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1 Introduction.
Let V denote the gradient operator. It is well known that we have in any
dimension n > 1

n
-1

(11) 1l < CallV £y, = -

whenever f vanishes at infinity in some mild sense. Here || f||, = ([p. |f () [Pdz)"/?
is the usual LP-norm.

Estimate (1.1) is invariant under the az + b group action (a > 0,b € R™).
However (1.1) is not invariant under the Weyl-Heisenberg group action.
Indeed let p(x) be any function in the Schwartz class and let f,(x) be
exp(iw.x)p(x) where |w| — +o0o. Then [|[Vf,|l1 = |w| |l¢]li + 0(1) when
|w| — +o0. It implies that (1.1) is unaccurate for such modulated functions.

We want to improve (1.1) into

(1.2) £l < Call VA1 11

where B = Bx" """ is the homogeneous Besov space which will be defined
in the next section.

This improvement will appear as a by-product of a result in the paper
[1], which proof is rewritten here.
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This sharp estimate obviously implies (1.1) since

(1.3) 1flls < Clf

Moreover if f = f,, = e“®p(z) as above, || f,|lz = |«| " Y||¢]le+0(|w|™), |V L, =
|wl] [|¢|l1 + 0(1) and the asymptotics of (1.2) yield the trivial estimate

n* -

n—1)/n n
(1.4) 11l < Dol o)) i

2 A special Besov space.

The special Besov space B which plays a fundamental role in this paper
can be defined through several approaches.

The first one starts with the celebrated Zygmund class. A function f :
R™ — C belongs to the Zygmund class if and only if f(z) is continuous on
R™ and there exists a constant C' such that

(2.1) [f(z+y)+ flz—y) —2f(x)] < Clyl

for x € R",y € R™.

For instance f(x) = z log |z| belongs to the Zygmund class while f(x) =
|z| log |z| does not belong.

The Zygmund class, as defined by (2.1), is a quotient space modulo affine
functions.

We now concentrate on n > 2 since (1.2) is obviously wrong when n = 1.
Our first definition is the following one.

Définition 1 Let S be a tempered distribution. We write S € B = B;o(”‘”"’"
if and only if S = > 0%f, where fo,a € N, belong to the Zygmund class.
|laj=n

Let us provide the reader with a few equivalent definitions of the Ba-
nach space B. This new definition is using the celebrated Littlewood-Paley
analysis.

We start with a function ¢ belonging to the Schwartz class with the
following properties

(2.2) p(§) = 1 for ] < 2/3

(2.3) (€)= 0 for |¢] = 4/3
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where ¢(§) is the Fourier transform of .
We then define

(2.4) pi(r) = 2"p(2x),j € Z
and, for any tempered distribution f,

Then we have

Lemme 1 A tempered distribution f belongs to B if and only if there exists
a constant C' such that

(2.6) 1S;(f)|lse < €2V j e 7.

The norm of f in B being sup{2~7||S;(f)|ls ;j € Z}. Distinct choices of
¢ lead to equivalent norms.
Let us observe that (2.6) is equivalent to

(2.7) 18;(F)llC"27 Y, 5 € Z,
together with
(2.8) 15 (F)lloe 0, j = —o0

where Aj = Sj+1 — Sj.

Then one can write
(2.9) F=> 2if)

where A;(f) are the celebrated dyadic blocks of a Littlewood-Paley analysis.
It is now a simple exercise to check that B can be given the following
equivalent definition

Lemme 2 A tempered distribution f belongs to B if and only if there exists
a constant C such that

(210) |<Saga,b>|§07 0<0,<OO,bERn,
where
1 -k
2.11 a = —
(2.11) Y (@) =~ g(——)



and

(2.12) g(x) = exp(—|z[*/2) .

