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THE CAUCHY PROBLEM FOR SYSTEMS
−− THROUGH THE NORMAL FORM OF SYSTEMS
AND THEORY OF WEIGHTED DETERMINANT −−

WAICHIRO MATSUMOTO

Dedicated to Professor Kiyoshi Mochizuki on his 60-th anniversary

Abstract. The author propose what is the principal part of linear systems of partial
differential equations in the Cauchy problem through the normal form of systems in
the meromorphic formal symbol class and the theory of weighted determinant. As
applications, he choose the necessary and sufficient conditions for the analytic well-
posedness ( Cauchy-Kowalevskaya theorem ) and C∞ well-posedness ( Levi condition).

1. Introduction

The well-posedness of Cauchy problem in various classes for higher order linear scalar
equations is well characterized. On the other hand, the results on the well-posedness for
systems are rather poor. The reason is that the principal part of system has not been
well caught. In this note, the author proposes the definition of the principal part on the
Cauchy problem. In order to understand the structure of an usual matrix, the Jordan
normal form and the determinant are very useful. The former includes all informations
on a matrix and the latter is very convenient. Our aim is to establish the corresponding
theory for the matrices of differential operators and to give some of many applications
−− the necessary and sufficient conditions for the analytic well-posedness and C∞ well-
posedness −−.

Let us consider the following Cauchy problem:

(1.1)


( ∂

∂t
)mkuk +

∑N◦
i=1

∑mi

j=1

∑
|α|≤m(j,i) aαjki(t, x)( ∂

∂x
)α( ∂

∂t
)mi−jui = fk(t, x) ,

( ∂
∂t

)juk|t=t◦ = u◦jk(x), (0 ≤ j ≤ mk − 1) ,

where k runs from 1 to N◦ . Adding some unknown functions, for example
( ∂

∂x
)α( ∂

∂t
)mk−juk ( 0 ≤ |α| ≤ pj, 1 ≤ j ≤ mk and 1 ≤ k ≤ N◦ ) for suitable non-

negative p (1.1) is reduced to

(1.2)


Dtu−

∑
|α|≤m Aα(t, x)Dx

αu = f(t, x) ,

u|t=t◦ = u◦(x) ,

Key words and phrases. normal form of systems, p-determinant of matrix of pseudo-differential oper-
ators, p-evolution, the Cauchy-Kowalevskaya theorem for systems, C∞ well-posedness for systems.

This article is written in a stay of the author at University of Paris VI, UFR 920.
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2 W.MATSUMOTO

where, Aα is a N× N matrix of smooth functions ( |α| ≤ m ), u, u◦ and f are vectors of
dimension N, Dt = 1√

−1
∂
∂t

and Dx = 1√
−1

∂
∂x

.

First, we consider some examples. Let ∂t and ∂x be ∂
∂t

and ∂
∂x

, respectively.

Example 1.

P1(t, x,∂t, ∂x) = I2∂t− A1(∂x) ,

A1 =

(∂x1)
m(∂x2)

m −(∂x2)
2m

(∂x1)
2m −(∂x1)

m(∂x2)
m

 , ( of order 2m , m ∈ N )

For the above operator, the Cauchy problem (1.2) has the solution

u = u◦ + (t− t◦)A
1(∂x)u◦ +

∫ t

t◦

f(s, x)ds +

∫ t

t◦

(t− s)A1(∂x)f(s, x)ds .

The highest order part A1 of P1 has no influence for the well-posedness in any class.
Let us see this roughly. We represent P1 using Dt and Dx.

P ′
1 = P1/

√
−1 = I2Dt − (−1)m−1

√
−1

Dm
x1

Dx2
m −D2m

x2

D2m
x1

−Dm
x1

Dx2
m

 .

We transform P1 formally by N1 =

−(−1)m−1
√
−1Dx1

−2mDx2
2m 0

−(−1)m−1
√
−1Dx1

−mDx2
m 1

 ;

N−1
1 ◦ P1 ◦N1 = I2Dt −

(
0 1
0 0

)
Dx1

2m ,

where A ◦ B is the operator product. Further, by N ′
1 = diag(Dx1

r , 1) for an arbitrary
real r,

N ′
1
−1 ◦N−1

1 ◦ P1 ◦N1 ◦N ′
1 = I2Dt −

(
0 1
0 0

)
Dx1

2m−r .

This means the true principal part of P1 is I2∂t and the influence of the highest order
part A1 is negligible.

In Example 1, the highest order part is nilpotent and the transforming matrix N1 or
its inverse must have a pole set.

Example 2.

P2(t, x, ∂t, ∂x) = I2∂t− A2(t, x, ∂x) ,

A2 =

(
tx −x2

t2 −tx

)
(∂x)m , (m ∈ N , ` = 1)
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In this case, also A2 is nilpotent. Let us represent P2 using Dt and Dx ;

P ′
2 = P2/

√
−1 = I2Dt − (

√
−1)m−1

(
tx −x2

t2 −tx

)
Dx

m .

By N2(t, x) =

−(
√
−1)m−1x2 0

−(
√
−1)m−1tx 1

 , N2
−1 ◦ P ′

2 ◦N2 becomes

P ′′
2 = I2Dt −

(
0 1
0 0

)
Dx

m − (
√
−1)m−2m

(
t 0
0 0

)
Dx

m−1

− (
√
−1)m−3m(m− 1)

(
t/x 0
0 0

)
Dx

m−2 − (
√
−1)m−2

(
0 0
x 0

)
.

By the existence of the commutator, the Cauchy problem for P2 is not analytically well-
posed if m ≥ 3. ( See Section 4. ) On Example 2, we shall consider again in Subsection
3.2. In Example 2, the highest order part is also nilpotent and the transforming matrix
N2 or its inverse must have a pole set.

Examples 1 and 2 suggest that in order to consider the normal form, we need accept the
meromorphy or some singularity and need consider it under non-commutative product:
the operator product. Of course, for the theory of the determinant, this requirement is
same.

In Section 2, we explain the normal form of systems in the formal symbol class. In
Section 3, we do the theory of the weighted determinant, so called p-determinant and
introduce the notion of p-evolution. In Section 4, we give the necessary and sufficient
condition for the analytic well-posedness ( the Cauchy-Kowalevskaya theorem ). We give
a remark and a conjecture also on the C-K theorem of Nagumo type, relaxation of the
regularity of coefficients. In Section 5, we give the necessary and sufficient condition
for the C∞ well-posedness assuming the constant multiplicity of characteristic roots and
the real analyticity of coefficients ( Levi condition ). We give some remarks when the
coefficients are not real analytic. The situations on the analytic well-posedness and
C∞ well-posedness in case of the constant multiplicity are very similar if coefficients
are real analytic. However, the phenomena are very different when coefficients are non-
quasianalytic.

The author thanks Professors A.D’Agnolo, K.Adjamagbo and G.Taglialatela. The
discussions with them were very useful. He also thanks Professor J.Vaillant. He and Pro-
fessor K.Adjamagbo kindly gave the author the references on the theory of determinant
on non-commutative rings.

2. Normal form of Systems

We follow the results in W.Matsumoto[25] and [27]. From an arbitrary asymptotic
expansion of ultradifferentiable class, a true symbol of the same class can be constructed
and the ambiguity is of class S−∞. ( See L.Boutet de Monvel and P.Krée[7], L.Boutet
de Monvel[6] and W.Matsumoto[24]. ) Therefore, in order to consider many problems
on partial differentia equations in a ultradifferentiable class, it is sufficient to consider
asymptotic expansions, which we call here formal symbols. Let Z+ be N ∪ {0}. We
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use the followings for α and β in Z+
1+`: |α| = α0 + · · · + α`, α! = α0!α1! · · ·α`! ,

α + β = (α0 + β0, · · · , α` + β`) and we denote β ≤ α when βi ≤ αi for 0 ≤ i ≤ `. Let us

set a(t, x, ξ)
(β)
(α) = Dt

α0Dx1
α1 · · ·Dx`

α`( ∂
∂ξ

)βa(t, x, ξ) for α ∈ Z+
1+` and β ∈ Z+

`.

We introduce a holomorphic formal symbol and a meromorphic one. We say that a set
O in Ct×Cx

`×Cξ
` is conic when ξ ∈ O implies λξ ∈ O for arbitrary positive λ and that

a subset Γ in O is conically compact in O when Γ is conic and Γ∩ {||ξ|| = 1} is compact

in O ∩ {||ξ|| = 1}, where ||ξ|| =
√∑`

i=1 |Reξi|2 + |Imξi|2. We say that Σ is a subvariety

of O if it is a zero set of a holomorphic function in O.

