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Resonances for metric (and other) bottles.

Johannes Sjostrand
Centre de Mathématiques, Ecole Polytechnique
F-91128 Palaiseau, cedex*

1 Introduction

In recent years, several results describing upper bounds on the number of
resonances have been obtained and in general they are expected to be sharp
with respect to the order of magnitude. There has also been considerable
progress concerning existence of resonances and corresponding lower bounds,
but it is more rare to get the right order of magnitude and even more rare to
get close to something like Weyl asymptotics. The methods used so far are
either based on straight forward constructions in simple cases, quasi-mode
constructions, or some kind of a trace formula. Arguments from scattering
theory have also been successfully used.

In this talk, we describe the results of [5], where some of the earlier results
are improved and extended, and we get close to Weyl asymptotics for the
number of resonances close to the real axis. More precisely we consider fairly
massive (possibly long range) perturbations of the Laplacian. The proof
involves trace formula techniques (see [4, 5] ) to get a reduction to situations
reminiscent of that of a potential well in an island, and an adaptation of an
argument of G.Vodev [11], to get estimates beyond the real axis.

2 Statement of the results

We work in the black box framework introduced by Zworski and the author
in [6], with long range perturbations ([4, 5]). Let

H :HRO @J_ Lz(Rn\B(O, Ro)) (21)
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be a complex Hilbert space equal to the orthogonal sum of an abstract part
H g, and L? over the complement in R™ of the open ball of radius Ry centered
at 0. The orthogonal projections will be denoted by u +— 1rn\B(o,ro)%, ©
1B(0,r,)u and sometimes by the corresponding symbols of restriction.

Let P : H — H be an unbounded self-adjoint operator with domain D,
and assume that

Lr\5(0,70)D = H*(R" \ B(0, Ry)) (2.2)

If w € H*(R") vanishes near B(0, Ry) then u € D. (2.3)

Here we also consider u as an element of # in the natural way (with Hg,
component equal to zero).
Outside B(0, Ry) we assume that P coincides with a differential operator

Q, in the sense that (P“)\Rn\B(o,RO) = Q(u|Rn\B(07RO), where

Q= Z aq () D, (2.4)

la|<2

and a, belong to the space C°(R") of smooth functions that are bounded
together with all their derivatives. We assume that ( is elliptic in the sense
that

pe.6) = Y aul)et > Sle” (25

|a|=2
We also assume that
P— —A, z— oo, (2.6)
where A = Y %, in the sense that the coefficients of P converge to those

of —A. Let M be a large torus of dimension n so that a neighborhood of
B(0, Ry) can be viewed as a subset of M. Asin [6, 4, 5] we define a reference
operator P* : H* — H* where H* = Hp, ® L*(M \ B(0, Ry)), such that P*

is equal to P near B(0, Ry) in the natural way, and is equal to a positive
second order elliptic operator outside this ball. As in the quoted papers, we
then know that P! has a purely discrete spectrum and we let

denote the number of eigenvalues in the interval [—A, A]. Assume
N(PL[=XA]) = 0(1)@(N), A > Op(1), © = By, (2.7)

VC > 1, 3C > 1, such that ®(Ct) < Cd(¢). (2.8)
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Here we let P and possibly the black box part Hg, depend on some
additional parameter, while Ry and the exterior part () are fixed. Dependence
with respect to this additional parameter is indicated by the subscript bb, and
estimates and constants are uniform in this parameter when this subscript is
absent.

Finally we assume that the a, extend holomorphically to the set

{rw; w e C", dist(w, S"™') <€, 0 < argr < by, 7 > Ry},

for some ¢ > 0, Ry > Ry, and that P — —A when z tends to infinity in this
larger set. Here we also assume that

™ ™
n<%<2 (2.9)
so that the dimension n is > 3. Under these assumptions we have the fol-
lowing two results, out of which the first one can be viewed as an extension
of a result of Vodev [11]. Recall from [6, 4] that the set of resonances of h?P
is a well-defined discrete subset Res (h?P) of el1-200:0]0, co[. Each resonance
has a natural multiplicity which is a natural number > 1, and we will count
the resonances with their multiplicity.

