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and embedded point spectrum.
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Department of Mathematical Methods in Physics
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Abstract

A method to study the embedded point spectrum of self-adjoint operators is
described. The method combines the Mourre theory and the Limiting Absorption
Principle with the Feshbach Projection Method. A more complete description of
this method is contained in a joint paper with V. Jaksi¢, where it is applied to a
study of embedded point spectrum of Pauli-Fierz Hamiltonians.
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1 Introduction

In this lecture I would like to describe some of the main ideas of my joint paper with V.
Jaksi¢ “Spectral theory of Pauli-Fierz Hamiltonians I” [DJ] devoted to precise estimates on
the location and multiplicity of the embedded point spectrum of Pauli-Fierz Hamiltonians.
Pauli-Fierz Hamiltonians are models describing interaction of a quantum system with a
bosonic field (eg. with radiation). The method described [DJ] is quite general and is
not restricted to the case of Pauli-Fierz Hamiltonians. In this lecture I will present a
simplified version of this method in an abstract setting. For the proofs and additional
results the reader should consult [DJ].
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2 Perturbation theory around an isolated eigenvalue

Perturbation theory for isolated eigenvalues is much easier and better known than per-
turbation theory for embedded eigenvalues. For comparison let us recall some of its main
points [Kato, RS4].

In what follows, the spectrum and point spectrum of a self-adjoint operator B will be
denoted by o(B) and oy, (B) respectively. 1¢(B) will denote the spectral projection of B
onto ©.

Suppose that Hy := Hq+ AV is a family of self-adjoint operators on a Hilbert space .
To simplify, let us assume that V' is bounded. Let e be an isolated point of the spectrum
of Hy. It is well known that, for a small coupling constant A, a nonempty subset of o(H))
of the total multiplicity equal to dim 1., will be situated near e.

In order to describe the approximate location and multiplicity of this part of spetrum,
it is convenient to represent H as a direct sum H' @& H' where H° := Ranly,(H,).
Operators on H can be represented as 2 x 2 matrices, for instance,

(2.1)

m= [

HYY HY¥
Note, in particular, that HJY = e, Hy® = Hg" = 0. Let us assume that V¥ = 0 — this

assumption will eliminate the first order corrections in the perturbation expansion. Define
an auxilliary operator

w(e) ==V (e— Hy") V™.

Note that, since e is an isolated point of o(Hy), w(e) is a well defined bounded self-adjoint
operator.
The following theorem can be easily shown by the methods of [Kato]:

Theorem 2.1 There exist € > 0, C > 0, A > 0 such that for |\| < A the following is
true:

1) o(Hy) Nle—ce+e€ Ce+ ANa(w(e)) +[-CA,CN.
2) If m is an isolated point of o(w(e)), then

dim 1{e+/\2m}+[70)\3,c/\3} = dim 1{m} (w(e))

3 Heuristic perturbation theory around an embed-
ded eigenvalue

Now suppose that e € o,,(Hp) is not isolated in o(Hy). Then, clearly, Theorem 2.1 needs
a modification.
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A priori, w(e) is not even well defined. It is however reasonable to asume that there
exists the limit ~ B ~
w(e +1i0) := 1%1 V¥ (e+ie— H™)T'VW, (3.2)

It is easy to see that if the limit (3.2) exists, then it will be dissipative. (We say that
B is dissipative if B + B* < 0). Clearly, o(w(e + i0)) lies in the closed lower half
plain. Heuristically, one expects that for small nonzero A no eigenvalues of H, should be
associated with nonreal eigenvalues of w(e + 10). If the Hamiltonian allows an analytic
continuation, these eigenvaleus will be associated with resonances. The real eigenvalues
of w(e + 10) either will give rise to eigenvalues of H), or they will also “dissolve in the
continuum” by the effects of a higher order in A.
These heuristic expectations are expressed in the following conjecture:

Conjecture 3.1 Set 7. := RN o(w(e +10)). There existe >0, C >0, x >0, A >0
such that for 0 < |A| < A the following is true:

1) o(Hy)N[e—ee+e€ Ce+ NT, + [-CINTF CA*TH].
2) If m is an isolated point of T., then

Note that the above conjecture is well rooted in practical computations of physicists.
In the physics literature, the real part of o(w(e +10)) is sometimes called the Lamb shift
and the imaginary part of o(w(e +i0)) is called the Fermi Golden Rule [He].