This new definition is intersting for the following observation. If S is a
non-negative Radon measure p, then S € B if and only if p satisfies the
following familiar property

(2.13)
there exists a constant C'such that for r € (0, 00), 29 € R"and B(xg,r) =

{z eR" ; |z —xo| <71},

(2.14) pu(B(zo, 7)) < Cr.
From (2.14) we immediately observe that in dimension n > 2, |2/~ Y
belongs to Ba" ™ (R"). From (2.6) we deduce that a function f € B

should have a zero mean in the distributional sense. Let us be more specific

Définition 2 Let [ be a tempered distribution. We say that f has a zero
mean in the distributional sense if for any testing function ¢ € S(R™) (f,pr) =

0 where pr(x) = R"p(%).

, lim
Rt+o00

We now describe a wavelet based characterization of B = Bx">.

In this paper an orthonormal wavelet basis will always be defined as
M2 (Vx—k),j € Z, k € Z" where 1 belongs to a finite set of 2" —1 mother
wavelets. These mother wavelets are compactly supported and smooth. For
our purpose, C! is enough while continuity is not sufficient. We then write
V;k(x) = 27/%)(272 — k) and have

Lemme 3 There exist two positive constants Cy, Cy such that

(2.15) Cillflls < sup 202)|(f 4] < Coll fl -

{1,590}

Two remarks might be useful. First the supremum in (2.15) should be com-
puted over the 2" ! mother wavelets ¢. Secondly, it is not true that the
Banach space B consists of all tempered distribution f for which (2.15) is
finite.

The reader is referred to [2] where a detailed proof of lemma 3 is given.
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3 The main facts.

Our first theorem is a rephrasing of a result by A. Cohen et al. [1].
Let us remind the reader with the notations which were previously intro-
duced. An orthonormal wavelet basis of L?(R") is defined as

(3.1) Yin(x) =2M29(x — k), j € Z,k € Z"

where 1) belongs to a finite collection of 2" —1 mother wavelets. These mother
wavelets are assumed to belong to L (R") and to be compactly supported.
We then have

Theorem 1 Ifn > 2, there exists a constant C = C(1, n) with the following
property. Whenever the gradient V f of a function f belongs to L*(R™), then
B(j, k) = 20=2)(f 4p; 1) belongs to weak —(* of Z x Z™. In other words,
for A € (0,00) we denote by E) C Z x Z™ the collection of (j,k) for which
16(4,k)] > A and we have

(3.2) 4B, < OVl

This is not the case in one dimension. Indeed a simple limiting argument
shows the following : if (3.2) is true whenever Vf € L'(R"), then (3.2)
should remain true whenever f € BV which means that V f is a finite Radon
measure.

When n = 1, the Heaviside function is a counter-example since 3(j, k) =
B(k) does not depend on j. If ¢ is not the Haar wavelet, §(k) does not
vanish identically. There exists aky € Z such that (ko) # 0 and (4, k)
cannot belong to weak —¢*.

We now return to the improved Sobolev embedding

Theorem 2 There exists a constant C,, such that

(3.3) I/

where B = B;o(”‘”""’.

n—1)/n 1/n
we < Cal VA A11Y

This estimate can be improved one step further since the assumption
Vf € L'(R") can be replaced by f € BV (in other terms Vf is a finite
Radon measure).

In order to deduce theorem 2 from theorem 1, it suffices to apply the
following lemmata

Lemme 4 Let o(j, k) = (f, ¢;k) be the wavelet coefficients of f and 3(j, k) =
210=n/2Yq (5, k). If 1 < p < 2, there exists a constant C,,,, such that
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(3.4) 1£1lp < Con (DY 1BGRINYP
gk
Indeed the standard Littlewood-Paley theory yields the following. If S(f)(z) =

1/2
<ZZ la (g, k)|?2™ [ (272 — k)|2> , then || f||, and [|S(f)]|, are equivalent
7k

norms for 1 < p < oo. It then suffices to observe that S(f)(z) is an ¢* norm
which is smaller than an /£ norm when 1 < p < 2. Then the LP-norm of this
(P-norm is a trivial computation which is left to the reader.