Definition 1. ( Meromorphic and holomorphic formal symbol, [25] )
I. We say that the formal sum a(t, x, ξ) =

∑∞
i=0 ai(t, x, ξ) is a meromorphic formal

symbol ( = m.f.s. ) on O when there exist a conic subvariety Σ in O and a real number
κ such that
1) ai(t, x, ξ) is meromorphic in O, holomorphic in O \ Σ and positively homogeneous of

degree κ− i on ξ , ( i ∈ Z+ ).
2) For arbitrary conically compact set Γ in O , there are positive constants C, R

and R′ and we have

(2.1)
|ai

(β)
(α)(t, x, ξ)| ≤ C R′i R|α|+|β| i!|α|!|β|! |ξ1|κ−i on Γ ,

(i ∈ Z+, α ∈ Z+
1+`, β ∈ Z+

`) .

II. The formal sum
∑∞

i=0 ai is called a holomorphic formal symbol ( = h.f.s. ) when it is
a meromorphic formal symbol with Σ = ∅.

Remark 2.1. We use ξ1 as a holomorphic scale of order in case of a complex domain and
Σ includes {ξ1 = 0}. Of course, ξ1 can be replaced by another ξi and Σ includes {ξi = 0}.

Remark 2.2. It is important that Σ is independent of i.

Now, we define a formal symbol of class {Mn , Ln} on a real domain. Let {Mn}∞n=0

and {Ln}∞n=0 be sequences of positive numbers. We assume that log Mn = O(n2)
( Differentiability condition ) and {Mn/n!}∞n=0 and {Ln/n!}∞n=0 are logarithmically convex
and non-decreasing. We say that a set O in Rt ×Rx

` ×Rξ
` is conic when ξ ∈ O implies

λξ ∈ O for arbitrary positive λ and that a subset Γ in O is conically compact in O when

Γ is conic and Γ ∩ {|ξ| = 1} is compact in O ∩ {|ξ| = 1}, where |ξ| =
√∑`

i=1 ξ2
i .

Definition 2. ( Formal symbol of class {Mn , Ln}, [25] )
We say that the formal sum a(t, x, ξ) =

∑∞
i=0 ai(t, x, ξ) is a formal symbol of class

{Mn , Ln} ( = f.s. of class {Mn , Ln} ) on O when there exists a real number κ such
that
1) ai(t, x, ξ) belongs to C∞(O) and positively homogeneous of degree κ−i on ξ , (i ∈ Z+).
2) For arbitrary conically compact subset Γ in O , there are positive constants C, R and

R′ and we have

(2.2)
|ai

(β)
(α)(t, x, ξ)| ≤ C R′i R|α|+|β| Mi+|α|Li+|β|i!

−1 |ξ|κ−i−|β| on Γ ,

(i ∈ Z+, α ∈ Z+
1+`, β ∈ Z+

`) .
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The number κ is called the order of the formal symbol a and denoted by ord a. When
ai = 0 for 0 ≤ i ≤ i◦ − 1 and ai◦ 6≡ 0, κ− i◦ is called the true order of a and denoted by
true ord a. The order of 0 is posed −∞. We set Sκ

M(O) = { the m.f.s.’s on O of order
κ }, Sκ

H(O) = { the h.f.s.’s on O of order κ }, Sκ{Mn , Ln}(O) = { the f.s.’s of class
{Mn , Ln} on O of order κ }, and SM(O) = ∪κ∈RSM(O), etc. We denote one of these
simply by S(O).

Corresponding to the asymptotic expansion of the symbol of the product of pseudo-
differential operators, we introduce the operator product of formal symbols.

Definition 3. ( Operator product )
Let a =

∑∞
i=0 ai and b =

∑∞
i=0 bi be formal symbols. We set

(2.3) a ◦ b =
∑∞

i=0ci , ci(t, x, ξ) =
∑

i1+i2+|γ|=i

1

γ!
a

(γ)
i1

(t, x, ξ) bi2(γ)(t, x, ξ)

and call it the operator product of a and b.

By the operator product, SH and S{Mn, Ln} become non-commutative rings and SM

does a non-commutative field. SH is a subring of SM .

Let us consider a matrix P = INDt − A(t, x, ξ), A ∈ MN(S
m), ( m ∈ N ). In [25] and

[27], we obtained the following theorem.

Theorem 1. ( Normal form of system (1), [25] )
We assume that every entry of A satisfies (2.2) ( (2.1) in case of m.f.s. ) with κ = m

and that the each eigenvalue λk(t, x, ξ) (1 ≤ k ≤ d) of A0 has the constant multiplicity mk.
Then, there exist finite disjoint open conical sets {Oh}h such that ∪hOh is dense in O. On

each Oh, there exist natural numbers dk and {nkj}dk
j=1 (

∑dk

j=1 nkj = mk ). For every point

(t◦, x◦, ξ◦) in Oh, there exist a conically compact neighborhood Γ, N(t, x, ξ) =
∑∞

i=0 Ni in
GL(N; S0(Γ)), and Dkj(t, x, ξ) =

∑∞
i=0 Dkji in Mnkj

(Sm(Γ)), such that

(2.4)

N−1(t, x, ξ) ◦ P (t, x,Dt, ξ) ◦N(t, x, ξ) = ⊕1≤k≤d ⊕1≤j≤dk
Pkj ,

Pkj(t, x,Dt, ξ) = Inkj
(Dt − λk(t, x, ξ))−Dkj(t, x, ξ)

Dkj 0 = J(nkj)|ξ|m,

Dkj i =

 0
∗ · · · ∗

 homogeneous of degree m− i ( i ≥ 1 ),

where J(n) =


0 1

. . . . . .
1
0

 : n×n . We set
∑∞

i=1 Dkji =

(
O

dkj(1) · · · dkj(nkj)

)
.
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In case of meromorphic formal symbol, {Oh}h is composed by only one element and
O1 = O \ Σ′ for a subvariety Σ′. N and Dkj belong to GL(N; S0

M(O)) and Mnkj
(Sm

M(O)),
respectively. In (2.4), we replace |ξ|m by ξm

1 .

One may think that the assumption of the constant multiplicity is too strong. However,
if we regard P as an operator of order m + 1 on Dx, the highest order part is the zero-
matrix and has an unique eigenvalue zero of constant multiplicity N. Thus, under no
condition of the structure, we can reduce P to the normal form.

Corollary 2. ( Normal form of systems (2) )
We assume that every entry of A satisfies (2.2) ( (2.1) in case of m.f.s. ) with κ = m.

There exist finite disjoint open conical sets {Oh}h such that ∪hOh is dense in O. On

each Oh, there exist natural numbers d and {nk}d
k=1 (

∑d
k=1 nk = N ) and N◦(t, x, ξ) in

GL(N;S) such that

(2.5)

N−1
◦ (t, x, ξ) ◦ P (t, x,Dt, ξ) ◦N◦(t, x, ξ) = Q = ⊕1≤k≤dQk ,

Qk(t, x,Dt, ξ) = Ink
Dt −

∑∞
i=0 Bki(t, x, ξ) ,

Bk0 = J(nk)|ξ|m+1 ,

Bki =

(
O

∗ · · · ∗

)
: homogeneous of order m + 1− i , ( i ≥ 1 )

We set
∑∞

i=1 Bki =

(
O

bk(1) · · · bk(nk)

)
.

In case of meromorphic formal symbol, {Oh}h is composed by only one element and
O1 = O \Σ′ for a subvariety Σ′. N◦ and Bk belong to GL(N; S0

M(O)) and Mnk
(Sm+1

M (O)),
respectively. In (2.5), we replace |ξ|m+1 by ξm+1

1 .

Remark 2.3. In Theorems 1 and 2, {Oh}h has finite elements but can have countably
many connected components in case of non-quasianalytic case. This cause a difficulty on
the Cauchy problem. ( See Example 6 in Subsection 4.5 and Example 7 in Subsection
5.1. )

The idea of the proof is the following. First, we consider the case of m.f.s. As we accept
the meromorphy, we can transform the operator to Arnold-Petkov’s normal form. ( See
V.I.Arnold[4] and V.M.Petkov[47]. ) Let us consider a simple model.

Example 3. Let us take the integers 0 < k < m and constants a and b. We consider

P3 = I3Dt −

0 Dx
m 0

0 0 aDx
k

b 0 0

 .
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The highest order part has the Jordan structure J(2)⊕ J(1) and the lower order term

has the form

0 0 0
∗ ∗ ∗
∗ 0 ∗

 , then P3 is of Arnold-Petkov’s normal form.

