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Two Methods of Solution of the Three�Dimensional

Inverse Nodal Problem�

Yu� E� Karpeshina� J� R� McLaughlin

The operator �� � q with the Dirichlet boundary condition is considered in a

parallelepiped� The problem of restoring q�x� from positions of nodal surfaces is

solved�

� Introduction�

We consider a rectangular region in three�dimensional space� which is 	lled with a homoge�

neous elastic medium� 	xed on the sides� There is a force acting on the media� depending

linearly on displacement� We will show that the amplitude of the force is uniquely determined

by a subset of the nodal surfaces� Thus� we consider the operator

Hu 
 ��u� qu ���

with the Dirichlet boundary condition

u
����K�


 � �
�

in the parallelepiped

K� 
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We represent real potential q�x� in the form�

q�x� 

X
��L�

q� cos���x�� cos���x�� cos���x��� ���

where L� is the lattice�

L� 
 f� 
 �a�n�� a�n�� a�n��� n�� n�� n� 
 �� �� 
� ���g � ���

We will study eigenfunctions u�

Hu 
 k�u� ���

�



in a high energy region and restore q from information about nodal surfaces� which are zeros

of u� In two�dimensional situation the analogous problem was solved by O�H� Hald and

J�R� McLaughlin �HM�� In order to develop two�dimensional results� O�H� Hald and J�R�

McLaughlin understood how the eigenvalues �the squares of the natural frequencies� and the

corresponding eigenfunctions �mode shapes of the membrane� change as q change� Note�

that for vibrating membranes arbitrary large eigenvalues can be arbitrarily close together�

This presents considerable di�culty as the arbitrarily small di�erences become small divisors

in asymptotic expansion� To overcome this di�culty� O�H� Hald and J�R� McLaughlin began

with the q 
 � case and establish a dense� well de	ned set of rectangular membranes for which

almost all of the eigenvalues are well separated� The membranes were chosen so that the

square of the ratio of the sides is not well approximated by rational numbers� After selecting

the �good� rectangles� they gave three conditions that eigenvalues must satisfy� almost all

eigenvalues k� are at least a given distance �of order k��� � � �� from their nearest neighbor

and a large distance from the selected number of neighbors� It was shown that for the �good�

rectangles �almost all� eigenvalues satisfy these conditions� Using the q 
 � case as the base

problem� perturbation results were obtained for the q �
 � case� The leading terms for �good�

eigenvalues and eigenfunctions were established� This made it possible to 	nd asymptotic

formulae for signi	cant part of nodal lines� Note that the nodal domains for eigenfunctions

corresponding to �good� eigenvalues for q 
 � have small diameters when k � �� but the

nodal domains for the corresponding eigenfunctions for q �
 � usually do not� However�

it was shown that it is possible to cut the large nodal domains into smaller approximate

nodal domains� The size of small regions go to zero when k � �� The potential can be

considered approximately as a constant inside each of them� It is proved that the potential

approximately coincides with the 	rst eigenvalue of the Dirichlet problem for the Laplacian

in each of this regions� This eigenvalue� and therefore� the potential� are de	ned completely

by geometry of nodal lines� and can be determined numerically� The perturbation formulae

established bounds for error in making approximation�

In the three dimensional situation principal di�culties arise on the way of realizing

the two�dimensional scheme� The eigenvalues are situated much denser than in the two�

dimensional case� For �good� parallelepipeds the average distance between eigenvalues is

of order k����� � � � �compare k�� for the two�dimensional case�� The analogs of two�

dimensional conditions of stability are not su�cient for constructing perturbation formulae�

To overcome this di�culty we apply the perturbation technic developed by Yu�E� Karpeshina

�K� for three�dimensional periodic problems� We use a simple connection between the Dirich�

let problem and the periodic problem in the �doubled� region with a symmetric potential�

Choosing �good� parallelepipeds� we consider unperturbed eigenvalues �q 
 �� of the peri�

odic problem in the �doubled� region� which are well spaced �up to a natural degeneration






for a symmetric potential�� Then� we choose from them those who satisfy � additional con�

ditions �� Using counting arguments� we prove that �almost all� eigenvalues in a high energy

region satisfy all imposed conditions� To construct perturbation formulae we surround an

unperturbed eigenvalue by a small contour on the complex plane� the radius of the contour

being half of the distance to the nearest neighbor� We construct perturbation series for the

resolvent of the periodic problem on this contour and that enable us to get perturbation

series for an eigenvalue and its spectral projection� The spectral projection has dimension

