SEMINAIRE

Equations aux Dérivées Partielles

1996-1997

Rachid Regbaoui
Strong unique continuation for second order elliptic differential operators Séminaire É. D. P. (1996-1997), Exposé noo III, 15 p.
<http://sedp.cedram.org/item?id=SEDP_1996-1997
\qquad A3_0>

U.M.R. 7640 du C.N.R.S.
F-91128 PALAISEAU CEDEX
Fax : 33 (0)1 69334949
Tél : 33 (0)1 69334999

cedram

Strong unique continuation for second order elliptic differential operators

R. REGBAOUI
Faculté des Sciences, Département de Mathématiques
Université de Bretagne Occidentale, 6, Avenue Le Gorgeu, BP 809
F - 29285 BREST.

Abstract

We prove a strong unique continuation result for differential inequalities of the form $|P(x, D) u| \leq C_{1}|x|^{-2}|u|+C_{2}|x|^{-1}|\nabla u|$, where $P(x, D)=\sum a_{j k}(x) D_{j} D_{k}$ is an elliptic second order differential operator with Lipschitz coefficients such that $a_{j k}(0)$ is real (we suppose $\left.P(0, D)=-\Delta\right) . C_{1}$ and C_{2} are positive constants such that $C_{2}<\frac{\sqrt{2}}{2}$. A counterexample du to Alinhac and Baouendi[2] shows that our assumption on the constant C_{2} is sharp .

Résumé

Nous démontrons la propriété du prolongement unique fort pour des inégalités différentielles de la forme $|P(x, D) u| \leq C_{1}|x|^{-2}|u|+C_{2}|x|^{-1}|\nabla u|$, où $P(x, D)=$ $\sum a_{j k}(x) D_{j} D_{k}$ est un opérateur elliptique d'ordre deux à coefficients Lipschitz tels que $a_{k j}(0) \in \mathbb{R}$ (on suppose $\left.P(0, D)=-\Delta\right) . C_{1}$ et C_{2} sont deux constantes positives telles que $C_{2}<\frac{\sqrt{2}}{2}$. Cette dernière condition est optimale comme le montre un contrexemple dû à Alinhac et Baouendi[2] .

1 Introduction and main results

Let Ω be a connected open subset of $\mathbb{R}^{n}(n \geq 2)$ containing 0 , and let $P(x, D)=$ $\sum_{j, k=1}^{n} a_{j k}(x) D_{j} D_{k}$ be an elliptic differential operator in Ω such that $a_{j k}(0)$ is real and $a_{j k}$ is Lipschitz continuous in Ω.
In [3], Hörmander proves that if $u \in H_{l o c}^{1}(\Omega)$ satisfying

$$
|P(x, D) u| \leq C_{1}|x|^{-2+\epsilon}|u|+C_{2}|x|^{-1+\epsilon}|\nabla u|, \epsilon>0
$$

and

$$
\int_{|x|<R}|u|^{2} d x=\mathrm{O}\left(R^{N}\right) \text { for all } N>0 \text { when } R \rightarrow 0
$$

Then $u \equiv 0$ in Ω.

It is well known from Pliš [5] that Hörmander's result fails if we take the functions $a_{j k}$ in any Hölder's class C^{α} with $\alpha<1$. Counterexamples due to Alinhac [1] show that it's necessary to assume $a_{j k}$ real at 0 even if it is a smooth function.

In this paper we are interested in the critical case $\epsilon=0$ in Hörmander's result ; we prove that the same result holds for inequalities of the form

$$
\begin{equation*}
|P(x, D) u| \leq C_{1}|x|^{-2}|u|+C_{2}|x|^{-1}|\nabla u| \tag{1.1}
\end{equation*}
$$

provided $C_{2}<\frac{\sqrt{2}}{2}$.

Theorem 1.1.Let $P(x, D)=\sum_{j, k=1}^{n} a_{j k}(x) D_{j} D_{k}$ be an elliptic differential operator in a connected open subset Ω of \mathbb{R}^{n} containing 0 , such that $a_{j k}(0)$ is real (we suppose $P(0, D)=-\Delta$ for simplicity) and $a_{j k}$ is Lipschitz continous in Ω. Let $u \in H_{l o c}^{1}(\Omega)$ be a solution of

$$
\begin{equation*}
|P(x, D) u| \leq C_{1}|x|^{-2}|u|+C_{2}|x|^{-1}|\nabla u| \tag{1.1}
\end{equation*}
$$

with $C_{2}<\frac{\sqrt{2}}{2}$ and

$$
\begin{equation*}
\int_{|x|<R}|u|^{2} d x=\mathrm{O}\left(R^{N}\right), \text { for all } N>0 \text { when } R \rightarrow 0 \tag{1.2}
\end{equation*}
$$

Then u is identically zero in Ω.

Remark 1.2

a) In [2], Alinhac and Baouendi constructed for any $C>1$ a smooth function u in \mathbb{R}^{2} flat at 0 , with $\operatorname{supp} u=\mathbb{R}^{2}$, and satisfying:

$$
|\Delta u| \leq C|x|^{-1}\left|r^{-1} \partial_{\theta} u\right|
$$

where $x=r(\cos \theta, \sin \theta)$.
But one can easily check that $\left|r^{-1} \partial_{\theta} u\right| \leq(1+\varepsilon)\left|\partial_{r} u\right|$, where ε can be taken as small as we want. Then it follows from the identity $|\nabla u|^{2}=\left|\partial_{r} u\right|^{2}+\left|r^{-1} \partial_{\theta} u\right|^{2}$ that

$$
|\Delta u| \leq\left(\frac{\sqrt{2}}{2}+\delta\right)|x|^{-1}|\nabla u|
$$

where δ can be taken arbitrary small. This proves that our assumption on the constant C_{2} in theorem 1.1 is optimal .
Similar counterexamples are constructed in Wolff[7] for higher dimensions .
b) In theorem 1.1 we have supposed $P(0, D)=-\Delta$, this can be realised by a linear transform, and then the condition $C_{2}<\frac{\sqrt{2}}{2}$ should be replaced by $C_{2}<\frac{\sqrt{2}}{2} \lambda_{0}$, where λ_{0} is the smallest eigenvalue of the matrix $\left(a_{j k}(0)\right.$) (we may suppose $\left(a_{j k}(0)\right)$ positive definite).
c) As in Hörmander[3], Theorem 1.1 remains valid if we take the function $a_{j k}$ Lipschitz continous in $\Omega \backslash\{0\}$ and $\left|\nabla a_{j k}\right| \leq C|x|^{\delta-1}$ for some $\delta>0$. As it can be seen in the proof we need only that $|x|^{1-\delta}\left|\nabla a_{j k}\right| \rightarrow 0$ as $x \rightarrow 0$.