Clearly, Conjecture 3.1 is true only under certain technical assumptions. A set of
relatively weak assumptions implying Conjecture 3.1 will be presented later in this lecture.

4 Do embedded eigenvalues survive a perturbation?

In this section I would like to explain why proving Conjecture 3.1 may have important
consequences for some physical systems. I ask the reader to forgive me a rather vague
and imprecise style of this section.

The most interesting and difficult part of Conjecture 3.1 is the estimate of Part 2).
Its proof simplifies considerably if we make the assumption

T = 0. (4.3)

(4.3) will be called the Fermi Golden Rule Assumption. Under this assumption, if the
Conjecture 3.1 is true, then H), should have no eigenvalues near e for 0 < [A|] < A. It
should be noted that results similar to Conjecture 3.1 with the assumption (4.3) can be
found in the literature, in particular in [BFS1], [BFSS].
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The conventional wisdom, widespread among physicists, says that in the case of em-
bedded spectrum the Fermi Golden Rule Assumption is satisfied for a generic perturbation
(unless there are some “superselection sectors”, so that both the perturbation and the
free Hamiltonian preserve a certain subspace). Furthermore, the conventional wisdom
says that, generically, at a non-zero coupling constant all the embedded eigenvalues dis-
appear (see eg. [JL] for a rigorous justification for this claim in a context of a certain
class of Anderson models).

It turns out, however, that the above conventional wisdom is not always true. I know

at least two examples of physically important classes of Hamiltonians with embedded
eigenvalues that survive switching on a perturbation, in spite of the fact that there is no
“superselection sector” responsible for this survival.
1) KMS states. Let M be a von Neumann algebra, wy a faithful state given by a vector
Qo and H, the corresponding modular operator. In other words, wy is a KMS state for
the dynamics o 4(a) := eltfoge"Ho_ In typical examples (eg. in a free gas of bosons in an
infinite volume) o(Hy) = R. A result of Araki [BR] says that if V' € 9, then for any A the
perturbed dynamics oy (a) := e ae™ " has a KMS state given by a vector (2. Here
Hy := Hy+ AV — AJV J, where J is the modular conjugation. The vector €2, satisfies
H)Q) = 0. Thus for any A we have 0 € o,,(H)).

A typical example of such a situation is furnished by Pauli-Fierz Hamiltonians de-

scribing systems at a positive temperature (see [JP1, JP2, DJP])
2) Ground states of Pauli-Fierz Hamiltonians. Let Hj be a free Pauli-Fierz Hamil-
tonian with massles bosons of positive energy. Obviously, Hy has a ground state (which is
not isolated from the rest of the spectrum — it is on the tip of the continuous spectrum).
Let V' be a perturbation typical for Pauli-Fierz Hamiltonians that has a sufficiently mild
infra-red behavior. Then one can show that H), has also a ground state (see [BFS1], [AH],
[Ge]).

It is not difficult to see that in both these examples, for generic systems, w(e + i0)
has only one eigenvalue. Therefore, if Conjecture 3.1 is true, for 0 < |A\| < A, generically
the Hamiltonian A, will have only one, nondegenerate eigenvalue. This eigenvalue will
correspond to the KMS/ground state (see [DJP]).

Note that this fact will have important implications for the conceptual foundations of
quantum statistical physics. In particular, it can be used to show the so-called return to
equilibrium property of the system.

5 The conjugate operator method

Let H be a self-adjoint operator and © a fixed open subset of the real line. In this section
we would like to describe two well-known rigorous methods used in the study of the
spectrum of the operator H inside O: the analytic deformation method and the Mourre
theory. These two methods have a lot in common and can be viewed as two versions of
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one method that we will call the conjugate operator method. Although in this lecture we
will concentrate on the Mourre theory, it is helpful to keep in mind the intuition derived
from the analytic deformation method.