Lemme 5 Let a > 0 and > 0 be two positive numbers. Let x,,n € N, be
a sequence of real or complex numbers such that |x,| < a(n € N) and

(3.5) H{neN; |z, >A <Ay 0< A <a.
Then if 1 < p < o0

s 1/p
(3.6) <Z |mn|p> <G, ol ~Mrplie

0

Then lemma 5, lemma 6 and theorem 1 alltogether imply theorem 2.

4 The first part of the proof of theorem 1.

We will forget for a while the Daubechies wavelet ¢)(z) and instead use an
other function w(z) which is supported by the unit cube [0,1)" and moreover
satisfies the following two conditions

(4.1) |lw(z)| <1 and /w(x)dx =0.

IfI1=1I(jk)={zreR";2z -k e[0,1)"} is a dyadic cube, we consider
(4.2) wr(x) = 22w (22 — k)

which is supported by I.
We then consider the corresponding “wavelet coefficients”

(4.3) all) = (f,wr) .

The collection of all dyadic cubes will be denoted by Z

If S is any discrete set, we will equip it with the obvious counting measure
and weak —¢!(S) will have the obvious meaning : for A > 0, we count the
number N, of s € S for which |z(s)] > A and (x(s))ses belongs to weak
—(1(8S) if Ny < CX7! for some constant C'.

With this in mind we have
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Theorem 3 In any dimension n > 2, there exists a constant C(n) with the
following property. For any function f(x) such that V f(x) € L'(R"™), the
renormalized wavelet coefficients

(4.4) B(I) = 270D (f )
belong to weak (*(Z) and
(4.5) HIEL; B> A< C)A VAL

Before entering the detailed proof, a few trivial remarks are needed. First we
have

Lemme 6 With the same notations as in theorem 3, we have

(46) 5D <n [ [9flde
I
Indeed we first write
(4.7) w(r) = 0101(x) + - - - + Opbp(x)
where 6y,---,6, are supported by the unit cube [0,1]" and 0; = J/0x.
Moreover 6y, - - -, 6, are lipschitzian and satisfy ||}/ < 1.
We then obtain
(4.8) B(I) = / Y2z — k) (2)dx =
- / 0,(20% — k)0 f(x)d — -+« — /Gn(2jx ) f(x)dx .

If lemma 6 was the only estimate at our disposal, theorem 3 would be
out of reach. Indeed |5(I)] > 279 would lead to [; |V fldz > n~127% We
will systematically study this collection of dyadic cubes. Indeed n~! will be
forgotten and one writes I € A, whenever [, |V f|dz > 279 Unfortunately
A, is infinite since I € A, and J D I implies J € A,. That is why lemma 6 is
not sharp and A, is not the finite collection of dyadic cubes we are looking
for.

A sharpening of lemma 6 is definitely needed and this improvement is
provided by (6.4) in Proposition 2. For the time being, a digression is needed
since we will systematically use Poincaré’s inequalities. This digression will
provide some information about the size of some constant which appears in
this estimate.

A domain € C R"” is defined as a bounded connected open set.

A domain 2 is lipschitzian if its boundary 0f is locally (in a suitable
coordinate frame) the graph of a lipschitzian function.

Poincaré’s inequality reads the following
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Lemme 7 If Q is a lipschitzian domain, there exists a constant C () such
that

(4.9) 1 = mafllse- sy < (@) [ 1¥flda

for any function f:Q — R (or C).

Here and in what follows mgq f denotes the mean value of f over 2.
The constant C(2) heavily depends on the global geometrical property
of 2. However if €2, ), are two lipschitzian domains such that

Qo =aQdy+b, a>0,beR" then C(Qs) =C(y)

and this observation will play a key role in the proof. An other crucial point

is the following observation : (4.9) is definitely wrong if € is not connected.
We now return to the proof of theorem 3. Once for all we assume [, |V f|dz <

1/n. Then we are interested in counting these dyadic cubes I such that

B(I) > 279. Since $(I) <1 (lemma 6) we can restrict our attention to ¢ € N.