The proof of theorem 1.1 is based on Carleman's method. First we show that any function satisfying (1.1) and (1.2) should satisfy for all $|\alpha| \leq 2$:

$$
\int_{|x|<R}\left|D^{\alpha} u\right|^{2} d x=\mathrm{O}\left(e^{-C R^{-1}}\right), C>0
$$

This allows us to use strictly convex weights like $\exp \left(\frac{\gamma}{2}(\log |x|)^{2}\right), \gamma>0$, rather than the usual weights $|x|^{-\gamma}$.

Let's introduce the following notations:
We shall denote by $\langle., .\rangle_{2}$ the inner product of the Hilbert space $L^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ with respect to the measure $|x|^{-n} d x$, and by $\|.\|_{2}$ the corresponding norm. We set

$$
\varphi_{\gamma}(x)=\exp \left(\frac{\gamma}{2}(\log |x|)^{2}\right), \gamma>0
$$

Theorem 1.2.For any $\gamma>0$ (large enough), and for any $u \in C_{0}^{\infty}(X \backslash\{0\})$ with X a sufficiently small neighborhood of 0 , we have the estimate

$$
\begin{equation*}
C\left\||x|^{2} \varphi_{\gamma} P(x, D) u\right\|_{2} \geq \gamma^{3 / 2}\left\|\varphi_{\gamma} u\right\|_{2}+\gamma^{1 / 2}\left\||x| \varphi_{\gamma} \nabla u\right\|_{2} \tag{1.3}
\end{equation*}
$$

where C is a positive constant depending only on $P(x, D)$.

2 proof of the results

After a linear transform, we may assume that $P(0, D)=\Delta$ the Laplace operator in \mathbb{R}^{n}. As in Hörmander [3], let's introduce polar coordinates in $\mathbb{R}^{n} \backslash\{0\}$ by seting $x=e^{t} \omega$, with $t \in \mathbb{R}$ and $\omega=\left(\omega_{1}, \cdots, \omega_{n}\right) \in S^{n-1}$. We have then

$$
\frac{\partial}{\partial x_{j}}=e^{-t}\left(\omega_{j} \partial_{t}+\Omega_{j}\right)
$$

where Ω_{j} is a vector field in S^{n-1}. Then the operator $P(x, D)$ takes the form

$$
P(x, D)=-e^{-2 t} \sum_{j, k=1}^{n} a_{j k}\left(e^{t} \omega\right)\left(\omega_{j} \partial_{t}-1+\Omega_{j}\right)\left(\omega_{k} \partial_{t}+\Omega_{k}\right)
$$

While the Laplacian becomes

$$
\begin{equation*}
e^{2 t} \Delta=\partial_{t}^{2}+(n-2) \partial_{t}+\Delta_{\omega} \tag{2.1}
\end{equation*}
$$

where $\Delta_{\omega}=\sum_{j=1}^{n} \Omega_{j}^{2}$ is the Laplace-Beltrami operator in S^{n-1}.

The vector fields Ω_{j} have the properties

$$
\sum_{j=1}^{n} \omega_{j} \Omega_{j}=0 \quad \text { and } \quad \sum_{j=1}^{n} \Omega_{j} \omega_{j}=n-1
$$

The adjoint of Ω_{j} as an operator in $L^{2}\left(S^{n-1}\right)$ is

$$
\begin{equation*}
\Omega_{j}^{*}=(n-1) \omega_{j}-\Omega_{j} . \tag{2.2}
\end{equation*}
$$

Since the functions $a_{j k}$ are Lipschits continous, we have

$$
-a_{j k}\left(e^{t} \omega\right)=\delta_{j k}+\mathrm{O}\left(e^{t}\right) \text { as } t \rightarrow-\infty
$$

The operator $P(x, D)$ can then be written in the form :

$$
\begin{equation*}
e^{2 t} P(x, D)=\partial_{t}^{2}+(n-2) \partial_{t}+\Delta_{\omega}+\sum_{j+|\alpha| \leq 2} C_{j \alpha}\left(\partial_{t}\right)^{j} \Omega^{\alpha} \tag{2.3}
\end{equation*}
$$

where Ω^{α} denotes the product $\Omega_{1}^{\alpha_{n}} \cdots \Omega_{n}^{\alpha_{n}}, \alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in \mathbb{N}^{n}$ and $C_{j \alpha}$ are functions satisfying

$$
C_{j \alpha}(t, \omega)=\mathrm{O}\left(e^{t}\right) \text { and } d C_{j \alpha}(t, \omega)=\mathrm{O}\left(e^{t}\right) \text { as } t \rightarrow-\infty, \text { for any } d \in\left\{\partial_{t}, \Omega_{1}, \cdots, \Omega_{n}\right\}
$$

Lemma 2.1. There exists a positive constant C such that for any $u \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$, for any $\tau \in\left\{k+\frac{1}{2}, k \in \mathbb{N}\right\}$, and for any $\delta>0$, we have the estimate:

$$
\begin{align*}
& (1+\delta) \int|x|^{-2 \tau+4}|\Delta u|^{2}|x|^{-n} d x \geq C \delta \sum_{|\alpha|=2} \tau^{-2} \int|x|^{-2 \tau+4}\left|D^{\alpha} u\right|^{2}|x|^{-n} d x \\
& \quad+\left(\frac{1}{2}-\delta\right) \int|x|^{-2 \tau+2}|\nabla u|^{2}|x|^{-n} d x+C \delta \tau^{2} \int|x|^{-2 \tau}|u|^{2}|x|^{-n} d x \tag{2.4}
\end{align*}
$$

Proof. Let $v=e^{-\tau t} u$ and $\Delta_{\tau} v=e^{-\tau t} \Delta\left(e^{\tau t} v\right)$. Then it suffices to prove (with a new constant C) :

$$
\begin{gather*}
\iint\left|e^{2 t} \Delta_{\tau} v\right|^{2} d t d \omega \geq C \delta \sum_{j+|\alpha|=2} \tau^{-2} \iint\left|\left(\partial_{t}\right)^{j} \Omega^{\alpha} v\right|^{2} d t d \omega \\
+\left(\frac{1}{2}-\delta\right) \iint\left|\left(\partial_{t}+\tau\right) v\right|^{2} d t d \omega+\left(\frac{1}{2}-\delta\right) \sum_{j=1}^{n} \iint\left|\Omega_{j} v\right|^{2} d t d \omega \\
+C \delta \tau^{2} \iint|v|^{2} d t d \omega \tag{2.5}
\end{gather*}
$$