(1) The analytic deformation approach. One considers a family of operators

H(E) = e He ™5 (5.4)

where S is an appropriately chosen self-adjoint operator (sometimes called a conjugate
operator). The basic assumptions that one imposes on H and S are the following:
(a) The family (z — H(£)) ! is analytic in some strip [Imé| < a.
(b) For Im¢ < 0, the essential spectrum of H () “moves down” below O, uncovering a
region below the real axis, which belongs to the unphysical sheet of the complex plane.
In the uncovered region, H(£) may have some discrete eigenvalues. One can show that
these eigenvalues do not depend on £ and that the eigenvalues of H () contained in © C R
coincide with o,,(H) N ©. The non-real eigenvalues of H({) are called resonances. All
these eigenvalues can be studied by standard methods of perturbation theory developed
for isolated eigenvalues.
Note that (a) and (b) imply that

2 e U9 (- H) e ) (5.5)

is a meromorphic function in a certain region below ©. ((S) denotes (1 + 52)2.)

(2) Mourre’s theory and Limiting Absorption Principle. This is an infinitesimal
version of the analytic deformation approach. Probably the most advanced version of
the Mourre theory can be found in [BG|. Below we briefly describe the Mourre theory
following essentially [BG].

One considers again a family of operators (5.4), where now ¢ is restricted to the real
line. The basic assumptions of the Mourre theory are:
(a,) Let v > 0. Then & — (2 — H(&)) ! is v-Holder continuous. (If n =0,1,...,0<60 <1
and v = n + 6, then a function is v-Hoélder continuous if its nth derivative is #-Holder
continuous in the usual sense).
(b) (The Mourre estimate). For any = € © there exists an open interval I > x, a positive
number Cy > 0 and a compact operator K such that

1;(H)i[S, H]1;(H) > Col;(H) + K. (5.6)

If (a,) with » =1, (b) and some other technical assumptions hold, then one can show
that o,,(H) N © is a discrete set which consists of eigenvalues of finite multiplicity. If in
addition v > 1 and p > 1, then for z € © \ o, (H) one can establish the existence of

(SY Mz 410 — H)"HS) ™" := lim(S) ™" (x + iy — H)~H(S) ™. (5.7)

y40

XXIII-5



Note that (5.7) implies the absence of singular continuous spectrum in © and is an
analog of (5.5). Moreover, if v > p+ 1 then the function (5.7) is p — 3-Holder continuous
outside in O\o,,(H). Statements similar to the existence of (5.7) usually go under the
name of the Limiting Absorption Principle.

The weakness of the Mourre method in the form described above is that it does not
give much information about the location and the multiplicity of o,,,(H ). However, if for
all z € © there is no compact operator K in the Mourre estimate (5.6), then o,,(H) N ©
is empty.

The two methods described above are complementary. The analytic deformation
method typically yields stronger results and allows to study resonances, which are of
considerable physical interest. This method, however, is usually applicable to a restricted
class of Hamiltonians that meet the analyticity condition. The Mourre theory approach is
of much wider applicability but it yields weaker results. In particular, resonances cannot
be studied with this approach.

The analytic deformation technique was started in [AC], [BC]. For more information
about the early literature on this subject see [Si], [RS4].

The Mourre theory originated in [Mo] and was further developed in [PSS], [JMP],
[AHS], [BG],

6 The Feshbach Method

Suppose now that the Hilbert space H is decomposed into a direct sum

H=H ®H". (6.8)
With respect to this decomposition, an operator H can be written as a 2 x 2 matrix
HvY va
H = - —|. (6.9)
HVV HVV
We will use a similar notation for other operators, for instance,
v 0
1= —|. (6.10)
0 1VV

For z € o(H") we introduce the following objects:
Wo(z) :=H"Y (21— HV) 'H",
(6.11)
Gy(z) =21V — HY — Wy (2).

In the physics literature, the operator Wy (z) is sometimes called the self-energy. In [DJ]
we proposed to call Gy (z) the resonance function.
One can easily show
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Theorem 6.1 Let z ¢ o(H™). Then z € o(H) iff 0 € 0(G(2)). Moreover,

dim 1{2} (H) = dim 1{0} (Gv(z))

Theorem (6.1) usually goes under the name of the Feshbach projection method (or also
the Grushin, Krein or Livshic method — see [BFS1] or [MeMo] for further discussion).
Theorem 6.1 is easy and well known (it follows eg. from [GGK], [BFS1], see also [DJ]).
The following theorem, which extends Theorem 6.1 to o(H""), is proven in [DJ]:

Theorem 6.2 Letz € R. Assume that W (z+i0) := lim, o W (x+ie€) exists and that z —
W(z) is of class C* in C; U {x}. Assume (for simplicity) that H" is finite dimensional.
Then = & opp(H) iff 0 € 0(Gy(x +10)). Moreover,

dim 1, (H) = dim Ker(Gy(z 4 i0)).

