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Two Methods of Solution of the Three-Dimensional

Inverse Nodal Problem.

Yu. E. Karpeshina, J. R. McLaughlin

The operator —A + ¢ with the Dirichlet boundary condition is considered in a
parallelepiped. The problem of restoring ¢(x) from positions of nodal surfaces is

solved.

1 Introduction.

We consider a rectangular region in three-dimensional space, which is filled with a homoge-
neous elastic medium, fixed on the sides. There is a force acting on the media, depending
linearly on displacement. We will show that the amplitude of the force is uniquely determined

by a subset of the nodal surfaces. Thus, we consider the operator
Hu = —Au+ qu (1)

with the Dirichlet boundary condition

u raKJr =0 (2)
in the parallelepiped
K, =0, | x o,i]x 0,1]. (3)
a1 Q9 as

We represent real potential ¢(z) in the form:

q(w) = Z qp cos(B1x1) cos(Bawz) cos(B33), (4)
BeEL*
where L* is the lattice:
L = {ﬂ = (alnl, asngy, a3n3), ny,Ng, N3 = 0, ]_, 2, } . (5)

We will study eigenfunctions wu,
Hu = k*u, (6)
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in a high energy region and restore ¢ from information about nodal surfaces, which are zeros
of u. In two-dimensional situation the analogous problem was solved by O.H. Hald and
J.R. McLaughlin [HM]. In order to develop two-dimensional results, O.H. Hald and J.R.
McLaughlin understood how the eigenvalues (the squares of the natural frequencies) and the
corresponding eigenfunctions (mode shapes of the membrane) change as ¢ change. Note,
that for vibrating membranes arbitrary large eigenvalues can be arbitrarily close together.
This presents considerable difficulty as the arbitrarily small differences become small divisors
in asymptotic expansion. To overcome this difficulty, O.H. Hald and J.R. McLaughlin began
with the ¢ = 0 case and establish a dense, well defined set of rectangular membranes for which
almost all of the eigenvalues are well separated. The membranes were chosen so that the
square of the ratio of the sides is not well approximated by rational numbers. After selecting
the “good” rectangles, they gave three conditions that eigenvalues must satisfy: almost all
eigenvalues k? are at least a given distance (of order k=%, § > 0) from their nearest neighbor
and a large distance from the selected number of neighbors. It was shown that for the “good”
rectangles “almost all” eigenvalues satisfy these conditions. Using the ¢ = 0 case as the base
problem, perturbation results were obtained for the ¢ # 0 case. The leading terms for “good”
eigenvalues and eigenfunctions were established. This made it possible to find asymptotic
formulae for significant part of nodal lines. Note that the nodal domains for eigenfunctions
corresponding to “good” eigenvalues for ¢ = 0 have small diameters when k£ — oo, but the
nodal domains for the corresponding eigenfunctions for ¢ # 0 usually do not. However,
it was shown that it is possible to cut the large nodal domains into smaller approximate
nodal domains. The size of small regions go to zero when k£ — oo. The potential can be
considered approximately as a constant inside each of them. It is proved that the potential
approximately coincides with the first eigenvalue of the Dirichlet problem for the Laplacian
in each of this regions. This eigenvalue, and therefore, the potential, are defined completely
by geometry of nodal lines, and can be determined numerically. The perturbation formulae
established bounds for error in making approximation.

In the three dimensional situation principal difficulties arise on the way of realizing
the two-dimensional scheme. The eigenvalues are situated much denser than in the two-
dimensional case. For “good” parallelepipeds the average distance between eigenvalues is
of order k='7% § > 0 (compare k=% for the two-dimensional case). The analogs of two-
dimensional conditions of stability are not sufficient for constructing perturbation formulae.
To overcome this difficulty we apply the perturbation technic developed by Yu.E. Karpeshina
[K] for three-dimensional periodic problems. We use a simple connection between the Dirich-
let problem and the periodic problem in the “doubled” region with a symmetric potential.
Choosing “good” parallelepipeds, we consider unperturbed eigenvalues (¢ = 0) of the peri-

odic problem in the “doubled” region, which are well spaced (up to a natural degeneration



for a symmetric potential). Then, we choose from them those who satisfy 6 additional con-
ditions . Using counting arguments, we prove that “almost all” eigenvalues in a high energy
region satisfy all imposed conditions. To construct perturbation formulae we surround an
unperturbed eigenvalue by a small contour on the complex plane, the radius of the contour
being half of the distance to the nearest neighbor. We construct perturbation series for the
resolvent of the periodic problem on this contour and that enable us to get perturbation
series for an eigenvalue and its spectral projection. The spectral projection has dimension
8, which corresponds to natural degeneration of the eigenvalue for a symmetric potential.
From this, using antisymmetrization procedure, we easily get an asymptotic formula for the
corresponding undegenerated eigenvalue and the eigenfunction of the Dirichlet problem.