By (2.1) we have

$$
e^{2 t} \Delta_{\tau}=\partial_{t}^{2}+(2 \tau+n-2) \partial_{t}+\tau(\tau+n-2)+\Delta_{\omega}
$$

hence

$$
\begin{gather*}
\iint\left|e^{2 t} \Delta_{\tau} v\right|^{2} d t d \omega=\iint\left|\partial_{t}^{2} v\right|^{2} d t d \omega+\iint\left|\Delta_{\omega} v\right|^{2} d t d \omega \\
+2 \sum_{j=1}^{n} \iint\left|\partial_{t} \Omega_{j} v\right|^{2} d t d \omega+\left(2 \tau^{2}+2(n-2) \tau+(n-2)^{2}\right) \iint\left|\partial_{t} v\right|^{2} d t d \omega \\
+\tau^{2}(\tau+n-2)^{2} \iint|v|^{2} d t d \omega-2 \tau(\tau+n-2) \sum_{j=1}^{n} \iint\left|\Omega_{j} v\right|^{2} d t d \omega \tag{2.6}
\end{gather*}
$$

We shall give a lower bound of
$I(\tau, v)=\tau^{2}(\tau+n-2)^{2} \iint|v|^{2} d t d \omega+\iint\left|\Delta_{\omega} v\right|^{2} d t d \omega-2 \tau(\tau+n-2) \sum_{j=1}^{n} \iint\left|\Omega_{j} v\right|^{2} d t d \omega$.
We recall that the spectrum of $-\Delta_{\omega}$ as an operator in $L^{2}\left(S^{n-1}\right)$ is $\{k(k+n-2), k \in \mathbb{N}\}$, and each eigenspace may be identified with E_{k} the space of spherical harmonics of degree k. It follows that

$$
\iint\left|\Delta_{\omega} v\right|^{2} d t d \omega=\sum_{k \geq 0} k^{2}(k+n-2)^{2} \iint\left|v_{k}\right|^{2} d t d \omega
$$

and

$$
\sum_{j=1}^{n} \iint\left|\Omega_{j} v\right|^{2} d t d \omega=\sum_{k \geq 0} k(k+n-2) \iint\left|v_{k}\right|^{2} d t d \omega
$$

where v_{k} is the projection of v on E_{k}.
After replacing in $I(\tau, v)$, we obtain :

$$
I(\tau, v)=\sum_{k \geq 0}(\tau(\tau+n-2)-k(k+n-2))^{2} \iint\left|v_{k}\right|^{2} d t d \omega
$$

We have $(\tau(\tau+n-2)-k(k+n-2))^{2}=(\tau-k)^{2}(\tau+k+n-2)^{2}$, and since $\tau \in$ $\left\{k+\frac{1}{2}, k \in \mathbb{N}\right\}$, we get

$$
(\tau-k)^{2}(\tau+k+n-2)^{2} \geq \frac{1}{2} \tau(\tau+n-2)+\frac{1}{2} k(k+n-2),
$$

which gives

$$
I(\tau, v) \geq \frac{1}{2} \tau(\tau+n-2) \iint|v|^{2} d t d \omega+\frac{1}{2} \sum_{j=1}^{n} \iint\left|\Omega_{j} v\right|^{2} d t d \omega .
$$

If we replace in (2.6) we obtain

$$
\iint\left|e^{2 t} \Delta_{\tau} v\right|^{2} d t d \omega \geq \iint\left|\partial_{t}^{2} v\right|^{2} d t d \omega+2 \sum_{j=1}^{n} \iint\left|\partial_{t} \Omega_{j} v\right|^{2} d t d \omega
$$

$$
\begin{align*}
& +\frac{1}{2} \sum_{j=1}^{n} \iint\left|\Omega_{j} v\right|^{2} d t d \omega+\frac{1}{2} \tau(\tau+n-2) \iint|v|^{2} d t d \omega \\
& \quad+\left(2 \tau^{2}+2(n-2) \tau+(n-2)^{2}\right) \iint\left|\partial_{t} v\right|^{2} d t d \omega \tag{2.7}
\end{align*}
$$

If we multiply (2.6) by $\frac{\delta}{2 \tau(\tau+n-2)}$ and add to (2.7), and using the inequality

$$
\iint\left|\Delta_{\omega} v\right|^{2} d t d \omega \geq C_{n} \sum_{|\alpha|=2} \iint\left|\Omega^{\alpha} v\right|^{2} d t d \omega
$$

we obtain the desired result (2.5). Thus lemma 2.1 is proved.
Remark.2.1. The estimate (2.4) in lemma.2.1 remains valid if we suppose $u \in H_{l o c}^{2}(\Omega)$ with compact support and satisfying for all $|\alpha| \leq 2$ and all $N>0, \int_{|x|<R}\left|D^{\alpha} u\right|^{2} d x=$ $\mathrm{O}\left(R^{N}\right)$ as $R \rightarrow 0$. We can easily see this by cutting u off for small $|x|$ and regularising .

Lemma 2.2. Let u be as in theorem 1.1. Then $u \in H_{l o c}^{2}(\Omega)$ and satisfies for all $|\alpha| \leq 2$

$$
\begin{equation*}
\int_{|x|<R}\left|D^{\alpha} u\right|^{2} d x=\mathrm{O}\left(e^{-C R^{-1}}\right) \text { as } R \rightarrow 0 \tag{2.8}
\end{equation*}
$$

where C is a positive constant.
Proof. First we shall prove that $u \in H_{l o c}^{2}(\Omega)$, and satisfies for all $|\alpha| \leq 2$:

$$
\begin{equation*}
\int_{|x|<R}\left|D^{\alpha} u\right|^{2} d x=\mathrm{O}\left(R^{N}\right), \text { for all } N>0 \text { as } R \rightarrow 0 \tag{2.9}
\end{equation*}
$$