If a 6= 0, by N3 = diag(1, 1, Dx
m−k), N3

−1 ◦ P3 ◦N3 becomes

P 1
3 = I3Dt −

0 1
0 a

0

 Dx
m +

0
0 0
b 0 0

 Dx
−(m−k)

and its highest order part has the Jordan structure J(3).
If a = 0 and b 6= 0, by N ′

3 = diag(1, 1, D−m
x ), N3

−1 ◦ P3 ◦N3 becomes

P 2
3 = I3Dt −

0 1 0
0 0 0
b 0 0

 Dx
m

and its highest order part also has the structure J(3).
Transforming agin P j

3 ( j = 1, 2 ) to the Arnold-Petkov’s normal form, we arrive at
the final normal form.

If a = b = 0, P3 is splited perfectly to P3(2)⊕P3(1) and P3 itself is of the final normal
form.

Thus, in finite procedures, we arrive at the above theorem. ( See the detailed proof in
[25]. )

In case of non-quasianalytic classes, we stand on the following simple property;

For a continuous function f(x) on an open set O, the set {x | f(x) 6= 0}∪ {x | f(x) = 0}o

is open and dense in O, where Ao is the open kernel of A.

By this property, we can also obtain the normal form in case of non-quasianalytic classes
on an open dense set.

A higher order scaler equation

(∂t)mu +
∑m

j=1

∑
|α|≤m(j)

aαj(t, x)(∂x)α(∂t)m−ju = f(t, x) ,

is reduce to a first order system on Dt for a suitable positive number p:

Dtu− J(N)Dx
pu−B(t, x,Dx)u = f(t, x) ,

where the lower order term B has the form

(
0

∗ · · · ∗

)
. Therefore, Corollary 2 say that a

system is reduced to a direct sum of some higher order scaler equations in an open dense
set in Ω×C` \Σ modulo S−∞. Thus, if we can obtain a result microlocally and modulo
S−∞ and if such result on a dense open set implies the global one, we can apply the proof
on scaler equations also to systems. Many necessary conditions of the well-posedness have
these properties, the continuity of the conditions for the latter. On the other hand, for the
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sufficiency, if we assume the real analyticity of coefficients, we can apply the maximum
principle for the latter in some cases, for example, the results in Sections 4 and 5.

In Example 3, each order m, k and 0 are not essential. the product abDx
m+k is essen-

tial. This leads us the theory of determinant.

3. p-determinant of matrix of differential operators and p-evolution

3.1. Definition of p-determinant.
On the matrix of partial differential operators, G.Hufford[14] first introduced the de-

terminant applying the theory of J.Dieudonné[12], which is a determinant theory on a
non-commutative field. M.Sato and M.Kashiwara[50] obtained the regularity property of
the determinant. The algebraic structure of the determinant on the ring with Ore’s prop-
erty is well characterized by K.Adjamagbo[2] and [3]. The determinant by G.Hufford and
M.Sato and M.Kashiwara is homogeneous. However, in order to consider, for example the
parabolic equations and Schrödinger type equations, we encounter inhomogeneous princi-
pal parts and need an inhomogeneous determinant. In order to describe the Levi condition
for C∞ well-posedness, we also need an inhomogeneous determinant. Recently, the author
has received a preliminary version of a paper by A.D’Agnolo and G.Taglialatela[9], where
they define independently the same weighted determinant as mine. Their definition and
consideration are more algebraically and systematic than mine.

First we consider SM [Dt]. This is a non-commutative integral domain with Ore’s
property: for non-zero elements a and b, we can find non-zero c and d such that ac = bd.
Ore’s property is the necessary and sufficient condition for the existence of the quotient
field. ( See O.Ore[44]. )

We fix a positive rational number p. Let us take a(t, x, ξ, Dt) =
∑m

j=0 a<j>(t, x, ξ)Dt
m−j,

a<j> =
∑∞

i=0 a<j>
i ∈ SM . We reset the order of a<j> to its true order. let us set

p−ord a<j>(t, x, ξ)Dt
m−j = ord a<j> + p(m− j)

p−ord a = max
0≤j≤m

p−ord a<j>(t, x, ξ)Dt
m−j

and call them the p-order. By p-order, SM [Dt] becomes a filtered ring. We set further

R(p)(a) = {j : p−ord a<j>Dt
m−j = p−ord a}

ap−pr(t, x, ξ, τ) =
∑

j∈R(p)(a)
a<j>

0 (t, x, ξ)τm−j

and call the latter the p-principal symbol of a. The set ∪p>0{a<j>
0 (t, x, ξ)τm−j}j∈R(p)(a)

has finite elements and composes the Newton polygon of a.
Let us take c(t, x, ξ, τ) =

∑m
j=0 c<j>(t, x, ξ)τm−j a polynomial on τ whose coefficients

are homogeneous on ξ respectively. We say that c(t, x, ξ, τ) is a p-homogeneous poly-
nomial on τ when all deg c<j> + p(m − j) coincide each other for 0 ≤ j ≤ m. For
p-homogeneous c, we call common deg c<j> + p(m− j) the p-degree of c and denote it by
p-deg c. Let us set

Y = {p−homogeneous polynomials on τ} .
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Y is a commutative ring. The map σp from SM [Dt]\{0} to Y \{0} defined by σp(a) = ap−pr

is a homomorphism of the productive semigroup. This is naturally extended to the map
from SM [Dt]

Q \ {0} to Y Q \ {0} by σp(ab−1) = ap−pr/bp−pr as a homomorphism of the
productive group, where RQ is the quotient field of a ring R with Ore’s property. ( By
virtue of Ore’s property, if ab−1 = a′b′−1, it holds that ap−pr/bp−pr = a′p−pr/b

′
p−pr and the

map σp is well defined on SM [Dt]
Q \ {0}. ) We put σp(0) = 0. Thus, we can obtain the

weighted determinant theory by σp following J.Dieudonné[12]. ( See also E.Artin[5] and
K.Adjamagbo[2] and [3]. )

In case of non-quasianalytic classes, we stand on the following simple property men-
tioned in Section 2;

For a continuous function f(x) on an open set O, the set {x | f(x) 6= 0}∪ {x | f(x) = 0}o

is open and dense in O, where Ao is the open kernel of A.

By this property, for continuous {fj(x)}1≤j≤d, we can find finite disjoint open sets {Oh}h

such that the union is dense in O and that fj(x) 6= 0 or else ≡ 0 on each Oh. Using this
property, we can define p-determinant for matrices with entries in S{Mn , Ln}[Dt] on an
open dense set. Of couse, we can also take the space of the formal symbols of C∞-class
instead of S{Mn , Ln}. The existence of the limit of p-determinant at the boundary of
the open dense set is not clear.

Definition 4. ( p-determinant )
We call the determinant by σp of a matrix A with entries in S[Dt] p-determinant of A

and denote it by p-det A.

Remark 3.1. 1-determinant is just Hufford and Sato-Kashiwara’s determinant.

K.Adjamagbo[1] pointed out that the determinant theory is not almighty.

Example 4.

P4 = I2Dt −
(

0 0
1 0

)
,

P ′
4 = I2Dt .

On the Cauchy problem for P4 , we can pose the Cauchy data not only
(u1(t◦, x), u2(t◦, x)) but also (u2(t◦, x), Dtu2(t◦, x)) to obtain a unique solution. On
the other hand, for P ′

4, we can pose only (u1(t◦, x), u2(t◦, x)). The p-determinant of a
trianguler matrix is the product of the images of the diagonal elements by σp and then
p-det P4 = p-det P ′

4 = τ 2 for all positive p. As the off-diagonal elements of a triangular
matrix has no influence on p-determinant, the number of data to be posed is decided by
the determinant but the acceptable distributions of the initial data cannot be decided
by the determinant theory. In case of the ordinary determinant theory, the determinant
can give the dimension of a generalized eigen-space but cannot decide its structure. The
situation is similar.
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3.2. properties of p-determinant.
By J.Dieudonné[12], the following elementary property hold on p-determinant.

Theorem 3. ( Elementary property of p-determinant )
We take A = (aij)1≤i, j≤N and B in MN(S[Dt]).