Note, that for constructing perturbation series, it should be used some auxiliary operator
H instead of Hy, corresponding to ¢ = 0 (see [K]). This need arises from the fact, that,
in the three-dimensional situation, diffraction conditions, which prevent perturbation series
from convergence, depend on the potential. Because of the fact, that the diffraction condi-
tions control the convergence of the series, the expressions corresponding to these conditions
should be in denominators of terms of the series for the resolvent. The perturbation series
constructed with respect to Hy don’t provide this - they, obviously, have denominators in-
dependent on ¢. So, in [K], another initial operator H was constructed. It corresponds to
all the diffraction conditions. Fortunately, it turns out that with a good accuracy the per-
turbation series with respect to H may be replaced by segments of the perturbation series
with respect to Hy.

The perturbation formulae obtained in this way for eigenfunctions of the Dirichlet prob-
lem enable us to describe behavior of nodal surfaces.

Another problem is how to get information about ¢ from the nodal surfaces. There are
two ways to reconstruct the potential. The first of them is the three-dimensional analog of
the method developed by O.H. Hald and J.R. McLaughlin in two-dimensional situation. The
nice feature of this approach is that it produce approximation of ¢ in each small region, using
information only from this region. However, there is a practical drawback of this approach:
doing all those first harmonic computations is quite hard numerically, and it works only for
smooth potentials. This motivated us to develop a new approach which would be simpler for
practical computations and would work for a wide class of ¢. In this approach we compare
the patterns of nodal surfaces for ¢ = 0 and ¢ # 0. Measuring the distance between them
in the middle of every cell, we get a set of dates. With a good accuracy we prove that
the dates linearly depend on the Fourier coefficients of ¢(x), corresponding matrix being

known. We get the Fourier coefficients from the deviations of the nodal surfaces from the

!For a smooth potential its enough to impose 4 simpler conditions.



initial pattern. The computation of the Fourier coefficients need information about nodal
surfaces in every or almost every small region. However, this method is expected to be easier
to implement numerically, because essentially includes only summation steps. It demands
much less restriction on the smoothness of potential, for the reason that Fourier coefficients

are integral characteristics of a function. eigenvalues

2 “Good” Parallelepipeds and Well-Spaced Eigenval-
ues of the Free Problem.

Without restriction of generality we assume that the lengths of the parallelepiped K, are in

some interval [1, o], 1 < ag < co. We write down this formally in the form:

2 2 2
(%ﬂi?)ex )

a?’ a3’ a?
J = []_,ao] X [1,&0] X []_,ao].
Let s € Z3\ {0}, § > 0, £ > 0, and the plane layer W2 C J is defined by the formula:
Wi ={ee | ) <els| > 7). (8)
in J. Let W% be the union of all such layers for different s:
W = Usez3\{0}W35’€- (9)

The simple calculation gives:
V(W) = O(e), (10)

here and below V'(-) is a volume of a three-dimensional region.
We take the “good” set of parallelepiped J' as following:

J'(6,e) = J\ W, (11)

From (11) it follows that |J'| ~ |J| for ¢ small enough.
To define the notion of well-spaced eigenvalues, let us consider the operator Hy, corre-

sponding to the zero potential:
HO == —A, (12)

ulorc, =0, (13)

It is easy to see that the eigenvalues and eigenfunctions of H can be parameterized by the

points of a lattice L,

L ={a = (a1n1, asgns, agng), ny,ng,ng = 1,2, ...}. (14)
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and are given by the formulae:
Xoa = |a?, (15)
8
V(KY)
Thus, the spectrum of Hy consists of the points |a|?, a € L. Let § > 0 and M, (J) be the set

of a € L, such that the corresponding |«|? are well spaced from their nearest neighbors:

U () = sin(ay ) sin(aexs) sin(azxs). (16)

Mi(0) ={aeL:Y8# a8~ |of| > |o| 772} (17)

For “good” parallelepipeds the set M;(d) is rich. We define precisely what does it mean for
a set to be reach. Let B, (0,7) be the positive octant of the ball of radius r centered at the
origin. Let #€(0) be the number of lattice points L in a region Q(d). We say that (9) is
rich in L if

# (20 B1(0,7))

: _ —26
lim B0 1L+0(r ). (18)

Lemma 1 Suppose § > 0, ¢ > 0 and the sides of parallelepiped K. belongs to J'(6,¢).
Then, the set M;(0) is rich in L.