Let $u \in H_{l o c}^{1}(\Omega)$ be a solution of (1.1) satisfying (1.2). From (1.1) we have immediately $P(x, D) u \in L_{l o c}^{2}(\Omega \backslash\{0\})$. By regularising and using Friedrichs' lemma and ellipticity of $P(x, D)$, we get without difficulties $u \in H_{l o c}^{2}(\Omega \backslash\{0\})$.
Following Hörmander[4](Corollary17.1.4., p.8) we obtain for all $|\alpha| \leq 2$:

$$
\begin{equation*}
\int_{R<|x|<2 R}\left|D^{\alpha} u\right|^{2} d x=\mathrm{O}\left(R^{N}\right), \text { for all } N>0 \text { as } R \rightarrow 0 \tag{2.10}
\end{equation*}
$$

Hence u is the sum of a function in $H_{l o c}^{2}(\Omega)$ and a distribution with support at 0 . But no distribution with support at 0 is in $L_{l o c}^{2}$. It follows that $u \in H_{l o c}^{2}(\Omega)$. Since $u \in H_{l o c}^{2}(\Omega)$ it is clear that from (2.10) we have also :

$$
\int_{|x|<R}\left|D^{\alpha} u\right|^{2} d x=\mathrm{O}\left(R^{N}\right), \text { for all } N>0 \text { as } R \rightarrow 0
$$

Let's now prove (2.8). By assumption we have for all $v \in H_{l o c}^{2}(\Omega)$:

$$
\begin{equation*}
|P(x, D) v(x)-\Delta v(x)|^{2} \leq C_{0}|x|^{2} \sum_{|\alpha|=2}\left|D^{\alpha} v(x)\right|^{2} \tag{2.11}
\end{equation*}
$$

where C_{0} is a positive constant depending only on $P(x, D)$.
Let $\delta>0$ to be chosen later. Let $v \in H_{\text {comp }}^{2}(\Omega)$, whith $\operatorname{supp}(v) \subset\left\{x,|x|<\delta \tau^{-1}\right\}$, and satisfying for all $|\alpha| \leq 2$:

$$
\int_{|x|<R}\left|D^{\alpha} v\right|^{2} d x=\mathrm{O}\left(R^{N}\right), \text { for all } N>0 \text { as } R \rightarrow 0
$$

By remark.2.1 at the end of the proof of Lemma.2.1, we can apply (2.4) to v. If we combine it with (2.11) we get :

$$
\begin{gather*}
(1+\delta) \int|x|^{-2 \tau-n+4}|P(x, D) v|^{2} d x \geq C \delta \tau^{2} \int|x|^{-2 \tau-n|\alpha|}|v|^{2} d x \\
+\left(\frac{1}{2}-\delta\right) \int|x|^{-2 \tau-n+2}|\nabla v|^{2} d x \\
+\left(C \delta-2 C_{0}(1+\delta) \delta^{2}\right) \tau^{-2} \sum_{|\alpha|=2} \int|x|^{-2 \tau-n+4}\left|D^{\alpha} v\right|^{2} d x \tag{2.12}
\end{gather*}
$$

where C is as in lemma 2.1.
Let $u \in H_{l o c}^{1}(\Omega)$ be a solution of (1.1) satisfying (1.2). Thus we can apply (2.12) to $v=\chi_{\tau} u$, where $\chi_{\tau} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\chi_{\tau}=1$ for $|x| \leq \frac{1}{2} \delta \tau^{-1}$, and $\chi_{\tau}=0$ for $|x| \geq \delta \tau^{-1}$. Then for τ sufficiently large we have, with $R=\frac{1}{2} \delta \tau^{-1}$:

$$
\begin{gather*}
(1+\delta) \int|x|^{-2 \tau-n+4}\left|P(x, D)\left(\chi_{\tau} u\right)\right|^{2} d x \geq C \delta \tau^{2} \int_{|x|<R}|x|^{-2 \tau-n|\alpha|}|u|^{2} d x \\
\quad+\left(\frac{1}{2}-\delta\right) \int_{|x|<R}|x|^{-2 \tau-n+2}|\nabla u|^{2} d x \\
+\left(C \delta-2 C_{0}(1+\delta) \delta^{2}\right) \tau^{-2} \sum_{|\alpha|=2} \int_{|x|<R}|x|^{-2 \tau-n+4}\left|D^{\alpha} u\right|^{2} d x \tag{2.13}
\end{gather*}
$$

But

$$
\begin{aligned}
\int|x|^{-2 \tau-n+4}\left|P(x, D)\left(\chi_{\tau} u\right)\right|^{2} d x & =\int_{|x|<R}|x|^{-2 \tau-n+4}|P(x, D) u|^{2} d x \\
& +\int_{|x|>R}|x|^{-2 \tau-n+4}\left|P(x, D)\left(\chi_{\tau} u\right)\right|^{2} d x
\end{aligned}
$$

and since u is a solution of (1.1) it follows that

$$
\begin{aligned}
\int|x|^{-2 \tau-n+4}\left|P(x, D)\left(\chi_{\tau} u\right)\right|^{2} d x & \leq 2 C_{1}^{2} \int_{|x|<R}|x|^{-2 \tau-n}|u|^{2} d x \\
+2 C_{2}^{2} \sum_{|\alpha|=1} \int_{|x|<R}|x|^{-2 \tau-n+2}\left|D^{\alpha} u\right|^{2} d x & +\int_{|x|>R}|x|^{-2 \tau-n+4}\left|P(x, D)\left(\chi_{\tau} u\right)\right|^{2} d x
\end{aligned}
$$

Now if we replace in (2.13) we obtain

$$
\begin{gathered}
(1+\delta) \int_{|x|>R}|x|^{-2 \tau-n+4}\left|P(x, D)\left(\chi_{\tau} u\right)\right|^{2} d x \geq\left(\delta \tau^{2}-2(1+\delta) C_{1}^{2}\right) \int_{|x|<R}|x|^{-2 \tau-n}|u|^{2} d x \\
+\left(\frac{1}{2}-\delta-2(1+\delta) C_{2}^{2}\right) \int_{|x|<R}|x|^{-2 \tau-n+2}|\nabla u|^{2} d x \\
+\left(C \delta-2 C_{0}(1+\delta) \delta^{2}\right) \tau^{-2} \sum_{|\alpha|=2} \int_{|x|<R}|x|^{-2 \tau-n+4}\left|D^{\alpha} u\right|^{2} d x .
\end{gathered}
$$