Using lemma 6 once more, we consider the following collection of dyadic

cubes

Définition 3 If I is a dyadic cube and ¢ € N, we write I € A, if (and only
if)

(4.10) /I|Vf|dx > 27

From lemma 6, we know that 5(I) < n2 7 if I ¢ A,. However A, is not
the collection of cubes we are looking for. Indeed I € A, and J D I imply
J e A,

Therefore A, is an infinite collection of dyadic cubes and we are instead
looking for a finite collection A, such that

(4.11) tA, < C2°

(4.12) [¢A, = B(I)<Cr27

where C' and C' are two constant.
For constructing this finite set A, which is contained in A, we begin with
two simpler finite subsets Fy and B, of A,.

Définition 4 A leaf I € A, is a minimal dyadic cube in A, : J C I and
J €Ay = J=1. The collection of all leaves is denoted by F,.
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Lemme 8 f§F;, <29,

Indeed if we are given N distinct leaves, they are pairwise disjoint. Therefore

N279 < | |Vflde+---+ \Vflde < [ |[Vflde <1.
I In
This yields N < 27 as announced.

Before moving to B, we need to define “sons” and “parents”.

A “son” I' of the dyadic cube I = I(j, k) is one of the 2" dyadic cubes
I(j + 1,k") which are contained in I(j, k).

Conversely I is the (only) parent of I'. Let us stress again that each dyadic
cube I has 2" sons but one (and only one) parent.

These 2" sons are ordered the following way. The “first son” I’ is, among
all sons I(j + 1, k') of I(j, k) the one for which [} ) [V fldz attains the
largest value (among all other sons).

The “second son” is the one for which || I

GH1E

FLA) |V f|dz attains the second
largest value and so on... If there are several £’ for which fl(j+1 ) |V f|dx

attains the largest value, I’ will denote one among these several k&’ and I” an
other one.
We now arrive to the definition of the second finite subset B, C A,.

Définition 5 If I € A,, we write I € By if both I' and I" belong to A,.
A crucial remark is given by the following lemme.
Lemme 9 The cardinality of B, does not exceed 29.

Indeed, if N, denotes this cardinality, the number of leaves exceeds IV,.
It then suffices to apply our remark concerning the number of leaves.
The set A, is now defined by the following rule

(4.13)
ifJeB,, 0<p<gq,IDJandd(l,J)<2(q—p), then I € A, .

The distance between I and I' is j' — j whenever I = I(j, k), I' = I(j', k")
and I' C I. Moreover A, is the smallest collection of dyadic cubes satisfying
(4.13).

In other words A, contains B,. Next A, contains the parents and grand
parents of all dyadic cubes .J in B,_; and so on.

(From this definition, it is trivial to estimate gA,. But this computation

will be postponed and we will instead give a more algorithmic approach to
A,

Définition 6 If I is a dyadic cube, m(I) is defined as inf{q € N; I € B,}.
If this set is empty, m(I) = +oo.
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In other words m(I) = g implies I' € A, , I" € A, and ¢ is minimal with this
property. In other words, I ¢ B,_; which implies the following property. If
the first son I’ is kept apart, we have [, |V f|dz < 27™D% for all the other
sons, This will be rewritten as

/ |V fldz < 2(2" — 1)2~m0) = g2—m) |
I

Définition 7 If 0 < p < g, then A,, is the collection of all dyadic cubes
I € A, for which there exists an other dyadic cube J C I such that

(4.14) m(J)=p and d(I,J) < 2(q —p) .

Finally Ay = | Ay,

0<p<q
We then want to prove the following crucial fact

Proposition 4 There exist two (absolute) constants C' and C" such that

(4.15) tA, < C'2

(4.16) it 7 ¢ A,, then |3(I)] < C"277 .

As was already observed, this proposition implies theorem 3.

5 Proof of theorem 3 : the cardinality of A,.
We begin with the following remark
(5.1) 1A < (1+2(¢—p))2”.

Indeed m(J) = p implies J € B,. The cardinality of B, does not exceed
2P. Tt then suffices for each frozen J to count the number of I containing .J
with d(I,J) < 2(q — p). This number is 1 + 2(q — p). Observe that a child
has one parent only.