(1) p-det AB = p-det A· p-det B.
(2) p-det A⊕ p-det B = p-det A· p-det B. ( In this case, the sizes of A and B can be

different. )
(3) p-determinant is invariant under the similar transformation.
(4)If there are real numbers mi and nj such that p-ord aij ≤ mi + nj and the usual

determinant det(σp
mi+nj

(aij))1≤i, j≤N does not vanish, then p-det A = det(σp
mi+nj

(aij)),

where σp
mi+nj

(aij) is aij
p−pr if p-ord aij = mi + nj and is 0 if p-ord aij < mi + nj.

Here, on the matrix of the form P = INDt−A, A ∈ MN(S
m), we give the representation

of p-determinant using the element of the normal form in Theorem 2.
Let us set

(3.1)

true order bk(h) = rk
h ,

Mp
k = max1≤h≤nk

{rk
h + (m + 1)(nk − h) + p(h− 1)},

Rp
k = {h : rk

h + (m + 1)(nk − h) + p(h− 1) = Mp
k}

Applying the property (4) in Theorem 3, we have the following.

Proposition 3.1. ( Relation between the normal form and p-determinant )

(3.2)

p− det P =
∏d

k=1 p− det Qk ,

p− det Qk =



τnk , ( pnk > Mk ) ,

τnk −
∑

h∈Rp
k
bk(h)0(t, x, ξ)|ξ|(m+1)(nk−h)τh−1 , ( pnk = Mk ) ,

−
∑

h∈Rp
k
bk(h)0(t, x, ξ)|ξ|(m+1)(nk−h)τh−1 , ( pnk < Mk ) ,

= the highest p−degree part of the ordinary determinant of Qk

In case of m.f.s., |ξ|(m+1)(nk−h) is replaced by ξ1
(m+1)(nk−h).

Thus, p-det P is a polynomial of τ . On the determinant theory, the regularity property
is important. In case of S = SH , as the above P is a polynomial of τ , the meromorphy
can be occur in (t, x, ξ) space and the proof of Sato-Kashiwara is directly applicable.
( We need not transform the pole set to ξ1 = 0. )
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Theorem 4. ( Regularity of p-determinant )
(1) For P = INDt − A, A ∈ MN(SH), p− det P is a polynomial of τ with holomorphic

coefficients on (t, x, ξ).
(2) For a matrix of partial differential operators with holomorphic coefficients on t and

x, p-det P is a polynomial of τ and ξ with holomorphic coefficients on t and x.

A.D’Agnolo and G.Taglialatela[9] algebraically showed the regularity of p-determinant
without use of the normal form.

The regularity of p-determinant is delicate. To see it, we give an example, which is a
little generalized one of Example 2.

Example 5. Let m be a natural number.

P5(t, x, ∂t, ∂x) = I2∂t− A5(t, x, ∂x) ,

A5 =

(
tx −x2

t2 −tx

)
(∂x)m +

(
b11(t, x) b12(t, x)
b21(t, x) b22(t, x)

)
(∂x)m−1 , (m ∈ N , ` = 1)

Let us represent P5 using Dt and Dx ;

P ′
5 = P5/

√
−1

= I2Dt − (
√
−1)m−1

(
tx −x2

t2 −tx

)
Dx

m − (
√
−1)m−2

(
b11(t, x) b12(t, x)
b21(t, x) b22(t, x)

)
Dx

m−1 .

By the same N2(t, x) in Example 2, N2
−1 ◦ P ′

5 ◦N2 becomes

P ′′
5 = I2Dt −

(
0 1
0 0

)
Dx

m

−
(

−(
√
−1)m{mt + b11 + (t/x)b12}

√
−1(1/x2)b12

(−1)m
√
−1{t2b12 + tx(b11 − b22)− x2b21} −(

√
−1)m{−(t/x)b12 + b22}

)
Dx

m−1

−(m− 1)

(
−(
√
−1)m−1(1/x){mt + 2b11 + (t/x)b12} 0

(−1)m[tb11 − xb21 + (1/x){t2b12 + tx(b11 − b22)− x2b21}] 0

)
Dx

m−2

−(m− 1)(m− 2)

(
(
√
−1)m(1/x2)b11 0

−(−1)m
√
−1{(t/x)b11 − b21} 0

)
Dx

m−3

−(
√
−1)m

(
0 0
−x 0

)
.
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Applying Theorem 3 (3) and (4), we can see the following.

For m = 1, P5 is always 1/2-evolutive and

(3.3) (1/2)− det P ′
5 = τ 2 +

√
−1{x + t2b12 + tx(b11 − b22)− x2b21}ξ .

( The last term of the right-hand side of (3.3) cannot vanish identically for any choice of
{bij}. )

For m ≥ 2, if

(3.4) t2b12 + tx(b11 − b22)− x2b21 6= 0 ,

P5 is (m− 1/2)-evolutive and

(3.5) (m− 1/2)− det P ′
5 = τ 2 − (−1)m

√
−1{t2b12 + tx(b11 − b22)− x2b21}ξ2m−1 .

On the other hand, if

(3.6) t2b12 + tx(b11 − b22)− x2b21 = 0 ,

P ′′
5 becomes

I2Dt −
(

0 1
0 0

)
Dx

m

−
(
−(
√
−1)m{mt + b11 + (t/x)b12}

√
−1(1/x2)b12

0 −(
√
−1)m{−(t/x)b12 + b22}

)
Dx

m−1

−(m− 1)

(
−(
√
−1)m−1(1/x){mt + 2b11 + (t/x)b12} 0

(−1)m(tb11 − xb21) 0

)
Dx

m−2

−(m− 1)(m− 2)

(
(
√
−1)m(1/x2)b11 0

−(−1)m
√
−1{(t/x)b11 − b21} 0

)
Dx

m−3

−(
√
−1)m

(
0 0
−x 0

)
.

For m = 2, if (3.6) is satisfied, P5 is 1-evolutive and

(3.7) 1− det P ′
5 = τ 2 − (2t + b11 + b22)ξτ + [−x + {t + b11 + (t/x)b12}{b22 − (t/x)b12}]ξ2

( The right-hand side of (3.7) cannot be τ 2 for any choice of {bij}. )

For m ≥ 3, further, if the following is satisfied

(3.8) |mt + b11 + b22|2 + |(tx + xb11 + tb12)(tb12 − xb22)|2 6= 0 ,
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P5 is (m− 1)-evolutive and

(3.9)
(m− 1)− det P ′

5 = τ 2 +(
√
−1)m(mt + b11 + b22)ξ

m−1τ
+(−1)m{t + b11 + (t/x)b12}{b22 − (t/x)b12}ξ2m−2

In (3.7) and (3.9), (t/x)b12 appears and it looks singular. However, the condition (3.6)
implies x|b12 and t|b21 and (m− 1)-det P ′

5 is regular.

We can see that P5 is at least (m/2)-evolutive. As the condition for the Cauchy-
Kowalevskaya theorem is p-evolution for 0 ≤ p ≤ 1 ( Theorem 5 ), it holds for P5 when
m = 2 with Condition (3.6) or else m = 1.

The condition for C∞ well-posedness on P5 is 0-evolution ( Theorem 6 ), then all P5

cannot satisfy it by any m and any choice of {bij}. When m = 1, the Cauchy problem is
well-posed in Gevrey class of index 2 in case of projective Gevrey and of index less than
2 in case of inductive Gevrey.

3.3. p-evolutive system and Kowalevskian system.
By the relation in Proposition 3.1, we can find unique p for which p-det P has the

term τ N and another term or else p-det P = τ N for all p > 0. In the former case, we say
that P is p-evolutive and define the principal part ( on the Cauchy problem ) of P by
p-det P . In the latter case, we say that P is 0-evolutive and define the principal part
by τ N. 0-evolutive operator is essentially an ordinary differential operator. On the other
hand, if P is p-evolutive for p ≤ 1, we say that P is Kowalevskian. Our definition of
” Kowalevskian system ” is different from that in S.Mizohata[36] and M.Miyake[33].