We have by hypothesis $C_{2}<\frac{\sqrt{2}}{2}$, hence if we choose δ sufficiently small we have $\left(\frac{1}{2}-\delta-2(1+\delta) C_{2}^{2}\right)>0$, and $\left(C \delta-2 C_{0}(1+\delta) \delta^{2}\right)>0$. Thus for τ sufficiently lagre we get

$$
\begin{equation*}
C \int_{|x|>R}|x|^{-2 \tau-n+4}\left|P(x, D)\left(\chi_{\tau} u\right)\right|^{2} d x \geq \sum_{|\alpha| \leq 2} \tau^{2-2|\alpha|} \int_{|x|<R}|x|^{-2 \tau-n+2|\alpha|}\left|D^{\alpha} u\right|^{2} d x \tag{2.14}
\end{equation*}
$$

where C is a new positive constant.
By construction of χ_{τ} we have $\left|D^{\alpha} \chi_{\tau}\right| \leq C^{\prime} R^{-|\alpha|}$, where C^{\prime} is a positive constant. It follows then

$$
\begin{equation*}
\int_{|x|>R}|x|^{-2 \tau-n+4}\left|P(x, D)\left(\chi_{\tau} u\right)\right|^{2} d x \leq C^{\prime \prime} R^{-2 \tau-n}\|u\|_{H^{2}}^{2} \tag{2.15}
\end{equation*}
$$

where $\|u\|_{H^{2}}$ is the H^{2} norm of u in the ball $B(0,2 R)$, and $C^{\prime \prime}$ a positive constant . On the other hand we have

$$
\begin{aligned}
\sum_{|\alpha| \leq 2} \tau^{2-2|\alpha|} \int_{|x|<R}|x|^{-2 \tau-n+2|\alpha|}\left|D^{\alpha} u\right|^{2} d x & \geq \sum_{|\alpha| \leq 2} \tau^{2-2|\alpha|} \int_{|x|<R / 2}|x|^{-2 \tau-n+2|\alpha|}\left|D^{\alpha} u\right|^{2} d x \\
& \geq \sum_{|\alpha| \leq 2} \tau^{2-2|\alpha|}(R / 2)^{-2 \tau-n+2|\alpha|} \int_{|x|<R / 2}\left|D^{\alpha} u\right|^{2} d x
\end{aligned}
$$

If we combine this estimate with (2.14) and (2.15) we get for sufficiently small R :

$$
\sum_{|\alpha| \leq 2} \int_{|x|<R / 2}\left|D^{\alpha} u\right|^{2} d x \leq C\|u\|_{H^{2}}^{2} R^{-2} 2^{-\frac{\delta}{R}},
$$

that's

$$
\begin{equation*}
\sum_{|\alpha| \leq 2} \int_{|x|<R / 2}\left|D^{\alpha} u\right|^{2} d x=\mathrm{O}\left(e^{-a R^{-1}}\right) \tag{2.16}
\end{equation*}
$$

where a is a positive constant (we can take $a=\frac{\delta}{2} \log 2$).
We recall that $\tau \in\left\{k+\frac{1}{2}, k \in \mathbb{N}\right\}$ and $R=\frac{\delta}{2} \tau^{-1}$. It follows that R must be in the set $\left\{R_{k}, k \in \mathbb{N}\right\}$, where $R_{k}=\frac{\delta}{2}\left(k+\frac{1}{2}\right)^{-1}$. But since $R_{k} \leq R_{k+1} \leq 2 R_{k}$ and $R_{k} \rightarrow 0$ as $k \rightarrow \infty$, one can easily see that (2.16) holds for all small positive R with a replaced by $\frac{a}{2}$. This achieves the proof of the Lemma.

To prove theorem 1.2 we need a lemma that we take from Hörmander [4] (p. 12). Let's introduce the following notations :

For $k=1, \cdots, n$, we set $D_{k}=\frac{1}{i} \Omega_{k}$ and $D_{0}=\frac{1}{i} \partial_{t}$. We denote by D^{α} any product of the form $D_{0}^{\alpha_{0}} \cdots D_{n}^{\alpha_{n}} \quad, \quad \alpha=\left(\alpha_{0}, \cdots, \alpha_{n}\right) \in \mathbb{N}^{n+1}$. If we set $\omega_{0}=0$ it follows from (2.2) that $D_{k}^{*}=D_{k}+i(n-1) \omega_{k}$ for any $k \in\{0, \cdots, n\}$.

Lemma .2.3. Let I be an open interval of \mathbb{R}, and $A(t, \omega) \in C^{0}\left(I \times S^{n-1}\right) \cap L^{\infty}\left(I \times S^{n-1}\right)$ such that $D_{k} A \in L^{\infty}\left(I \times S^{n-1}\right)$ for $k=0, \cdots, n$. Then There exists a positive constant M such that for any $u, v \in C_{0}^{\infty}\left(I \times S^{n-1}\right)$, and for any $\alpha, \beta \in \mathbb{I}^{n+1}$, with $|\alpha|,|\beta| \leq 2$, we have :

$$
\begin{equation*}
\left|\left\langle A D^{\alpha} u, D^{\beta} v\right\rangle_{2}-\left\langle A D^{\beta} u, D^{\alpha} v\right\rangle_{2}\right| \leq M \sum_{\alpha^{\prime}, \beta^{\prime}}\left\|L D^{\alpha^{\prime}} u\right\|_{2}\left\|L D^{\beta^{\prime}} v\right\|_{2} \tag{2.17}
\end{equation*}
$$

where the sum is taken over all $\alpha^{\prime}, \beta^{\prime}$ such that $\max \left(\left|\alpha^{\prime}\right|,\left|\beta^{\prime}\right|\right) \leq \max (|\alpha|,|\beta|)$ and $\left|\alpha^{\prime}\right|+\left|\beta^{\prime}\right|$ $\leq|\alpha|+|\beta|-1$, and where $L(t, \omega)=\max \left(|A(t, \omega)|^{1 / 2},\left|D_{0} A(t, \omega)\right|^{1 / 2}, \cdots,\left|D_{n} A(t, \omega)\right|^{1 / 2}\right)$.