Finally A, = | A, impliesfA, < > A, , < > (1+42(¢—p))2P =
0<p<q 0<p<q 0<p<¢q

0 -

20 > (14 2(q — p))2P~9. It then suffices to observe that > (1 + 25)277 is
0<p<q 0

finite.
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6 The end of the proof of theorem 3.

We need to estimate the wavelet coefficients of f when I &€ A,.

We separately treat two cases.

The first one is I & A, Then [, |V fldz < 279 and [(f, w;)]| is trivially
estimated by an integration by parts. We obtain |3(I)] < C'279. The second
(and last case) is [ € A, and I ¢ A,. If I belongs to A,, we construct a
decreasing sequence I; ,0 < j <r, defined by the three rules

(6.2) Ij4y = I} if the “first son” I € A,
(6.3) if I; ¢ Ay, weset j=r and the chain stops here.

We then want to prove the following estimate

Proposition 5 If I € A,, then
r—1

(6.4) BI)| < €Y 27927mU) 4 0272
§=0

Once (6.4) will be proved, the hypothesis I ¢ A, will be used in estimating
the right-hand side of (6.4).

The proof of (6.4) is based on a few simple remarks. Let us denote by
K; =I;\ I;4; the complement of I;;; inside I; and write K, = I,.

We then have

Lemme 10 With the preceding notations, we obtain

(6.5) / Vflde <C27™5) 0<j<r—1,
K.

J

(6.6) /K IV fldz < €277 .

Indeed, if 0 < j < r, I; does not belong to By, for ¢; = m(I;) — 1. It means
that [} |V fldz < 27% if I = I} is excepted and I is one of the 2" — 1 other
sons of I;.

In other words ij |V fldx < C27% as announced. When j = r, we have

[; IV fldz < 279 whenever I is a son of I, which implies (6.6).
We now want to prove the following estimate
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Lemme 11 With the preceding notations, we have
(67) pul<cy 2 [ Vi,
§=0 K;

Indeed we first write

a(l) = /Ifwldw = ;/Kj fwrdz

since K;,0 < j <r, is a partitioning of I = Ij.
Next o; = [ fwidz = (; 4+ ; where

6= [ 7= Pwnde 2y = (o, ) [ wndo

J K]

and mg, f is the mean value of f over Kj.
We first estimate 3;. We have

18] < 1) /2 / | — mx, fldz <
K;
Y2 = g, i -

We observe that K is a dilated copy of a set £ which belongs to a finite
collection of Lipschitz domains. Therefore the Poincaré’s inequality holds
with a constant which does not depend on j. We then have

(6) I = s Flgninesy < € [ 9 1dz
K;
and
(6.9) 8 < C0 220 [ 19 pids.
K;

T
We now treat the sum ) ;.
0

We first write Y v; = > n,(0; — 0;11) with
0 7=0

n; =mg, f,0; = / wr(x)dr and 60,,1 =0

I;
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(by definition). We then observe that 6, = 0 since [w(z)dz = 0. We write
(discrete integration by parts)

(6'10) 770(90 _91) +"'+77r(9r _0r+1) =

O1(m — o) +O2(n2 —m) + - +60,.(n — 1)

We then make a crucial observation. In any dimension larger than 1, K7 =
K;UK;_, is a connected lipschitz domain. Moreover this domain is a dilated
copy of a domain belonging to a finite collection. These two properties imply
that Poincaré’s inequality is valid for K7.

We then write

1
b= = /K ) = o

|K1171|/K (f(x) —mg; f)dx .