4. Cauchy-Kowalevskaya theorem for system

4.1. Short history.
124 years ago, S.Kowalevskaya[16] showed that if all coefficients in (1.2) are real ana-

lytic and the condition ” m ≤ 1 ” is satisfied, the Cauchy problem (1.2) has an unique
real analytic local solution for every real analytic initial data − so called the Cauchy-
Kowalevskaya theorem, that is, the analytic well-posedness. ( She considered nonlinear
systems. We call this result ”the week form of the Cauchy-Kowalevskaya theorem”. )
62 years ago, I.G.Petrowsky[49] obtained a result for linear systems (1.2) with ”m ≤ 1”
that there exists positive δ decided by the operator such that for arbitrary small pos-
itive ρ, if one give the data analytic in Bρ((t◦, x◦)): the ball with the radius ρ and
the center (t◦, x◦), a unique analytic solution exists in Bδρ((t◦, x◦)). ( We call this re-
sult ”the strong form of the Cauchy-Kowalevskaya theorem”. See also J.Leray[19]. )
58 years ago, M.Nagumo[42] relaxed the regularity on t of coefficients to the continuity in
order to obtain a solution analytic on x and of C1-class on t. ( He considered nonlinear
systems. )

In 1975, S.Mizohata [37] showed that in case of the linear scalar higher order equations,
the condition corresponding to ” m ≤ 1 ” in system (1.2) is necessary and sufficient for
the analytic well-posedness. ( He obtained more delicate result in [38]. )
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In 1979, M.Miyake[33] assumed that the coefficients are real analytic and the dimen-
sion ` of x-space is one and gave the necessary and sufficient condition for the analytic
well-posedness on systems introducing the meromorphic formal solutions. H.Yamahara
and the author[31] and [32] obtained the necessary and sufficient condition for systems
in case of general `. They considered the formal fundamental solution and estimate it
standing on the normal form of systems in the meromorphic formal symbol class.
M.Miyake[34] further showed that one can reduce the analytically well-posed system to
a first order one with real analytic coefficients enlarging the size of system assuming
` = 1.

On the other hand, as the algebraic analysis, M.Kashiwara[15] considered the Cauchy-
Kowalevskaya theorem for systems in 1971. He decided the structure of the solution
space using the determinant of the matrices of pseudo-differential operators introduced
by M.Sato and M.Kashiwara[50].

4.2. Complexification and apriori estimate.
We set A(t, x,Dx) =

∑
|α|≤m Aα(t, x)Dx

α and P (t, x,Dt, Dx) = INDt − A(t, x,Dx).

The problem (1.2) in the real analytic space is naturally extended to the problem in the
holomorphic space in a complex domain. From now on, we consider the problem (1.2)
in a complex domain Ω ⊂ C1+`

t,x and assume that all coefficients of P (t, x,Dt, Dx) are

holomorphic there and continuous on its closure. Let Ωt◦ be {x ∈ C` : (t◦, x) ∈ Ω}.

Definition 5. ( The Cauchy-Kowalevskaya theorem = the C-K theorem )
We say that the Cauchy-Kowalevskaya theorem ( = the C-K theorem ) for P (t, x,Dt, Dx)

holds in Ω ( or that the Cauchy problem (1.2) is analytically well-posed in Ω ) when for
each (t◦, x◦) in Ω, every initial data u◦(x) holomorphic in Ωt◦ and every right-hand side
f(t, x) holomorphic in Ω, there exists a neighborhood ω of (t◦, x◦) where the Cauchy
problem (1.2) has a unique holomorphic solution u(t, x). ( The weak form. )

In Definition 5, ω may depend on u◦ and f . However, the following was given by
S.Mizohata.

Proposition 4.1. ( Common existence domain (1), [36] )
The existence domain ω is taken independently of u◦ and f .

We denote the ε-neighborhood of K by Kε. We say that v(t, x) is holomorphic on a
compact set K when v is holomorphic in Ko and continuous on K, where Ko is the open
kernel of K. The above proposition implies

Proposition 4.2. ( Common existence domain (2) )
For arbitrary compact set K in Ω and arbitrary positive ε, there exists a compact neigh-

borhood K ′ of K decided by the operator and ε such that the unique holomorphic solution
exists on K ′ for arbitrary holomorphic initial data on K̄ε t◦ and arbitrary holomorphic
right-hand side on K̄ε.

When we prove the necessity for the C-K theorem, we need an apriori estimate. For
a bounded domain ω in Ω, we set H(ω) = { v(t, x) = t(v1(t, x), · · · , vN(t, x)) : vj is
holomorphic in ω and continuous on ω̄ , (1 ≤ j ≤ N) }. It is a Banach space by the
norm ||v||ω = max1≤j≤N max(t,x)∈ω̄ |vj(t, x)|.
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Remark 4.1. We also use H(ω) for the scalar functions. The readers can distinguish
whether it is a space of scalar functions or one of vector functions in the current of the
discussion.

The following was essentially given in S.Mizohata.

Proposition 4.3. ( Apriori estimate, [36] )
If the C-K theorem for P holds in Ω, for arbitrary compact set K and arbitrary positive

number ε there exist a neighborhood K ′ of K and a positive constant C independent of
u◦ and f such that

(4.1) ||u||K′ ≤ C(||u◦||Kε t◦ + ||f ||Kε) ,

where u is the solution of (1.2).

4.3. Homogeneous problem and formal fundamental solution.
Let us consider the homogeneous Cauchy problem:

(4.2)


P (t, x,Dt, Dx)u ≡ Dtu− A(t, x,Dx)u = 0 ,

u(t◦, x) = u◦(x) .

If we can construct the fundamental solution which has an estimate uniform on t◦ ,
the inhomogeneous problem (1.2) is solved by the Duhamel principle. Therefore, from
now on, we consider the problem (4.2).

By the relation Dtu = A(t, x,Dx)u , Dt
ku is represented by a linear combination of

the derivatives on x of u :

(4.3) Dt
ku = A[k](t, x,Dx)u , (k ≥ 0) .

{A[k]}∞k=0 satisfies the recurrence formula:

(4.4)

{
A[0] = IN ,

A[k] = A[k − 1] ◦ A + (A[k − 1])t , (k ≥ 1) ,

where (A)t is obtained by operating Dt to the coefficients of A.

The formal fundamental solution of the problem (4.2) is given by

(4.5) U(t, x,Dx; t◦) =
∑∞

k=0

(
√
−1(t− t◦))

k

k!
A[k](t◦, x, Dx) .

As A[k] is differential operator and A[k] =
∑

i≥0 A[k]i is a finite sum, when it satisfies

(4.8) in Proposition 4.4 below,
∑∞

k=0{(
√
−1(t− t◦))

k/k!}A[k](t◦, x, Dx)u◦ converges in a
neighborhood ω of (t◦, x◦) for arbitrary u◦ in H(Ωt◦) and U(t, x) is the true fundamental
solution in ω.
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4.4. Cauchy-Kowalevskaya theorem and sketch of proofs.
Now we announce our theorem on the Cauchy-Kowalevskaya theorem for systems.

Theorem 5. ( Cauchy-Kowalevskaya theorem for systems, [31] and [32] )
The following conditions are equivalent.

1) The Cauchy-Kowalevskaya theorem for P (t, x,Dt, Dx) holds in Ω.

2) The lower order terms in the normal form (2.5) satisfy

(4.6) ord bk(h) ≤ 1−m(nk − h) , ( 1 ≤ h ≤ nk , 1 ≤ k ≤ d ).

3) P (t, x,Dt, Dx) is reduced to a first order system through a similar transformation by
an element in GL(N; SM).

4) 1-det P is of degree N : the size of P .

5) P is Kowalevskian in our sense, that is, p-evolutive for 0 ≤ p ≤ 1.

6) There exists a natural number k◦ such that

(4.7) ord A[k](t, x,Dx) ≤ k + k◦ , (k ∈ Z+).

The equivalences between 2), 4) and 5) are obvious by virtue of Proposition 3.1. We
give a sketch of the proof from 1) to 2). This is the main part of the proof of the
necessity for the C-K theorem. Further, we give a sketch of the proof from 3) to 7) below:
more detailed version of 6). This is the essential part of the proof of the sufficiency. By
the estimate (4.8), the formal fundamental solution (4.5) converges and operates on the
holomorphic functions. Thus, there exists a positive δ decided by the operator such that
for u◦ in H(Bρ(x◦)) for arbitrary small positive ρ, the unique holomorphic solution u
exists in Bρ(x◦)×Bδρ(t◦). This means that 7) implies 1) ( the strong form ). The proofs
from 2) to 3), 7) to 1), 7) to 6) and 6) to 2) are easy or trivial.