7 Combining the Feshbach Method with the Mourre
Theory

Let us recall that the main weakness of the Mourre theory is the presence of the compact
operator K in (5.6) and the resulting lack of control of the point spectrum. Let us explain
how one can eliminate this weakness by combining the Mourre theory with the Feshbach
Method.

To this end one should choose a splitting of the Hilbert space (6.8) in a clever way. In
this splitting, H" should be close to the subspace spanned by the eigenvectors of H with
eigenvalues near e. Moreover, the Mourre estimate without a compact operator should
hold for H'Y and an appropriate conjugate operator S¥V

Let us be more precise. Suppose that an operator S on H has the form

S:lg s(i_V] (7.12)

Moreover, assume that
(al,) The family H (&) satisfies an assumption analogous to (a,) of Section 5.
(b") For some open I 3 e and Cy > 0, the following Mourre estimate holds:

i1, (H™)[SY™, HV 1 (H™) > Co1;(H™). (7.13)

(¢!) V¥(S™)*"3 is bounded.
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Using (a],) with v > 1, (b") and some additional technical assumptions, we can develop
the Mourre theory for HYY, which implies that H'V satisfies the Limiting Absorption
Principle near e. More precisely, for pu > % we can prove that the limit

Hm(S™) ™" ((z +iy)17™ — H™)7H(S™) 7" (7.14)

yl0

exists for z near e. Moreover, if v > p + %, then the function (7.14) is p — 1-Holder
continuous.
If additionally (c!,) holds one easily shows, using (7.14), that the limit

W (z +10) := 11{101 Wy (x + iy)
v

exists for x near e. Now we see that the assumptions of Theorem 6.2 are true and we can
use it to study the point spectrum of H.

8 Rigorous perturbation theory near an embedded
eigenvalue
Let us return to the setting of Conjecture 3.1. We would like to state assumptions that

imply this conjecture.
Recall that in Section 2 and 3 we considered a family of self-adjoint operators H) :=

Hy + AV such that
e 0 0o v
Hy = —|. V= - —|.
0 H(\)fV VVV VVV

For simplicity, we assume that V' is bounded and HV is finite dimensional. We suppose
that S has the form (7.12) and satisfies

(a?) the functions ¢ — (2 — 5" HJ%e ™)1 and t — "V 5™ are p-Holder
continuous;

(b") for some open I 5 e and Cy > 0

L (HEONS™, H 11, (HT) > Col ()

(ch) VVV<SW>”_% is bounded.
Recall also that we introduced

w(z) == V(217 — HJY) V™.

and we defined 7, := RNo(w(e+1i0)). Then by following the ideas of [DJ] one can show
the following results:
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Theorem 8.1 We assume (al), ("), (c) with v > 1. Let k := 1 —v~t. Then there
exists C and A > 0 such that for 0 < |\ < A the spectrum of Hy in I\({e} + \*T. +
[—CN\2F5 CN**%]) is absolutely continuous and the Limiting Absorption Principle holds,
that s

lim(S)#(z — ic — Hy)~H{5) "

exists.

Theorem 8.2 We assume (al)), (b"), (cI}) with v > 2. Let A,C,k be as in the previous
theorem and 0 < |A| < A. Let m € T, and let p,, be the projection of w(e +10) onto m
Then we have

dim 11{)§+)\2m}+[—0)\2+“,0/\2+“}(H)\) < dimpe,m-

Moreover, the Limiting Absorption Principle holds in I\oy,(H).

In the above results we tried to make the regularity assumptions as weak as possible,
that is, we tried to make v as small as possible. This is not a purely technical question,
in fact in some physical systems v gives a restriction on the infrared behavior of the
perturbation. It seems that the condition » > 1 is optimal in Theorem 8.1. We do
not know whether the condition » > 2 is an optimal assumption in the Theorem 8.2 or
whether it is an artifact of our method.
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