Proof. First we note that when $|\alpha|=|\beta|=0$, the left hand side of (2.17) is zero and the statement is abvious. When $|\alpha|=1$ and $|\beta|=0$ we have
$\left\langle A D_{k} u, v\right\rangle_{2}-\left\langle A u, D_{k} v\right\rangle_{2}=\left\langle A D_{k} u, v\right\rangle_{2}-\left\langle D_{k}^{*}(A u), v\right\rangle_{2}$. But $D_{k}^{*}=D_{k}+i(n-1) \omega_{k}$ for any $k \in\{0, \cdots, n\}$. Hence

$$
\left\langle A D_{k} u, v\right\rangle_{2}-\left\langle A u, D_{k} v\right\rangle_{2}=-\left\langle\left(i(n-1) \omega_{k} A+D_{k} A\right) u, v\right\rangle_{2},
$$

and by Schwarz inequality we get :

$$
\begin{equation*}
\left|\left\langle A D_{k} u, v\right\rangle_{2}-\left\langle A u, D_{k} v\right\rangle_{2}\right| \leq M\|L u\|_{2}\|L v\|_{2} \tag{2.18}
\end{equation*}
$$

which proves the lemma when $|\alpha|=1$ and $|\beta|=0$.
When $|\alpha|=|\beta|=1$ we have

$$
\left\langle A D_{k} u, D_{j} v\right\rangle_{2}-\left\langle A D_{j} u, D_{k} v\right\rangle_{2}=\left\langle D_{j}^{*}\left(A D_{k} u\right), v\right\rangle_{2}-\left\langle D_{k}^{*}\left(A D_{j} u\right), v\right\rangle_{2}
$$

$=\left\langle\left(A\left[D_{j}, D_{k}\right]+i(n-1) \omega_{j} A D_{k}-i(n-1) \omega_{k} A D_{j}\right) u, v\right\rangle_{2}+\left\langle\left(D_{j}(A) D_{k}-D_{k}(A) D_{j}\right) u, v\right\rangle_{2}$.
An easy computation shows that $\left[D_{k}, D_{j}\right]=\omega_{k} D_{j}-\omega_{j} D_{k}$ if $k, j \in\{1, \cdots, n\}$ and [D_{k}, D_{j}] $=0$ if $j=0$ or $k=0$. Thus if we replace in the last identity we get

$$
\begin{equation*}
\left|\left\langle A D_{k} u, D_{j} v\right\rangle_{2}-\left(A D_{j} u, D_{k} v\right\rangle_{2}\right| \leq M\left(\left\|L D_{j} u\right\|_{2}+\left\|L D_{k} u\right\|_{2}\right)\|L v\|_{2} . \tag{2.19}
\end{equation*}
$$

This proves the lemma when $|\alpha|=|\beta|=1$.
When $|\alpha|$ or $|\beta|=2$ it suffices to set $u^{\prime}=D_{j} u$ or $v^{\prime}=D_{j} v$ and apply (2.18) and (2.19) to these functions .

Proof of theorem.1.2.

We use the same notations as in Lemma 2.3 :
for $k=1, \cdots, n$, we set $D_{k}=\frac{1}{i} \Omega_{k}$ and $D_{0}=\frac{1}{i} \partial t$. We denote by D^{α} any product of the form $D_{0}^{\alpha_{0}} \cdots D_{n}^{\alpha_{n}}, \alpha=\left(\alpha_{0}, \cdots, \alpha_{n}\right) \in \mathbb{N}^{n+1}$.

Set $u=e^{-\frac{1}{2} \gamma t^{2}} v$ and $P_{\gamma} v=e^{\frac{1}{2} \gamma t^{2}} P\left(e^{-\frac{1}{2} \gamma t^{2}} v\right), \gamma>0, v \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$. (We recall that we work in polar coordinates $x=e^{t} \omega$). Thus by (2.3) the operator P_{γ} can be written

$$
e^{2 t} P_{\gamma}=\left(\partial_{t}-\gamma t\right)^{2}+(n-2)\left(\partial_{t}-\gamma t\right)+\Delta_{\omega}+\sum_{j+|\alpha| \leq 2} C_{j \alpha}(t, \omega)\left(\partial_{t}-\gamma t\right)^{j} \Omega^{\alpha},
$$

where the functions $C_{j \alpha}$ satisfy $C_{j \alpha}=\mathrm{O}\left(e^{t}\right)$ as $t \rightarrow-\infty$, and $D_{k}\left(C_{j \alpha}\right)=\mathrm{O}\left(e^{t}\right)$ as $t \rightarrow-\infty$, for any $k \in\{0, \cdots, n\}$.
The estimate (1.3) in theorem.1.2 is then equivalent to

$$
\begin{equation*}
C \iint\left|e^{2 t} P_{\gamma} v\right|^{2} d t d \omega \geq \gamma^{3} \iint|t v|^{2} d t d \omega+\gamma \iint\left|\partial_{t} v\right|^{2} d t d \omega+\gamma \sum_{j=1}^{n} \iint\left|\Omega_{j} v\right|^{2} d t d \omega \tag{2.20}
\end{equation*}
$$

(C a positive constant).
We shall prove (2.20).
Let P_{γ}^{-}be the operator obtained from P_{γ} when ∂_{t}, Ω_{j} and $C_{j \alpha}$ are replaced by $-\partial_{t},-\Omega_{j}$ and $\bar{C}_{j \alpha}^{\gamma}$ respectively. We shall give a lower bound of the difference :

$$
D(\gamma, v)=\left\|e^{2 t} P_{\gamma} v\right\|_{2}^{2}-\left\|e^{2 t} P_{\gamma}^{-} v\right\|_{2}^{2}
$$

and the sum

$$
S(\gamma, v)=\left\|e^{2 t} t^{-1} P_{\gamma} v\right\|_{2}^{2}+\left\|e^{2 t} t^{-1} P_{\gamma}^{-} v\right\|_{2}^{2} .
$$

We have

$$
D(\gamma, v)=4 \operatorname{Re}\left\langle\left(\partial_{t}^{2}+\gamma^{2} t^{2}-(n-2) \gamma t-\gamma+\Delta_{\omega}\right) v,(-2 \gamma t+n-2) \partial_{t} v\right\rangle_{2}+R(\gamma, v)
$$

where $R(\gamma, v)$ is a sum of terms of the form :

$$
\gamma^{4-|\alpha|-|\beta|} \operatorname{Re}\left(\left\langle A D^{\alpha} v, D^{\beta} v\right\rangle_{2}-\left\langle A D^{\beta} v, D^{\alpha} v\right\rangle_{2}\right)
$$

with $|\alpha| \leq 2,|\beta| \leq 2$ and A is a function satisfying for $|\alpha| \leq 1,\left|D^{\alpha} A\right|=\mathrm{O}\left(t^{4} e^{t}\right)$ as $t \rightarrow-\infty$. (In fact the function A is obtained from products of the functions $C_{j \alpha}$ or products of such functions and the function t^{k} for $k \leq 4$).
Let $T_{0}<0$ such that $\left|T_{0}\right|$ is large enough to be chosen later. If $v \in C_{0}^{\infty}(]-\infty, T_{0}\left[\times S^{n-1}\right)$ we have by lemma 2.3 :