Proposition 4.4. ( Estimate of A[k](t, x, ξ), [31] and [32] )
Condition 3) implies 7):

7) For an arbitrary compact set K in Ω, there exist a positive integer k◦ and positive
constants C, R and R◦ independent of k, for which the following estimates hold on
K ×C` ;

(4.8)
|A[k]i

(β)
(α)(t, x, ξ)| ≤ CR◦

k
∑k

h=0 Rk−h+i+|α|+|β|(k − h)!i!|α|!|β|!||ξ||k◦+h−i−|β|

(i ∈ Z+ , α ∈ Z+
1+` , β ∈ Z+

` ).
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Proof. ( Sketch of the proof from 1) to 2) )
The proof is similar as that in S.Mizohata[39]. We derive a contradiction assuming

that 1) holds and 2) fails. As 2) fails, P (t, x,Dt, Dx) is p-evolutive for p > 1.
Let {λkj(t, x, ξ)} be the roots of p-det Qk = 0. As P is p-evolutive for p > 1, we can

find (t◦, x◦, ξ◦) ∈ Ω × C` \ Σ , its conic neighborhood ω × Γ ( ⊂ Ω × C` \ Σ), natural
numbers sk , sk1 ( sk1 ≤ sk ) and a positive number ε such that λkj(t, x, ξ)’s are distinct
and have the constant multiplicities mkj’s ( 1 ≤ j ≤ sk ,

∑sk

j=1 mkj = nk ) and

(4.9) Imλkj(t, x, ξ)

{
≤ −ε||ξ||p (1 ≤ j ≤ sk1) ,

≥ 0 (sk1 + 1 ≤ j ≤ sk) ,

in ω × Γ ( 1 ≤ k ≤ nk1 ). As p > 1, at least one of sk1 is positive. We can assume
s11 ≥ 1.

By a complex translation and a complex rotation, (t◦, x◦) and ξ◦ is reduced to (0, O)
and (1, 0, · · · , 0), respectively. After this, we use the same notation. From now on, we
restrict the variables (t, x) in ω to the real section. We construct true symbols from formal
symbols. Then, on the real section, Dt − λ11(t, x,Dx) is essentially the back-word heat
equation of order p ( > 1 ) and the microlocal L2

x energy of the solution in the direction
(1, 0, · · · , 0) with the initial data exp(

√
−1ρx1) diverges at least of order exp(ε′ρpt) for a

positive ε′. On the other hand, the apriori estimate (4.1) implies the divergent order at
most exp(δ◦ρ). Making ρ tend to infinity, these imply a contradiction.

�

Proof. ( Sketch of the proof from 3) to 7) )
By 3), there exists N in GL(N; SM(Ω×C` \Σ)) and C(t, x, ξ) in MN(S

1
M(Ω×C` \Σ))

which satisfy N−1 ◦ P ◦ N = INDt − C(t, x, ξ) and ord C = 1. On the solution space
Sol = {u ∈ H : Pu = 0}, the element in MN(H[Dx,Dt]) operate as the element in
MN(H[Dx,Dt])/MN(H[Dx,Dt])P . This relation can be understood as the relation in
MN(SM [Dt]). A[k](t, x, ξ) is the representative element without Dt of the equivalence
class [Dt

k] in MN(SM [Dt])/MN(SM [Dt])P . The relation INDt − A = 0 is represented as
N ◦ (INDt − C) ◦ N−1 = 0. We denote the representative element without Dt of the
equivalent class [N ◦Dt

k ◦N−1] by N ◦ C[k](t, x, ξ) ◦N−1. {C[k]}∞k=0 satisfies

(4.10)

{
C[0] = IN ,

C[k] = C[k − 1] ◦ C + (C[k − 1])t , (k ≥ 1) .

As ord C is one, the following lemma is rather easily obtained by the induction.

Lemma 4.5. ( Estimate of C[k](t, x, ξ). )
For an arbitrary conically compact set Γ̃ in Ω×C` \Σ, there exist a positive constants

C ′, R and R◦ independent of k, for which the following estimates hold on Γ̃ ;

(4.11)
|C[k]i

(β)
(α)(t, x, ξ)| ≤ C ′R◦

k
∑k

h=0 Rk−h+i+|α|+|β|(k − h)!i!|α|!|β|!||ξ||h−i−|β|

(i ∈ Z+ , α ∈ Z+
1+` , β ∈ Z+

` ).
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We set ord N + ord N−1 = k◦. By the above lemma and the relation

A[k] =
∑k

j=0

k!

j!(k − j)!
(Dt

k−jN) ◦ C[j] ◦N−1 ,

we arrive at the estimate (4.8) on Γ̃. Because A[k](t, x, ξ) is holomorphic in Ω×C`, the
estimate (4.8) holds all over Ω×C` by the maximum principle.

�

4.5. Cauchy-Kowalevskaya theorem of Nagumo Type.
M.Nagumo[42] showed that one can obtain a unique solution real analytic on x and of

C1-class on t if m ≤ 1 in (1.2) and the coefficients are real analytic on x and continuous
on t. When m ≥ 2, does the continuity on t of the coefficients and one of 2) to 6) in
Theorem 5 assure the existence of a solution? The answer is No.

Example 6. ( announced at ICM’98, [28] )

P6 = IN∂t−


0 1

. . . . . .
1
0 µ(t)

ν(t) 0

 (∂x)m , N× N ,

where µ(t) and ν(t) are non-negative and have the supports in [0,∞) and µ(t)ν(t) ≡ 0.
More precisely, let us set t2n−1 = t2n =

∑∞
j=n j−1(log j)−2 ( {tn} is a monotonically

decreasing sequence with the limit zero ) and take a natural number p ,

µ(t) =

{
(t2n−1 − t)p(t− t2n)p t ∈ (t2n, t2n−1) ,

0 otherwise ,

and

ν(t) =

{
(t2n − t)p(t− t2n+1)

p t ∈ (t2n+1, t2n) ,

0 otherwise .

(n ∈ N)
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t2n+1

t2n+1 t2n-2

t2n-2

t2n-1

t2n-1

t2n+2 t2n

t2nt2n+2

µ(t)

ν(t)

0

0
t

t

µ(t) and ν(t) belong to Cp−1, 1(R), that is, the (p-1)-th derivatives are Lipschitzian.
As µ(t)ν(t) ≡ 0, P6 is 0-evolutive at every point.

For arbitrary small positive ε, we can find t2q ≤ ε. Let us take t◦ = t2n+2q. We can
concretely solve the Cauchy problem for P6 with the initial data u◦ i = 0 (0 ≤ i ≤ N = 1),
u◦ N = ϕ(x) = exp(ρx) and the right-hand side f(t, x) = 0 from t◦ to t2q and the solution
u has the estimate

|uN(t2q, 0)|

> ρnmN
∏n

k=1

∫ t2n+2q−2k

t2n+2q−2k+1

∫ s
(k)
N

t2n+2q−2k+2

. . .

∫ s
(k)
2

t2n+2q−2k+2

ν(s
(k)
N )µ(s

(k)
1 )ds

(k)
1 · · · ds

(k)
N

≥ ρmNn{K◦
∏n+q

j=q+1
j(log j)2}−(4p+N) .

On the other hand, if the Cauchy-Kowalevskaya theorem of nagumo type holds, we
have the same apriori estimate as Proposition 4.3 and the following must hold

|uN(t2q, 0)| ≤ C exp(K1ρ) .

Here, K◦ and K1 are positive constants. If mN > 4p + N, taking
ρ = [(n + q){log(n + q)}2]4p+N ( K >> K◦K1 ) and making n tend to infinity, the both
estimates are not compatible. For the detail, see W.Matsumoto[28].

Thus, in order to hold the Cauchy-Kowalevskaya theorem of Nagumo type for P6, we
need the differentiability on t at least up to (m− 1)N/4.

The author propose a conjecture on the Cauchy-Kowalevskaya theorem of Nagumo
type for systems. Let us take Ω = [T1, T2] × Ω′. We denote the space of real analytic
functions in Ω′ by A(Ω′),
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Conjecture ( Conjecture on C-K theorem of Nagumo type for systems )
If all coefficients of P belong to C∞([T1, T2]; A(Ω′)), the assertion in Theorem 5 also

holds.

The equivalences between from 2) to 6) are rather easily seen. The assertion from 1) to
2) is also shown by the same way as the proof in Subsection 4.4, because the analyticity
on x is essential but that on t is not required in the proof. Therefore, the sufficiency of 2)
or 3) or · · · or 6) is open. Recently, M.Murai and the author[30] obtained an affirmative
result for the most simple system but non-trivial case: m = 2, N = 2 and ` = 1.

5. Levi condition for the C∞ well-posedness

5.1. Short history and Example.
We consider the well-posedness of the Cauchy problem for the operators with con-

stantly multiple characteristics. 90 years ago, E.E.Levi[20] gave a sufficient condition for
the C∞ well-posedness for higher order scalar equations with constantly multiple char-
acteristic roots in case of the dimension of x-space one. He also showed his condition
becomes necessary when coefficients are constant. Through S.Mizohata and Y.Ohya[40]
and [41], finally, for higher order scaler equation, the necessary and sufficient condition
for the C∞ well-posedness was obtained by H.Flaschka and G,Strang[13] ( necessity ) in
1971 and J.Chazarin[8] ( sufficiency ) in 1974.