�� which corresponds to natural degeneration of the eigenvalue for a symmetric potential�

From this� using antisymmetrization procedure� we easily get an asymptotic formula for the

corresponding undegenerated eigenvalue and the eigenfunction of the Dirichlet problem�

Note� that for constructing perturbation series� it should be used some auxiliary operator
�H instead of H�� corresponding to q 
 � �see �K��� This need arises from the fact� that�

in the three�dimensional situation� di�raction conditions� which prevent perturbation series

from convergence� depend on the potential� Because of the fact� that the di�raction condi�

tions control the convergence of the series� the expressions corresponding to these conditions

should be in denominators of terms of the series for the resolvent� The perturbation series

constructed with respect to H� don�t provide this � they� obviously� have denominators in�

dependent on q� So� in �K�� another initial operator �H was constructed� It corresponds to

all the di�raction conditions� Fortunately� it turns out that with a good accuracy the per�

turbation series with respect to �H may be replaced by segments of the perturbation series

with respect to H��

The perturbation formulae obtained in this way for eigenfunctions of the Dirichlet prob�

lem enable us to describe behavior of nodal surfaces�

Another problem is how to get information about q from the nodal surfaces� There are

two ways to reconstruct the potential� The 	rst of them is the three�dimensional analog of

the method developed by O�H� Hald and J�R� McLaughlin in two�dimensional situation� The

nice feature of this approach is that it produce approximation of q in each small region� using

information only from this region� However� there is a practical drawback of this approach�

doing all those 	rst harmonic computations is quite hard numerically� and it works only for

smooth potentials� This motivated us to develop a new approach which would be simpler for

practical computations and would work for a wide class of q� In this approach we compare

the patterns of nodal surfaces for q 
 � and q �
 �� Measuring the distance between them

in the middle of every cell� we get a set of dates� With a good accuracy we prove that

the dates linearly depend on the Fourier coe�cients of q�x�� corresponding matrix being

known� We get the Fourier coe�cients from the deviations of the nodal surfaces from the

�For a smooth potential its enough to impose � simpler conditions�

�



initial pattern� The computation of the Fourier coe�cients need information about nodal

surfaces in every or almost every small region� However� this method is expected to be easier

to implement numerically� because essentially includes only summation steps� It demands

much less restriction on the smoothness of potential� for the reason that Fourier coe�cients

are integral characteristics of a function� eigenvalues

� �Good� Parallelepipeds and Well�Spaced Eigenval�

ues of the Free Problem�

Without restriction of generality we assume that the lengths of the parallelepiped K� are in

some interval ��� a��� � � a� ��� We write down this formally in the form��
��

a��
�
��

a��
�
��

a��

�
� J� ���

J 
 ��� a��� ��� a��� ��� a���

Let s � Z� n f�g� � � �� 	 � �� and the plane layer W ���
s � J is de	ned by the formula�

W ���
s 


n

 � J � j�
� s�j � 	jsj����

o
� ���

in J � Let W ��� be the union of all such layers for di�erent s�

W ��� 
 �s�Z�nf�gW
���
s � ���

The simple calculation gives�

V
�
W ���

�

��� O�	�� ����

here and below V �	� is a volume of a three�dimensional region�

We take the �good� set of parallelepiped J � as following�

J ���� 	� 
 J nW ���� ����

From ���� it follows that jJ �j 
 jJ j for 	 small enough�

To de	ne the notion of well�spaced eigenvalues� let us consider the operator H�� corre�

sponding to the zero potential�

H� 
 ��� ��
�

u
����K�


 � � ����

It is easy to see that the eigenvalues and eigenfunctions of H can be parameterized by the

points of a lattice L�

L 
 f� 
 �a�n�� a�n�� a�n��� n�� n�� n� 
 �� 
� ���g � ����

�



and are given by the formulae�

��� 
 j�j�� ����

u���x� 

�

V �K��
sin���x�� sin���x�� sin���x��� ����

Thus� the spectrum of H� consists of the points j�j
�� � � L� Let � � � and M���� be the set

of � � L� such that the corresponding j�j� are well spaced from their nearest neighbors�

M���� 

n
� � L � �� �
 � � jj�j� � j�j�j � j�j������

o
����

For �good� parallelepipeds the set M���� is rich� We de	ne precisely what does it mean for

a set to be reach� Let B���� r� be the positive octant of the ball of radius r centered at the

origin� Let ����� be the number of lattice points L in a region ����� We say that ���� is

rich in L if

lim
r��

��� � B���� r��

�B���� r�

 � �O�r����� ����

Lemma � Suppose � � �� 	 � � and the sides of parallelepiped K� belongs to J ���� 	��

Then� the set M���� is rich in L�

The lemma� obviously� means� that� if K� is a �good� parallelepiped� that there is a reach

set of j�j� in a high energy region� which are well spaced� i�e�� their distance to the nearest

neighbor is greater than j�j������ We use the well�spacing as the 	rst condition in the

construction of the perturbation formulae�

� Perturbation Formulae�

Let us consider � � M���� and a contour C��� on the complex plane around the point j�j�

with radius �
�
j�j������ It follows from ���� that all the points j�j�� � �
 � are outside contour

C���� and C��� is at the distance greater or equal to �
�
j�j����� from the spectrum of the

free operator� We consider the resolvent �H � z���� z � C��� and construct converging

perturbation series for it� First� following �K�� we construct the perturbation series for the

resolvent of a periodic problem in a doubled region with a symmetric potential and than

use antisymmetrization procedure to obtain the corresponding formula for the Dirichlet

problem� We prove that the perturbation series for �H � z��� converges on the rich set
 M�q� �� � M���� � L� This set is described by � additional conditions �� for smooth

potentials�� Integrating the series for �H � z��� over the contour� we get a perturbation

formula for eigenfunctions�

�



Theorem � Suppose � belongs to the set  M�q� ��� Then there exists a unique ungenerated

eigenvalue �� of the operator H in the interval 	�j�j� �� 
 �j�j� � q� � j�j������ j�j� � q� �

j�j������� The eigenfunction� corresponding to ��� admits the representation�

u��x� 
 u���x� �  G���� x� � 
��� x�� ����

where
 G���� x� 


X
��L���j���j�j�j�

�qu��� u���

j�j� � j�j�
u���x��

	 being arbitrary chosen from the interval ��� ������

The functions  G���� x�� 
��� x� satisfy the estimates�

j  G���� x�j � j�j���� �
��

jr  G���� x�j � j�j����� �
��

j
��� x�j � j�j����� �

�

jr
��� x�j � j�j������ �
��


� being a positive parameter depending on the smoothness of the potential� in particular� 
� 


�� �� for q�x� whose symmetric extension to the doubled region is in�nitely di�erentiable�

� Nodal Surfaces�

Let us consider the nodal surfaces� i�e�� the surfaces in K�� de	ned by the equation� u��x� 


�� It is easy to see from ����� that the unperturbed nodal surfaces �q 
 �� are the planes�
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� m� 
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These planes form a lattice with the elementary cell
h
�� 	

��

i
�
h
�� 	

��

i
�
h
�� 	

��

i
� If � �M�q� ���

then

j�ij � j�j����� i 
 �� 
� �� �
��

Hence� the elementary cell is quite small� Let us consider an unperturbed nodal surface� say�

x� 

�m�

��

� �
��

�



Note that for x on this surface

�u��
�x�

�x� 

�������

m�

V �K��
sin���x�� sin���x��� �
��

Let �m�
be the set of points on the surface �
��� which are far enough from its intersections

with another nodal surfaces� namely�

�m�


�
x � x� 


�m�

��
� j sin���x��j � j�j���� j sin���x��j � j�j���

	
� �
��

Using �
�� it is not di�cult to show that �m�
has an asymptotically full measure on the

plane �
���
j�m�

j

��a��
� a��

�


 � �O�j�j����� �
��

From �
�� and �
�� it follows that ������u���x�

����� � cj�j������ ����

when x � �m�
�

Lemma � If � belongs to  M�q� ��� then there is a unique piece of the perturbed nodal surface

in the �k��������neighborhood of each simply connected component of �m�
� In fact� it is in

the smaller �j�j�����������neighborhood and de�ned by the formula�

x��x�� x�� 

�m�

��

� ��x��� ����

x� � �m�
� x� 




�m�

��
� x�� x�

�
�

��x�� 

�u��x��

������m� sin���x�� sin���x��
�O�j�j������������ ��
�

The function ��x�� satis�es the estimate�

j��x��j � cj�j���������� ����

The lemma follows from formulae ���� ! �
��� ���� and the Implicit Function Theorem�

Let us consider the points in K��

 m 


�
�m�

��
�
��m� � ��
�

��
�
��m� � ��
�

��

�
�

where m�� m�� m� are integers� It is clear that  m � �m�
for every  m� Points  m form a lattice

with the elementary cell�
h
	
��
� 	
��
� 	
��

i
� which is small �see �
���� when Let us introduce the

notation�

� f� g �

��

V �K��j������j

X
�m

f�  m�g�  m��

f � g being smooth functions in K��

�



Lemma � Suppose � �  M�q� ��� � � L� � � j� � �j � j�j�� � � 	 � ����� Then the

function ��x��� de�ned by �	
�� satis�es the asymptotic formula�

� �� u�� �

�qu��� u���

���
�O�j�j���
�� � �
 �� ����

��� 
 ������
m��m��m����j�j� � j�j��� sigma�� 
 O�j�j���

� � � and depends on the smoothness of the potential� f�e�� � 
 �� 	� 
�� for q�x�� whose

symmetric extension to the dubled region is in�nitely di�erentiable�

	 Two Methods of Solution of the Inverse Nodal Prob�

lem�

The method of �nding q�x� from local data�

The 	rst approach is a three�dimensional analog of the method suggested by O�H� Hald

and J�R� McLaughlin for two�dimensions �HM�� The main steps are the following� the nodal

domains for q 
 � and eigenfunctions corresponding to � �  M�q� �� have small diameters

when j�j � � �see �
��� �
���� From Lemma 
 it follows that perturbed nodal surfaces

are close to unperturbed ones outside vicinities of the edges of the small rectangular subre�

gions� This means that the nodal domains for q �
 � close to unperturbed domains� but not

nessasary have small radii� because the intersections �edges� turn� generally speaking� into

quasisintersections� We consider the smaller �approximate� nodal domains� the boundary of

each of them coincides with the perturbed nodal surfaces in the distance from the subrectan�

gulars edges� while the edges are eliminated by cutting planes� The size of the�approximate�

nodal domains goes to zero when j�j � �� The potential can be considered approximately

as a constant inside each of them� It is proved that the potential approximately coincides

with the 	rst eigenvalue of the Dirichlet problem for the Laplacian in each of this regions�

This eigenvalue� and therefore� the potential� are de	ned completely by geometry of nodal

lines� and can be determined numerically� The perturbation formulae establish bounds for

error in making approximation�

The method of �nding Fourier coe�cients q��

Note� that ��x��� de	ned by ����� gives the displacement under perturbation of the nodal

surface x� 

	m�

��
at points �x�� x�� in the direction of x�� These displacements are measurable

in experiments� We will use formula ���� to solve the inverse nodal problem�

Lemma � If � �  M�q� ��� � � L� � � j� � �j � j�j�� � � 	 � ����� then the following

�



formula holds�

�qu��u��� 
 ��� � �� u�� � �O�j�j�
�� � �
 �� ����

This lemma follows from Lemma � and the fact that � u�� u� �
 ��� �O�j�j��������� when

j� � �j � j�j� and j� � �j � j�j�� Note that �qu��u��� coinside with q	���
� ��� �� 
 �j�� �

��j� j��� ��j� j��� ��j� up to trivial multipliers� Thus� measuring displacement of the nodal

lines yields all q�� � �
 �� According to Theorem �� the square of the frequency �eigenvalue

��� corresponding to the eigenfunction u� satis	es the asymptotic �� 
 j�j��q��O�j�j������

Thus� a measurement of the new frequency gives us q��

Note� that it is not nessesary to know the set  M�q� �� for solving the inverse problem�

because of its property of being rich� Formula ���� holds for �almost all� � and has to be

used with statistical averaging�

This method works for q whose symmetric extentions to the doubled region belongs to

W �
� � � � ��
�
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