$$
\left|\left\langle A D^{\alpha} v, D^{\beta} v\right\rangle_{2}-\left\langle A D^{\beta} v, D^{\alpha} v\right\rangle_{2}\right| \leq \sum_{\alpha^{\prime}, \beta^{\prime}}\left\|L D^{\alpha^{\prime}} v\right\|_{2}\left\|L D^{\beta^{\prime}} v\right\|_{2}
$$

where the sum is taken over all $\alpha^{\prime}, \beta^{\prime}$ such that $\max \left(\left|\alpha^{\prime}\right|,\left|\beta^{\prime}\right|\right) \leq \max (|\alpha|,|\beta|)$ and $\left|\alpha^{\prime}\right|+\left|\beta^{\prime}\right| \leq|\alpha|+|\beta|-1$, and where L satisfies $L(t, \omega)=\mathrm{O}\left(t^{2} e^{t / 2}\right)$ as $t \rightarrow-\infty$. It follows then :

$$
\begin{equation*}
|R(\gamma, v)| \leq \sum_{|\alpha| \leq 2} \gamma^{3-|\alpha|-|\beta|}\left\|L D^{\alpha} v\right\|_{2}^{2} \tag{2.21}
\end{equation*}
$$

Integration by parts gives, with $v \in C_{0}^{\infty}(]-\infty, T_{0}\left[\times S^{n-1}\right)$,

$$
\begin{gathered}
4 \operatorname{Re}\left\langle\left(\partial_{t}^{2}+\gamma^{2} t^{2}-(n-2) \gamma t-\gamma+\Delta_{\omega}\right) v,(-2 \gamma t+n-2) \partial_{t} v\right\rangle_{2}= \\
=4 \gamma\left\|\partial_{t} v\right\|_{2}^{2}+\|f(t) v\|_{2}^{2}-4 \gamma \sum_{j=1}^{n}\left\|\Omega_{j} v\right\|_{2}^{2}
\end{gathered}
$$

where $f^{2}(t)=12 \gamma^{3} t^{2}-12(n-2) \gamma^{2} t-2 \gamma^{2}+(n-2)^{2} \gamma$.
It we combine this with (2.21) we get

$$
\begin{equation*}
D(\gamma, v) \geq 4 \gamma\left\|\partial_{t} v\right\|_{2}^{2}+\|f(t) v\|_{2}^{2}-4 \gamma \sum_{j=1}^{n}\left\|\Omega_{j} v\right\|_{2}^{2}-\sum_{|\alpha| \leq 2} \gamma^{3-2|\alpha|}\left\|L D^{\alpha} v\right\|_{2}^{2} . \tag{2.22}
\end{equation*}
$$

We have directly from the definition of P_{γ} and P_{γ}^{-}, with $v \in C_{0}^{\infty}(]-\infty, T_{0}\left[\times S^{n-1}\right)$:

$$
\begin{align*}
& S(\gamma, v) \geq \frac{1}{2}\left\|t^{-1}\left(\left(\partial_{t}-\gamma t\right)^{2}+(n-2)\left(\partial_{t}-\gamma t\right)+\Delta_{\omega}\right) v\right\|_{2}^{2} \\
&+\frac{1}{2}\left\|t^{-1}\left(\left(\partial_{t}+\gamma t\right)^{2}-(n-2)\left(\partial_{t}+\gamma t\right)+\Delta_{\omega}\right) v\right\|_{2}^{2}-\sum_{|\alpha| \leq 2} \gamma^{4-2|\alpha|}\left\|C_{\alpha} D^{\alpha} v\right\|_{2}^{2} \tag{2.23}
\end{align*}
$$

where C_{α} are functions satisfying $C_{\alpha}=\mathrm{O}\left(t e^{t}\right)$ as $t \rightarrow-\infty$.
We have

$$
\begin{aligned}
& \frac{1}{2}\left\|t^{-1}\left(\left(\partial_{t}-\gamma t\right)^{2}+(n-2)\left(\partial_{t}-\gamma t\right)+\Delta_{\omega}\right) v\right\|_{2}^{2} \\
& +\frac{1}{2}\left\|t^{-1}\left(\left(\partial_{t}+\gamma t\right)^{2}-(n-2)\left(\partial_{t}+\gamma t\right)+\Delta_{\omega}\right) v\right\|_{2}^{2} \\
& =\left\|t^{-1} \partial_{t}^{2} v\right\|_{2}^{2}+\left\|t^{-1} \Delta_{\omega} v\right\|_{2}^{2}+2 \sum_{j=1}^{n}\left\|t^{-1} \partial_{t} \Omega_{j} v\right\|_{2}^{2} \\
& +\left\|g(t) \partial_{t} v\right\|_{2}^{2}-\sum_{j=1}^{n}\left\|\ell(t) \Omega_{j} v\right\|_{2}^{2}+\|h(t) v\|_{2}^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
g^{2}(t) & =\left(-2 \gamma+(n-2) t^{-1}\right)^{2}-2 \gamma^{2}+2(n-2) \gamma t^{-1}+2 \gamma t^{-2}, \\
h^{2}(t) & =\left(\gamma^{2} t-(n-2) \gamma-\gamma t^{-1}\right)^{2}-2(n-2) \gamma t^{-3}-6 \gamma t^{-4}, \\
\ell^{2}(t) & =2\left(\gamma^{2}-(n-2) \gamma t^{-1}-\gamma t^{-2}\right)+6 t^{-4} .
\end{aligned}
$$

If we replace in (2.23) we obtain :

$$
\begin{array}{r}
S(\gamma, v) \geq\left\|t^{-1} \partial_{t}^{2} v\right\|_{2}^{2}+\left\|t^{-1} \Delta_{\omega} v\right\|_{2}^{2}+2 \sum_{j=1}^{n}\left\|t^{-1} \partial_{t} \Omega_{j} v\right\|_{2}^{2} \\
+\left\|g(t) \partial_{t} v\right\|_{2}^{2}+\|h(t) v\|_{2}^{2}-\sum_{j=1}^{n}\left\|\ell(t) \Omega_{j} v\right\|_{2}^{2}-\sum_{|\alpha| \leq 2} \gamma^{4-2|\alpha|}\left\|C_{\alpha} D^{\alpha} v\right\|_{2}^{2} . \tag{2.24}
\end{array}
$$