For first order systems, in 1973, V.M.Petkov[45], [46] gave the necessary and sufficient
condition assuming the constant multiplicity at most two and the constant rank. In 1977,
Y.Demay[11] gave a sufficient condition for the multiplicity at most two but without the
rank condition. In 1981, W.Matsumoto[21], [22] also consider a necessary condition and
a sufficient condition in the same situation. He showed that when the coefficients are
non-quasianalytic, it seems very difficult to give the necessary and sufficient condition
through some examples. In 1994, W.Matsumoto[25] Section 4, [26] gave the necessary
and sufficient condition only assuming the constant multiplicity of the characteristic roots
and the real analyticity of the coefficients. As the invariance of Matsumoto’s condition
under the transformations was not clear, J.Vaillant continued the research on the repre-
sentation of the condition in an invariant form and succeeded up to the multiplicity seven
[53]. ( See also J.Vaillant[54], G.Taglialatela and J.Vaillant[51] and those reference. )

The author obtained the invariant representation of his condition using determinant
theory associated with a characteristic root ( the condition iv) in Theorem 6 below ).
A.D’Agnolo and G.Taglialatela[9] also discussed on this type of representation.

An approach from the algebraic analysis was made by A.D’Agnolo and F.Tonin[10].

We consider the Cauchy problem of a first order system of partial differential equations
( (1.2) with m = 1 ) with constantly multiple characteristic roots. If the first order part
has only the zero characteristic root, the Levi condition is equivalent to 0-evolution,
that is, essentially it is an ordinary differential operator of Dt. When coefficients are real
analytic, this is necessary and sufficient for the C∞ well-posedness. On the other hand, in
case of non-quasianalytic coefficients, even if the first order part has constant coefficients,
this condition does not rest sufficient. We give an example.
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Example 7. ( [25] Section 4 )

P7(t, ∂t, ∂x) = I3∂t−

0 1 0
0 0

0

 ∂x−

 0 0 0
0 0 µ(t)

ν(t) 0 0

 ,

where µ(t) and ν(t) have the same forms of Figure 1 in Subsection 4.5. and belong to
C∞(R).

As µ(t)ν(t) ≡ 0, P7 is 0-evolutive. For P7, we consider the Cauchy problem with
initial time t◦ = t2n+2q. By the same calculation as on Example 6, we can see that we
need n-the order derivative of initial data to obtain the solution up to t = t2q. On the
other hand, by the apriori estimate in Proposition 5.2, the loss of regularity must be finite.
Making n tend to infinity, these are not compatible. On the detail, see W.Matsumoto[29].

Therefore, through this section, we assume the analyticity of all coefficients.

5.2. p-determinant associated with a characteristic root.
Let λk(t, x, ξ) be the characteristic roots of constant multiplicity mk ( 1 ≤ k ≤ d ) of

the first order part of P . By virtue of the assumption of the constant multiplicity, every
characteristic roots is smooth. In order to describe the Levi condition in an invariant
form, we introduce p-determinant associated with λk(t, x, ξ).

Let p be a rational number such that 0 ≤ p < 1. As SM [Dt] = SM [Dt − λk(t, x, ξ)],
every a(t, x, ξ, Dt) is represented as a(t, x, ξ, Dt) =

∑m
j=0 a<j>(t, x, ξ)(Dt−λk)

m−j, a<j> =∑∞
i=0 a<j>

i ∈ SM . We reset the order of a<j> to its true order. Let us set

p−ord λk
a<j>(t, x, ξ)(Dt − λk)

m−j = ord a<j> + p(m− j)

p−ord λk
a = max

0≤j≤m
p−ord λk

a<j>(t, x, ξ)(Dt − λk)
m−j

and call them the p-order associated with λk. By p-order associated with λk, SM [Dt−λk]
becomes a filtered ring. We set further

R
(p)
λk

(a) = {j : p−ord λk
a<j>(Dt − λk)

m−j = p−ord λk
a}

ap−pr λk
(t, x, ξ, τ) =

∑
j∈R

(p)
λk

(a)
a<j>

0 (t, x, ξ)(τ − λk)
m−j

and call the latter the p-principal symbol of a(t, x, ξ) associated with λk. The set
∪p>0{a<j>

0 (t, x, ξ)(τ−λk)
m−j}

j∈R
(p)
λk

(a)
has finite elements and composes the Newton poly-

gon of a associated with λk.
We define the p-homogeneous polynomial on τ −λk by the same way in Subsection 3.1.

Let us set

Yλk
= {p−homogeneous polynomials on τ − λk} .

Yλk
is a commutative ring. The map σp

λk
from SM [Dt − λk] \ {0} to Yλk

\ {0} defined
by σp

λk
(a) = ap−pr λk

is a homomorphism of the productive semigroup. This is naturally

extended to the map from SM [Dt−λk]
Q \{0} to Y Q

λk
\{0} by σp

λk
(ab−1) = ap−pr λk

/bp−pr λk
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as a homomorphism of the productive group. We put σp
λk

(0) = 0. Thus, we can ob-
tain the weighted determinant theory by σp

λk
following J.Dieudonné[12]. In case of non-

quasianalytic classes, by the same reason as in Subsection 3.1, we can also obtain it on a
open dense set.

Definition 6. ( p-determinant associated with λk )
We call the determinant by σp

λk
of a matrix A with entries in S[Dt−λk], p-determinant

of A associated with λk and denote it by p-detλk
A.

We can obtain the corresponding properties in Theorem 3.
On the matrix of the form P = INDt − A, A ∈ MN(S

1) ( m = 1 ), we give the
representation of p-determinant using the element of the normal form in Theorem 1.

Let us set

(5.1)

true order dkj(h) = rkj
h ,

Mp
kj = max1≤h≤nkj

{rkj
h + (nkj − h) + p(h− 1)},

Rp
kj = {h : rkj

h + (nkj − h) + p(h− 1) = Mp
kj}

We have the following.

Proposition 5.1. ( Relation between the normal form and p-determinant a.w. λk )
(5.2)

p− detλk
P =

∏d
i=1

∏di

j=1 p− detλk
Pij ,

p− det−λkPkj

=



(τ − λk)
nkj , ( pnkj > Mkj ) ,

(τ − λk)
nkj −

∑
h∈Rp

kj
dkj(h)0(t, x, ξ)|ξ|nkj−h(τ − λk)

h−1 , ( pnkj = Mkj ) ,

−
∑

h∈Rp
kj

dkj(h)0(t, x, ξ)|ξ|nkj−h(τ − λk)
h−1 , ( pnkj < Mkj ) ,

= the highest p−degree part a.w . λk of the ordinary determinant of Pkj

( 1 ≤ j ≤ dk )

p− detλk
Pij = (λk − λi)

nij ( 1 ≤ i 6= k ≤ d, 1 ≤ j ≤ nij )

In case of m.f.s., |ξ|nkj−h is replaced by ξ1
nkj−h.
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In case of S = SH , we can obtain the regularity of p-determinant associated with λk

corresponding to (1) in Theorem 4.

By the relation in Proposition 5.1, we can find unique p for which
p-detλk

P/
∏

1≤i≤d, i6=k(λk − λi)
mi has the term τmk and another term or else it is τmk for

all 0 < p < 1. In the former case, we say that P is p-evolutive with respect to λk and
define the second principal part ( on the Cauchy problem ) of P by
p-detλk

P/
∏

1≤i≤d, i6=k(λk − λi)
mi =

∏
1≤j≤dk

p − detλk
Pkj and denote it by p-det′λk

P . In
the latter case, we say that P is 0-evolutive with respect to λk and define the second
principal part by τmk . 0-evolutive operator with respect to λk is essentially an ordinary
differential operator along the bicharacteristic strip of λk.

5.3. Levi condition.
Let us make clear the definition of C∞ well-posedness of the Cauchy problem. For the

simplicity, we assume that Ω is bounded.

Definition 7. ( C∞ well-posedness )
We say that the Cauchy problem is C∞ well-posed in Ω when for each (t◦, x◦) in Ω,

there exists a neighborhood ω of (t◦, x◦) where every initial data u◦(x) of C∞-class in
Ω̄t◦ and every right-hand side f(t, x) of C∞-class in Ω̄, the Cauchy problem (1.2) has a
unique solution u(t, x) in C∞(ω̄).

