0}^{\infty} a_j(\varphi, I) h^j, \ p^0(\varphi, I, h) \sim \sum_{j=0}^{\infty} p_j^0(\varphi, I) h^j,$$

where $a_0 = 1$, $p_0^0(\varphi, I) = K_0(I) + R_0(\varphi, I)$, $p_1^0 = 0$, the functions $p_j^0(\varphi, I) - p_j^0(0, I)$, $j \ge 0$, are flat at $\mathbf{T}^n \times E_{\kappa}$, and $p \circ a - a \circ p^0 \in S_{\ell}^{-\infty}(\mathbf{T}^n \times Y)$.

2.2 Quasimodes with exponentially small errors

We define a G^{ϱ} (Gevrey) quasimode \mathcal{Q} of \mathcal{P}_h as follows:

$$Q = \{ (u_m(\cdot, h), \lambda_m(h)) : m \in \mathcal{M}_h \},$$

where $u_m(\cdot, h) \in C_0^{\infty}(M)$ has a support in a fixed bounded domain independent of h, $\lambda_m(h)$ are real valued functions of $h \in (0, h_0]$, \mathcal{M}_h is a finite index set for each fixed h, and

(i)
$$||\mathcal{P}_h u_m - \lambda_m(h) u_m||_{L^2} \le C e^{-c/h^{1/\varrho}}, m \in \mathcal{M}_h$$

(ii)
$$|\langle u_m, u_l \rangle_{L^2} - \delta_{m,l}| \leq C e^{-c/h^{1/\varrho}}, m, l \in \mathcal{M}_h,$$

for $0 < h \le h_0$. Here C and c are positive constants, and $\delta_{m,l}$ is the Kronecker index.

We define the G^{ϱ} micro-support $MS^{\varrho}(Q) \subset T^*(M)$ of Q as follows: $(x_0, \xi_0) \notin MS^{\varrho}(Q)$ if there exist compact neighborhoods U of x_0 and V of ξ_0 in a given local chart such that for any G^{ϱ} function v with support in U

$$\int e^{-i\langle x,\xi\rangle/h} v(x) u_m(x,h) dx = O\left(e^{-c/h^{1/\varrho}}\right), \text{ as } h \searrow 0,$$

uniformly with respect to $m \in \mathcal{M}_h$ and $\xi \in V$.

As a consequence of Theorem 2.1 we obtain a G^{ϱ} - quasimode $\mathcal Q$ of $\mathcal P_h$ with an index set

$$\mathcal{M}_h = \{ m \in \mathbf{Z}^n : |E_{\kappa} - h(m + \vartheta/4)| \le h^{\varepsilon} \}$$

where $\varepsilon = \varepsilon(\mu_0) \in (0,1)$. It is easy to see that

$$\#\{m \in \mathcal{M}_h\} = \frac{1}{(2\pi h)^n} \operatorname{Vol}\left(\mathbf{T}^n \times E_\kappa\right) (1 + o(1))$$
$$= \frac{1}{(2\pi h)^n} \operatorname{Vol}\left(\Lambda\right) (1 + o(1)), \ h \searrow 0, \tag{2.2}$$

where Vol (Λ) stands for the Lebesgue measure of the union Λ of the invariant tori in $T^*(M)$.

Corollary 2.3 Let $u_m(x,h) = U_h(e_m)(x)$, and $\lambda_m(h) = K^0(h(m + \frac{1}{4}\vartheta), h)$, for $m \in \mathcal{M}_h$. Then

$$Q = \{(u_m(x,h), \lambda_m(h)) : m \in \mathcal{M}_h\}$$

is a G^{ϱ} -quasimode of \mathcal{P}_h . Moreover, $MS^{\varrho}(\mathcal{Q}) = \Lambda$.