Theorem 2.1 If K CC 1720000, oo| is independent of h, then f(Res (h2P)N
K) = OK(h_n), 0<h < hy.

Theorem 2.2 Let I CC J CC K CC|0,00[ be open intervals, and let ¢ > 0
be small enough depending on J and 6y. Then for every e > 0,

, | > #(o(h2PH) N 1) — e®(L) — Op yee(1)hT
#(Res (B°P) N (J +i] = ¢, 0])) { < #(0(B2P) N K) + €®(:5) + Op 7o o(1)h

Notice that the last result is false in dimension 1. Indeed, we can view
—A on R in such a way that this operator on an arbitrarily long interval
[—R, R] is the black box part with some fixed Ry say Ry = 1. In dimension
2, there is a chance that Theorem 2.2 remains valid, possibly after adding
some assumption about the negative spectrum of P.

These results also have a non-semi-classical formulation. It is then prac-
tical to consider \/Res (P), the set of square roots of resonances, i.e. the
poles of the meromorphic extension of (P — A?)™ : Heomp — Dioc from the
first quadrant across the positive real axis. Theorem 2.1 implies

#(y/Res (P) N ell=bote—<]1 ) < O.(1)r", (2.10)

uniformly with respect to the black box part, for r > ry, > 1.
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To have the corresponding formulation of Theorem 2.2, we assume

VC > 1, 3C(C) > 1, ¢(C) > 1, such that ®(Ct) > C(C)d(t), ¢ > t(C).
(2.11)
Again this assumption is uniform with respect to the black box part. With
this additional assumption we can get from Theorem 2.2 that for all € > 0,
6, €]0, 6], there exists ry, > 0 such that:

#(/Res (P) Nel 011 ) (2.12)

{ > #(o (PN, (77)°]) — €@(r?) — Ocp, (")
< #(o(PONIL, (1 + €)r)’[) + €B(r?) + Ocp, (1),

for r > ry,, where the estimates are uniform in the black box part. In the
case when H = L?>(R"™) and P is an elliptic 2nd order differential operator
with principal symbol p(z, £), the estimates (2.12) tend to Weyl asymptotics
when [ [ 1< g, pz,)<1 42d§ tends to infinity.

In [7] we studied the Laplace-Beltrami operator for a metric bottle, ob-
tained by connecting a sphere of large radius to R" in such a way that we get
the standard Euclidean metric outside the ball B(0,1), and we got a lower
bound on the number of resonances near R of the right order of magnitude.
Here and in subsequent improved and generalized results by G. Popov [2], and
V. Petkov, M. Zworski [3], the existence of many periodic trajectories with
the same period was exploited together with a trace formula or arguments
from scattering theory. Periodic trajectories can also be used together with
quasi-mode constructions to give lots of resonances near the real axis, see
P. Stefanov [8] and earlier works by Stefanov—Vodev [9] and TangZworski
[10]. Our results above are of a different nature and they do not use the
existence of closed or even trapped classical trajectories. It is not difficult to
construct examples of metric perturbations, for which (2.12) gives close to
Weyl asymptotics, and for which no classical trapped trajectories exist. Our
results also improve existing ones (see [12]) for degenerate operators.

3 Outline of the proof

~260.00]1, oo[ as the eigenvalues

As in [6], [4, 5], we view the resonances in e’
in the same sector of

P, (3.1)

0 = ‘1—‘90’

where 'y, C C" is a suitable contour which coincides with R"™ in B(0, R;),
for some R; > Ry and with e?®R" near infinity. This can be done in such a

XVI+4



way that the principal symbol pg, of P, satisfies

|arg (pe, (, €)) + 20(x)| < €, (3-2)

where €5 > 0 is any fixed number and 6(z) € [0, 6y] depends continuously on
z and is equal to 0 for |z| < R; and is equal to 6, for large |z|.

In proving a local trace formula for resonances ([4, 5]), we applied a
perturbation of trace class norm O(®(75)) to h>Py, (or to a more general
semiclassical operator) which had the effect of chasing all eigenvalues from
some fixed neighborhood of some real positive energy E,. Here, such a per-
turbation would be too large, and instead, we make a perturbation supported
in a shell around the black box, which chases the eigenvalues from a region
outside the real axis and creates an operator which behaves like a Schrodinger
operator with a potential well in an island. (See [1].)