The lemma, obviously, means, that, if K, is a “good” parallelepiped, that there is a reach
set of |a|? in a high energy region, which are well spaced, i.e., their distance to the nearest

|a|71725.

neighbor is greater than We use the well-spacing as the first condition in the

construction of the perturbation formulae.

3 Perturbation Formulae.

Let us consider a € M;(d) and a contour C'(a) on the complex plane around the point |a/?
with radius 1|a|™' 7. Tt follows from (17) that all the points ||, § # « are outside contour
C(w), and C(w) is at the distance greater or equal to 3|a|™'"? from the spectrum of the
free operator. We consider the resolvent (H — z)~!, z € C(a) and construct converging
perturbation series for it. First, following [K], we construct the perturbation series for the
resolvent of a periodic problem in a doubled region with a symmetric potential and than
use antisymmetrization procedure to obtain the corresponding formula for the Dirichlet
problem. We prove that the perturbation series for (H — z)~! converges on the rich set
M(q,6) € M(6) C L. This set is described by 6 additional conditions (4 for smooth
potentials). Integrating the series for (H — 2)~! over the contour, we get a perturbation

formula for eigenfunctions.



Theorem 1 Suppose a belongs to the set ]\7[(q, d). Then there exists a unique ungenerated
eigenvalue N, of the operator H in the interval e(|al,8) = [|o]? + qo — |a| 1%, |a)? + qo +

|| 1=29]. The eigenfunction, corresponding to A, admits the representation:

Uo () = uga(r) + Gi(a, ) + (a, x), (19)

where ( )
~ Ugq, U
Ch(a,7) = 3 Muoﬂ(x),

BEL,0<|B—al<|al* af* — |7
e being arbitrary chosen from the interval (0,1/10).
The functions Gy (o, z), ¥(a, ) satisfy the estimates:

G0, 2)] <[] 5. (20)
VG (0, 2)| < |5 (21)
(e 2)] < [a] % (22)
Vii(a,2)| < |2, (23)

&1 being a positive parameter depending on the smoothness of the potential, in particular, & =

1 — 60 for q(x) whose symmetric extension to the doubled region is infinitely differentiable.

4 Nodal Surfaces.

Let us consider the nodal surfaces, i.e., the surfaces in K, defined by the equation: u,(z) =

0. It is easy to see from (16), that the unperturbed nodal surfaces (¢ = 0) are the planes:

m™ma (6]
T, = s mi :0,1,...—,
Qi ai
Mo Q9
Ty = y Mg :Oala"'_a (24)
Q2 %)
s Q3
T3y = s m3:0,1,...—.
Qs as

These planes form a lattice with the elementary cell [0, all] X [0, alz] X [0, a%] Ifae M(q,d),
then

il > [, i=1,2,3. (25)

Hence, the elementary cell is quite small. Let us consider an unperturbed nodal surface, say,

Tmy
= . 26
x1 o (26)




Note that for z on this surface
8u0a 80[1(—1)m1
(z) =
81'1 V(K+)

sin(aory) sin(asxs). (27)

Let Q,,,, be the set of points on the surface (26), which are far enough from its intersections
with another nodal surfaces, namely,
™m : _ . _
O, = {x cxy = a—l, | sin(auwy)| > |7, | sin(aszs)| > |af 56}. (28)
1

Using (25) it is not difficult to show that €, has an asymptotically full measure on the
plane (26):

S
2| _11|_1 =1+0(lo|™). (29)
m2a; a3
From (25) and (27) it follows that
Do 1-156
— 30
2> claf! ¥, (30)

when z € Q,,, .