Notice that $\varrho > \tau + n + 1$ could be any number > 2n choosing $\tau > n - 1$ sufficiently small. To prove Corollary 2.2 we write $P_h^0 = K_h^0 + R_h^0$, where the symbols of K_h^0 and R_h^0 are $K^0(I, h)$ and $R^0(\varphi, I, h)$ respectively. It is easy to see that

$$P_h^0(e_m)(\varphi) = (\lambda_m(h) + R^0(\varphi, h(m+\vartheta/4), h)) e_m(\varphi)$$

for any $m \in \mathcal{M}_h$. On the other hand,

$$|D_{\varphi}^{\beta}D_{I}^{\alpha}R^{0}(\varphi,I,h)| \leq C^{|\alpha|+|\beta|+1}\beta!^{\sigma}\alpha!^{\mu_{0}}, \ \forall (\varphi,I,h) \in \mathbf{T}^{n} \times Y \times (0,h_{0}],$$

where Y is a fixed compact neighborhood of E_{κ} in D. Then there exist two positive constants C_1 and c depending only on the constant C such that for every $\alpha, \beta \in \mathbf{Z}_+^n$ the following estimate holds

$$|\,\partial_\varphi^\beta\partial_I^\alpha R^0(\varphi,I,h)| \,\,\leq\,\, C_1^{|\alpha|+|\beta|+1}\,\beta!^{\,\sigma}\alpha!^{\,\mu_0}\,\exp\left(-c\left|E_\kappa-I\right|^{\,-\frac{1}{\mu_0-1}}\right)\,,$$

for each $(\varphi, I, h) \in \mathbf{T}^n \times Y \times (0, h_0]$, $I \notin E_{\kappa}$. Using the inequality $\mu_0 < \nu < \varrho$, and choosing appropriately ε we prove that \mathcal{Q} satisfies (i). On the other hand (ii) follows directly from the definition of the index set \mathcal{M}_h , the orthogonality of e_m , and (i) in Theorem 2.1.

The construction of quasimodes with polynomially small error terms (C^{∞} quasimodes) is well known (see [3], [4], and the references there).

2.3 Applications to resonances.

Consider a selfadjoint second order differential operator in \mathbf{R}^n

$$\mathcal{P}_h = \sum_{|\alpha|+j \le 2} a_{\alpha}(x) (hD)^{\alpha} h^j.$$

As in [13] we impose the following hypothesis:

 (H_1) The coefficients $a_{\alpha}(x)$ are real analytic and they can be extended holomorphically to

$$\{r\omega: \omega \in \mathbf{C}^n, \operatorname{dist}(\omega, \mathbf{S}^n) < \varepsilon, r \in \mathbf{C}, |r| > R, \arg r \in [-\varepsilon, \theta_0 - \varepsilon]\}$$

for some $\varepsilon > 0$ and $\theta_0 > 0$ and the coefficients of $-h^2\Delta - \mathcal{P}_h$ tend to zero as $|x| \to \infty$ in that set uniformly with respect to h.

 (H_2) For some C > 0 we have

$$\sum_{|\alpha|=2} a_{\alpha}(x)\xi^{\alpha} \geq C |\xi|^{2}, (x,\xi) \in T^{*}(\mathbf{R}^{n}).$$

Then the resonances $\operatorname{Res} \mathcal{P}_h$ of \mathcal{P}_h close to the real axis can be defined in a conic neighborhood Γ of the positive half axis in the lower half plain by the method of complex scaling (see [10] and [11]). They coincide in Γ with the poles of the meromorphic continuation of the resolvent

$$(\mathcal{P}_h - z)^{-1} : L^2_{\text{comp}}(\mathbf{R}^n) \to H^2_{\text{loc}}(\mathbf{R}^n), \text{ Im } z > 0.$$