The perturbed operator has the form
P(u) = P+ L(p), (3.3)

with P = Py, from now on, where

L(p) = Ap*®1(z) 0 Op (‘P(w)e_m(””)x(%)) ° @y(z). (3.4)

Here A > 0 is a sufficiently large fixed constant, u € C a complex variable
satisfying

Al 1

A ez, 3.5

2 e[y (3.5)
—fy < arg A, arg u < 01, (3.6)

where 6; > 0 is small. x is a suitable function in S, such that £ — X(%) is

alsoin §. ®,®; € CP(R™\ B(0, Ry)) are cut-off functions, equal to 1 on a
shell |z| € [Ry, Ry], where Ry is so large that ['y, coincides with e®R™ for
|z| > Rs. By Op, we denote the standard Weyl quantization of symbols.

Let || ||, || ||+ denote the operator and the trace class norm for operators
in H, we have:

Proposition 3.1 (a) We have |L(u)|| = O(1?), || L(@)]ee = O(p>™).
(b) If
arg A ¢ {07 _00} + [07 arg M] + [_617 61]7 (37)

then (P — X2)~! eists and is O(1)|p|™2 : H — H, when |p|, |\ > 1.
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Here €; can be chosen arbitrarily small, provided that I'y, is chosen conve-
niently depending on €;. (When arg i < 0, we define [0, arg u] to be [arg u, 0].)
Let first g > 1 and put A = z/h, with z € C, 2| ~ 1,0 < h < 1. Put

D(X, ) = det[(X* = P)(A? = P(u))7"). (3-8)
Then for arg z €|ey, 6], we get
log|D| ~ h7", (3.9)
while for argz €] — 0y + €1, —€y|:
log |[D| < O(1)h™". (3.10)

One can also prove that the distribution of eigenvalues of P with argument
in [—€;, &) and module in [£, 24, is close to the one for P?, and in doing so,
one uses ideas from the study of Schrodinger operators with a potential well
in an island.

In order to get further, we also need to verify that

2o = 2o with |z9| ~ 1, argzy €] — 0y + €1, —€1[ such that (3.11)
(for the corresponding A = \g) log |D| > —O(1)h™

Assuming (3.11) it is fairly straight forward to estimate the number of
zeros of z — D with argz €| — 0y + €1, —€;[, |2| ~ 1, and we get Theorem
2.1. One can also consider the contour integral

— / (2 log D)dz (3.12)

over a rectangle shaped contour close to the real axis, with a suitable gaussian
function f and deduce that the eigenvalues of P = Py, near the real axis are
approximately distributed like those of P. This leads to Theorem 2.2.

For the verification of (3.11), we have been inspired by a work of Vodev
[11], who used a theorem of Carleman to obtain estimates as in Theorem 2.1.
In our case we also need further control, and it turned out to be convenient
to use more direct estimates on subharmonic and harmonic functions.

We fix a small ¢, > 0 and consider

D(A) = det((\2 = P)(A\2 — P(e’2/2)))7Y), (3.13)

for e — 0y < arg\ < —ez, 1 < |A| < 7, 7> 1. Then log |D(A)| < O(1)|A™.
Making the change of variables,

90 — 262
w

A = exp( —i(0y — €2)),

XVI-6



we get
_ Oy — 2
log |D| < ™% 7 = (o = 2¢) > 1, (3.14)
™
when
0<Rew<R, 0<Imw<m, (3.15)

where R > 0. It is easy to see that there exists wy = wy g, with 7 <Imw,; <
3%, }1 < Rew; < %, for which we have log|D| > e~ (*~VE when R is large
enough, R > Ry,. (It suffices to choose w; with log|D| # 0 and then take R
large enough.) Using estimates for the Green and Poisson kernels of the long
rectangle (3.15), we can find w, with R—3 < Rew; < R—1, T < Imw, < 2F,
for which log |D| > —O(1)e ™. For the corresponding Ao, 1o = €2/2 )y, we
then get log|D| > —O(1)h™™ as in (3.11), and making similar but easier
estimates with Ay fixed and p variable, we find a corresponding real 1 = s
for which (3.11) holds with Ay = As.
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