Lemma 2 If« belongs to ]\7[(q, J), then there is a unique piece of the perturbed nodal surface
in the (k=17199)-neighborhood of each simply connected component of Q.. In fact, it is in
the smaller (|a|~1=8+169) neighborhood and defined by the formula:

x1(29, x3) = o + ¢(xy), (31)
1
Ty € Qmu Ty = (Wa—rnlam%l‘i’)) )
1
—Ug (T 1
o) = (z0) 1 O(Jof 26499, (32)

ap(—1)™ sin(agxs) sin(aszs)

The function p(xy) satisfies the estimate:
[ (0)| < cla] TITEF, (33)

The lemma follows from formulae (19) — (23), (30) and the Implicit Function Theorem.
Let us consider the points in K :

o (7rm1 m(mg +1/2) w(ms3 + 1/2)) ,

(e4] ’ Q9 ’ Q3

where my, my, mg are integers. It is clear that m € €2,,,, for every m. Points m form a lattice

with the elementary cell: [all, -, alg)], which is small (see (25)). when Let us introduce the
notation:

7T3

< f,g>= D o] %:f(m)g(m),

f, g being smooth functions in K, .



Lemma 3 Suppose o € M(q,8), 8 € L, 0 < |a — | < |af5, 0 < & < 1/10. Then the
function ¢(xg), defined by (32), satisfies the asymptotic formula:

Upes U e
U
OBa

, BFa (34)

< Y, Upg >=

Oga = a1 (=1)™ I (o — |B[%), sigmage = O(laf?),

¢ > 0 and depends on the smoothness of the potential, f.e., ( =1 —e — 200 for q(z), whose

symmetric extension to the dubled region is infinitely differentiable.

5 Two Methods of Solution of the Inverse Nodal Prob-

lem.

The method of finding q(x) from local data.

The first approach is a three-dimensional analog of the method suggested by O.H. Hald
and J.R. McLaughlin for two-dimensions [HM]. The main steps are the following: the nodal
domains for ¢ = 0 and eigenfunctions corresponding to o € M (q,6) have small diameters
when |a| — oo (see (24), (25)). From Lemma 2 it follows that perturbed nodal surfaces
are close to unperturbed ones outside vicinities of the edges of the small rectangular subre-
gions. This means that the nodal domains for ¢ # 0 close to unperturbed domains, but not
nessasary have small radii, because the intersections (edges) turn, generally speaking, into
quasisintersections. We consider the smaller “approximate” nodal domains: the boundary of
each of them coincides with the perturbed nodal surfaces in the distance from the subrectan-
gulars edges, while the edges are eliminated by cutting planes. The size of the “approximate”
nodal domains goes to zero when |a| — oo. The potential can be considered approximately
as a constant inside each of them. It is proved that the potential approximately coincides
with the first eigenvalue of the Dirichlet problem for the Laplacian in each of this regions.
This eigenvalue, and therefore, the potential, are defined completely by geometry of nodal
lines, and can be determined numerically. The perturbation formulae establish bounds for

error in making approximation.

The method of finding Fourier coefficients qg.
Note, that ¢(xg), defined by (31), gives the displacement under perturbation of the nodal
surface x; = % at points (z2, 3) in the direction of ;. These displacements are measurable

in experiments. We will use formula (34) to solve the inverse nodal problem.

Lemma 4 Ifa € M(q,0), B€ L, 0< |f—al < |af, 0 <e < 1/10, then the following



formula holds:
(QUOaUOﬁ) — U,Ba < QO,UO,B > +O(|a|_c)7 ﬁ 7£ . (35)

This lemma follows from Lemma 3 and the fact that < ug, u, >= 5, + O(|a| 175+%) when
| —al < |al® and |y — a| < |al*. Note that (quoaues) coinside with g g, [ — 3] = (Jou —
B1], |ae — Ba|, |ais — B3|) up to trivial multipliers. Thus, measuring displacement of the nodal
lines yields all ¢z, 6 # 0. According to Theorem 1, the square of the frequency (eigenvalue
Ao ) corresponding to the eigenfunction u, satisfies the asymptotic A\, = |a|*+qo+O(Ja|17?).
Thus, a measurement of the new frequency gives us qq.

Note, that it is not nessesary to know the set M(q, d) for solving the inverse problem,
because of its property of being rich. Formula (35) holds for “almost all” « and has to be
used with statistical averaging.

This method works for ¢ whose symmetric extentions to the doubled region belongs to
Wy, v>1/2.
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