Moreover |K;| > ¢|K”| and |K; 1| > ¢|K7| where ¢ > 0 is a constant. This
implies

| < — — jldx <
|77] 77] 1| = C|KJ| K]|f mK| WA

CIKI Y f = m fll o gy < C| K[ / |V fldx

Ki

< C/|I|1/n—12—j”(1/”_1) </K |Vf|dl‘ + /K |Vf|dl‘> :
. i—1

J J

Since | [, wi(z)dz| < |I|7'/?|I;|, we end up with

611) 13l <Oy g (/ viids+
0 j=1 K;j

J Kj_1

|Vf|d$)

Lemme 11 follows from (6.9) and (6.11).
In order to complete the proof of theorem 3, lemma 10 and lemma 11 are
being put together which yields

r—1
(6.12) B < €Y 27727 4 027
0
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We need to estimate the right-hand side of (6.12) by C'27%. The last term
can be forgotten and we concentrate on the sum. We split this series into

Z 9—ig=—m(lj) — S,

{m(1;)<q , 0<j<r—1}

Z 9—i9=—m(lj) _ S,

{m(I;)>q , 0<j<r—1}

and

Concerning S, everything is trivial since 27™5) < 279 and Y277 =2 .
>0
We then concentrate on S; and use the assumption I ¢ /JX; Since I; € A,
and 0 < m(7;) < g, we certainly have j = d(I, ;) > 2(¢ — m(I})).
We then forget the dependance of m(/;) in j and treat k& = m([;) as an
independant variable.
This treatment yields

S, < Z Z 279k = Z 9 2a—k)g=k — 90

{k<q , j>2(q—k)} k<q

Theorem 3 is proved.

7 From the “fake wavelets” w; to the Daubechies
wavelets.

For the sake of simplicity, we concentrate on the two-dimensional case.

We assume that 274 (2'x — k),j € Z,k € Z* ;¢ € E is an orthonormal
basis of L?*(IR?) where v belongs to a finite set of mother wavelets. Moreover
1 is C! and the support of 1 is contained in [0, p] X [0, p] where p is a (large)
prime number.

Then «(j, k) = [Yjk(z)f(x)dz , ;k(x) = 279)(272 — k) and we want to
prove the following lemma

Lemme 12 If V[ € L'(R?), we have
{0, k) € Nx Z% ;]a(j, k)| > A}
< CA VSl -

Observe that we restricted j to belong to N.
Once this lemma is proved, theorem immediately follows from a rescaling
argument.
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Indeed lemma 12 will be applied to f,(z) = 29f(29z) where ¢ is a large
integer. We than obtain

{7, k) 37 = 0 and |B(j, k)| > A} < CATHIVS]l1
with
8.0 = [ fi@)a(o)ds = ali = a.b).
Therefore
H(7.k) ;5 > 0 and |a(j — ¢, k)| > A}
< ON VAL

It now suffices to let ¢ tend to infinity to obtain theorem 1.

We now return to lemma 12 and to the n-dimensional case. Let £ C Z"
be {0,1,2,---,p — 1}" which is identified to F}' with F, = Z/pZ.

We then have

Lemme 13 For any { € Z™ and j € N, there exists a unique pair (k,r) €
7" x E such that

(7.1) {=pk+27r.

This becomes obvious if we observe that x — 2z is an isomorphism of F},.
The same observation applies to the mapping y — 2/y , y € F}' which is
1 —1 for each 7 € N.

Finally one writes ¢ = pk + s, s € E. Next s = 2/r + pm with m €
Z™ , r € E. Alltogether it yields (7.1).

We now apply theorem 3 to w(z) = ¢ (pz) and g(z) = f(pzr +71),r € E.

Then a(j, k) = 2M/2 [w(2x — k)g(z)dx =

2”j/2/w(2jpx — pk) f(px +r)dr =

2902 [ 9@~ ph) o + ) =
onif2yn / B(2z — (2 + pk)) f(2)da

= p”2”j/2/w(2jx —0)f(x)dx .

When j € N is frozen, lemma shows that the mapping (k,r) € Z" x E —
2/r + pk € Z™ is onto. It implies that all the wavelet coefficients of f can be
writtent that way. Therefore theorem 3 implies theorem 1.
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