We give an apriori estimate. For a bounded domain ω in Ω, we set F (ω) = { v(t, x) =
t(v1(t, x), · · · , vN(t, x)) : vj ∈ C∞(ω̄) , (1 ≤ j ≤ N) }. It is a Fréchet space by the
semi-norms ||v||n ω = max1≤j≤N

∑
|α|≤n max(t,x)∈ω̄ |Dtx

αvj(t, x)|.

Proposition 5.2. ( Apriori estimate of C∞ well-posedness )
If the Cauchy problem for P is C∞ well-posed in Ω, for arbitrary q in Z+, there exist

r in Z+ and a positive constant C independent of u◦ and f such that

(5.3) ||u||q ω̄ ≤ C(||u◦||r ω̄t◦ + ||f ||r ω̄) ,

where u is the solution of (1.2).

S.Mizohata showed that the following.

Proposition 5.3. ( Hyperbolicity, [35] )
In order that the Cauchy problem is C∞ well-posed in Ω, the characteristic roots

λk(t, x, ξ) ( 1 ≤ k ≤ d ) must be real.

Now we announce our theorem on the C∞ well-posedness for systems.

Theorem 6. ( C∞ well-posedness for systems, [25] Section 4 and [29] )
We assume that every characteristic root λk(t, x, ξ) is real and has the constant multi-

plicity mk ( 1 ≤ k ≤ d ). The following conditions are equivalent.
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i) The Cauchy problem for P is C∞ well-posed in Ω.

ii) The lower order terms in the normal form (2.4) with m = 1 satisfy

(5.4) ord dkj(h) ≤ −(nk − h) , ( 1 ≤ h ≤ nkj , 1 ≤ j ≤ dk , 1 ≤ k ≤ d ).

iii) P is reduced to a first order system with a diagonal first order part through a similar
transformation by an element in GL(N; SM).

iv) P is 0-evolutive with respect to λk ( 1 ≤ k ≤ d ).

Remark 5.1. The conditions in Theorems 5 and 6 are similar each other and the proofs
also similar in case of real analytic coefficients. In case of non-quasianalytic coefficients,
the proofs on the necessity also hold. However, not only the proofs of the sufficiency loose
the validity but also the phenomena themselves become different.

Remark 5.2. In case of non-quasianalytic coefficients, under the equivalent condition ii),
iii) or iv), the greatest space for the well-posedness of the Cauchy problem was studied
by W.Matsumoto[23] for 2× 2 systems. It depends on the regularity of coefficients. For
example, when coefficients belong to a Gevrey class, it is much bigger than the union of
the Gevrey classes.

The equivalences between ii) and iv) is obvious by virtue of Proposition 5.1. The
proofs from ii) to iii) is evident. We give a sketch of the proofs from i) to ii) and from
iii) to i).

Proof. ( Sketch of the proof from i) to ii) )
The proof is just similar as from 1) to 2) in Subsection 4.4. We derive a contradiction

assuming that i) holds and ii) fails. As ii) fails, P is p-evolutive with respect to one of λk ,
for 0 < p < 1, we can find (t◦, x◦, ξ◦) , its conic neighborhood ω×Γ , natural numbers skj ,
s′kj ( s′kj ≤ skj ) and a positive number ε such that the roots {µkji}

skj

i=1 of p-det′λk
P = 0

are distinct and have the constant multiplicities mkji’s ( 1 ≤ i ≤ skj ,
∑skj

j=i mkji = nkj )
and

(5.5) Imµkji(t, x, ξ)

{
≤ −ε||ξ||p (1 ≤ i ≤ s′kj) ,

≥ 0 (s′kj + 1 ≤ i ≤ skj) ,

in ω×Γ Here, at least one of s′kj is positive. We can assume s′11 ≥ 1 and ξ◦ = (1, 0, · · · , 0).

We construct true symbols from formal symbols. Then, Dt−λ1(t, x,Dx)−µ111(t, x,Dx)
is essentially the back-word heat equation of order p ( 0 < p < 1 ) and the microlocal
L2

x energy of the solution in the direction (1, 0, · · · , 0) with the initial data exp(
√
−1ρx1)

diverges at least of order exp(ε′ρpt) for a positive ε′ but the apriori estimate (5.3) implies
the divergent order on ρ is at most polynomial order . Making ρ tend to infinity, these
imply a contradiction.

�
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Proof. ( Sketch of the proof from iii) to i) )
( First step ) We separate the characteristic roots.

Proposition 5.4. ( Perfect Block Diagonalization, [27] )
We assume the constant multiplicity of each characteristic roots λk. Then, for ev-

ery point (t◦, x◦, ξ◦) in Ω × R`, there exists a conically compact neighborhood ω × Γ,
N◦(t, x, ξ) =

∑∞
i=0 Ni in GL(N; S0

H(ω × Γ)), Bk(t, x, ξ) =
∑∞

i=0 Bki in Mmk
(S1

H(ω × Γ)),
such that

(5.6)
N◦−1(t, x, ξ) ◦ P (t, x,Dt, ξ) ◦N◦(t, x, ξ) = ⊕1≤k≤dP

k ,

P k(t, x,Dt, ξ) = Imk
Dt −Bk(t, x, ξ)

where Bk0 has the eigenvalue λk(t, x, ξ).

When we construct true symbol corresponding to each formal symbol, the error is of
class S−∞, we can consider each Pk independently. ( In our discussion, S−∞ is negligible. )

( Second step ) By a Fourier transformation, we can transform λk(t, x, ξ) to 0. ( See,
for example, H.Kumano-go[18] Chap 10. ) From now on, we omit the index k. Thus,
we need consider P̃ = ImDt − Ã, Ã ∈ Mm(S1

H), where Ã0 is nilpotent. ( After a trans-
formation by a Fourier integral operator, formal symbols become inhomogeneous on ξ.
However, we can treat them by the same way as the homogeneous case and we use the
same notation for both. )

( Third step ) We define Ã[k] by (4.4) replacing A[k], A and N by Ã[k], Ã and m,
respectively. As the order of Ã is one, the following estimate is rather easily seen.

Lemma 5.5. ( Estimate of Ã[k](t, x, ξ) )
There exist positive constants C, R and R◦ independent of k such that

(5.7)
|Ã[k]i

(β)
(α)(t, x, ξ)| ≤ CR◦

k
∑k

h=0 Rk−h+i+|α|+|β|(k − h)!i!|α|!|β|!|ξ|h−i−|β|

(i ∈ Z+ , α ∈ Z+
1+` , β ∈ Z+

` ).

Therefore, formal fundamental solution defined by (4.5) replaced A[k] by Ã[k] converges
in each order part.

On the other hand, by iii), there exists N in GL(m; SM) and C̃(t, x, ξ) in Mm(S0
M).

We denote the representative element without Dt of the equivalent class [N ◦Dt
k ◦N−1]

by N ◦ C̃[k](t, x, ξ) ◦N−1. {C̃[k]}∞k=0 satisfies (4.10) replacing C[k], C and N by C̃[k], C̃
and m, respectively.

As the order of C̃ is one, the following lemma is rather easily obtained.

Lemma 5.6. ( Estimate of C̃[k](t, x, ξ) )
There exist a positive constants C ′, R and R◦ independent of k, for which the following

estimates hold.
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(5.8)
|C̃[k]i

(β)
(α)(t, x, ξ)| ≤ C ′R◦

k Rk+i+|α|+|β|k!i!|α|!|β|!|ξ|−i−|β|

(i ∈ Z+ , α ∈ Z+
1+` , β ∈ Z+

` ).

We set ord N + ord N−1 = k◦. By the above lemma and the relation

Ã[k] ≡
∑k

j=0

k!

j!(k − j)!
(Dt

k−jN) ◦ C̃[j] ◦N−1 ,

we see that the sum in (5.7) is in reality up to min{k, k◦}. Then, (4.5) is finite order
and converges in SM . By L.Boutet de Monvel and P.Krée[7] and L.Boutet de Monvel[6],
we can construct true symbol which has the asymptotic expansion (4.5). Thus, we have
obtained a parametrix as a Fourier integral operator acting on C∞. Following H.Kumano-
go[17], we can obtain the exact fundamental solution from a parametrix. On the detailed
proof, see W.Matsumoto[29].

�
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partielles linéaires et à coefficients constantes, Ann.Inst.Fourier, Grenoble, 51 (1965), 225-311.
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