Thang and Zworski [13] obtained lower bounds of the number of resonances Res \mathcal{P}_h of \mathcal{P}_h close to the real axis for any $h \in (0, h_0]$, provided that there exists a quasimode \mathcal{Q} for \mathcal{P}_h . Stefanov [12] obtained sharp lower bounds, he showed that for each $h \in (0, h_0]$ the number of resonances of \mathcal{P}_h close to the real axis is not less than the cardinality of the index set \mathcal{M}_h of the quasimode \mathcal{Q} . Fix $\varrho > 2n$ and set

$$N_h = \#\{\lambda \in \text{Res } \mathcal{P}_h : \text{Re } \lambda \in [E_0, E], 0 < -\text{Im } \lambda \le h^{-n-2} e^{-c/h^{1/\varrho}} \},$$

where the resonances are counted with multiplicities, c > 0 is the constant in the definition of \mathcal{Q} , and $E_0 < \inf(P_0(\Lambda))$ and $E > \sup(P_0(\Lambda))$. Combining Corollary 2.3 with Theorem 1.1 in [12] (which holds also for non-compactly supported perturbations of $-h^2\Delta$ satisfying (H_1) and (H_2)), and using (2.2), we obtain the following:

Theorem 2.4 Suppose that \mathcal{P}_h satisfies (H_1) , (H_2) , and the assumptions of Theorem 2.1. Then

$$N_h \geq \frac{1}{(2\pi h)^n} \operatorname{Vol}(\Lambda)(1+o(1)), \ h \searrow 0.$$

On the other hand, it is known from Burq [1] that there exists $\varepsilon > 0$ and C > 0 such that there are no resonances of \mathcal{P}_h , $0 < h \le h_0$, in

$$\{\lambda \in \mathbf{C} : \operatorname{Re} \lambda \in [E_0, E], 0 < -\operatorname{Im} \lambda \le \varepsilon e^{-C/h} \}.$$

The details of the proof of the results above will appear in [6] and [7]. Quasimodes with exponentially small errors associated with a broken elliptic ray in an analytic manifold with boundary is constructed in [2]. Similar results could be obtained also for Gevrey smooth Hamiltonians but the proof will be technically more complicated.

References

- [1] N. Burq, Absence de résonance près du réel pour l'opérateur de Schrödinger, Seminair de l'Equations aux Dérivées Partielles, n^o 17, Ecole Polytechnique, 1997/1998
- [2] F. Cardoso, G. Popov, Quasimodes with exponentially small errors associated with broken elliptic rays, in preparation
- [3] Y. Colin de Verdière, Quasimodes sur les variétés Riemanniennes, Inventiones Math., Vol. 43, 1977, pp. 15-52
- [4] V. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Springer-Verlag, Berlin, 1993.
- [5] P. Lochak, Canonical perturbation theory:an approach based on joint approximations, Uspekhi Mat. Nauk, Vol. 47, 6, 1992, pp. 59-140 (in Russian); translation in: Russian Math. Surveys, Vol. 47, 6, 1992, pp. 57-133.

- [6] G. Popov, Invariant tori effective stability and quasimodes with exponentially small error term I Birkhoff normal forms, *Ann. Henri Poincaré*, 2000, to appear.
- [7] G. Popov, Invariant tori effective stability and quasimodes with exponentially small error term II Quantum Birkhoff normal forms, *Ann. Henri Poincaré*, 2000, to appear.
- [8] J. Pöschel, Lecture on the classical KAM Theorem, School on dynamical systems, May 1992, International center for science and high technology, Trieste, Italy
- [9] J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems, Math. Z., Vol. 213, 1993, pp. 187-217.
- [10] J. Sjöstrand, A trace formula and review of some estimates for resonances. In: L. Rodino (eds.) Microlocal analysis and spectral theory. Nato ASI Series C: Mathematical and Physical Sciences, 490, pp. 377-437: Kluwer Academic Publishers 1997
- [11] J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, Journal of AMS, Vol. 4(4), 1991, pp. 729-769.
- [12] Stefanov P.: Quasimodes and resonances: Sharp lower bounds, *Duke Math. J.*, **99**, 1, 1999, pp. 75-92.
- [13] S.-H. Tang and M. Zworski, ¿From quasimodes to resonances, Math. Res. Lett., 5, 1998, pp. 261-272.