Multiplying (2.22) by γ and adding to (2.24) we obtain

$$
\begin{align*}
& \gamma D(\gamma, v)+S(\gamma, v) \geq\left\|t^{-1} \partial_{t}^{2} v\right\|_{2}^{2}+\left\|t^{-1} \Delta_{\omega} v\right\|_{2}^{2}+2 \sum_{j=1}^{n}\left\|t^{-1} \partial_{t} \Omega_{j} v\right\|_{2}^{2} \\
& \quad+4 \gamma^{2}\left\|\partial_{t} v\right\|_{2}^{2}+\left\|g(t) \partial_{t} v\right\|_{2}^{2}+\gamma\|f(t) v\|_{2}^{2}+\|h(t) v\|_{2}^{2} \\
& \quad-\sum_{j=1}^{n}\left\|\ell(t) \Omega_{j} v\right\|_{2}^{2}-4 \gamma^{2} \sum_{j=1}^{n}\left\|\Omega_{j} v\right\|_{2}^{2}-\sum_{|\alpha| \leq 2} \gamma^{4-2|\alpha|}\left\|L^{\prime} D^{\alpha} v\right\|_{2}^{2}, \tag{2.25}
\end{align*}
$$

where $L^{\prime}=O\left(t^{2} e^{t / 2}\right)$ as $t \rightarrow-\infty$.
We have for all $\epsilon>0$,

$$
\begin{align*}
& \sum_{j=1}^{n}\left\|\ell(t) \Omega_{j} v\right\|_{2}^{2}+4 \gamma^{2} \sum_{j=1}^{n}\left\|\Omega_{j} v\right\|_{2}^{2}=2\left(\left(\frac{1}{2} \ell^{2}+2 \gamma^{2}\right) v, \Delta_{\omega} v\right)_{2} \\
& \quad \leq \epsilon^{-1}\left\|\left(\frac{1}{2} \ell^{2}+2 \gamma^{2}\right) t v\right\|_{2}^{2}+\epsilon\left\|t^{-1} \Delta_{\omega} v\right\|_{2}^{2} . \tag{2.26}
\end{align*}
$$

If $\left|T_{0}\right|$ and γ are large enough we have $\gamma f^{2}+h^{2}-\epsilon^{-1}\left(\frac{1}{2} \ell^{2}+2 \gamma^{2}\right)^{2} t^{2} \geq\left(12-9 \epsilon^{-1}\right) \gamma^{4} t^{2}$ for all $t \in]-\infty, T_{0}$. by choosing $0<\epsilon<1$ such that $12-9 \epsilon^{-1}>0$, we get from (2.25) and (2.26) :

$$
\begin{align*}
& \gamma D(\gamma, v)+S(\gamma, v) \geq\left\|t^{-1} \partial_{t}^{2} v\right\|_{2}^{2}+(1-\epsilon)\left\|t^{-1} \Delta_{\omega} v\right\|_{2}^{2}+2 \sum_{j=1}^{n}\left\|t^{-1} \partial_{t} \Omega_{j} v\right\|_{2}^{2} \\
+ & \left\|g(t) \partial_{t} v\right\|_{2}^{2}+2 \gamma^{2}\left\|\partial_{t} v\right\|_{2}^{2}+\left(12-9 \epsilon^{-1}\right) \gamma^{4}\|t v\|_{2}-\sum_{|\alpha| \leq 2} \gamma^{4-2|\alpha|}\left\|L^{\prime} D^{\alpha} v\right\|_{2}^{2} \tag{2.27}
\end{align*}
$$

By ellipticity of Δ_{ω} we have

$$
\left\|t^{-1} \Delta_{\omega} v\right\|_{2}^{2} \geq C \sum_{|\alpha|=2}\left\|t^{-1} \Omega^{\alpha} v\right\|_{2}^{2}
$$

and since

$$
\gamma^{2} \sum_{j=1}^{n}\left\|\Omega_{j} v\right\|_{2}^{2}=-\gamma^{2}\left(v, \Delta_{\omega} v\right)_{2} \leq \frac{1}{2} \gamma^{4}\|t v\|_{2}^{2}+\frac{1}{2}\left\|t^{-1} \Delta_{\omega} v\right\|_{2}^{2}
$$

we have

$$
(1-\epsilon)\left\|t^{-1} \Delta_{\omega} v\right\|_{2}^{2}+\left(12-9 \epsilon^{-1}\right) \gamma^{4}\|t v\|_{2}^{2} \geq C \sum_{|\alpha| \leq 2} \gamma^{4-2|\alpha|}\left\|t^{1-|\alpha|} \Omega^{\alpha} v\right\|_{2}^{2}
$$

where C is a positive constant . If we replace in (2.27) we obtain

$$
\gamma D(\gamma, v)+S(\gamma, v) \geq C \sum_{|\alpha| \leq 2} \gamma^{4-2|\alpha|}\left\|t^{1-|\alpha|} D^{\alpha} v\right\|_{2}^{2}-\sum_{|\alpha| \leq 2} \gamma^{4-2|\alpha|}\left\|L^{\prime} D^{\alpha}\right\|_{2}^{2}
$$

We recall that $L^{\prime}(t, \omega)=\mathrm{O}\left(t^{2} e^{t / 2}\right)$ as $t \rightarrow-\infty$. Hence if $\left|T_{0}\right|$ is sufficiently large we get for $v \in C_{0}^{\infty}(]-\infty, T_{0}\left[\times S^{n-1}\right)$:

$$
\gamma D(\gamma, v)+S(\gamma, v) \geq C^{\prime} \sum_{|\alpha| \leq 2} \gamma^{4-2|\alpha|}\left\|t^{1-|\alpha|} D^{\alpha} v\right\|_{2}^{2} \quad, C^{\prime} \text { a positive constant. }
$$

But

$$
\begin{aligned}
\gamma D(\gamma, v)+S(\gamma, v) & =\gamma\left\|e^{2 t} P_{\gamma} v\right\|_{2}^{2}-\gamma\left\|e^{2 t} P_{\gamma}^{-} v\right\|_{2}^{2} \\
& +\left\|e^{2 t} t^{-1} P_{\gamma} v\right\|_{2}^{2}+\left\|e^{2 t} t^{-1} P_{\gamma}^{-} v\right\|_{2}^{2} \\
& \leq(\gamma+1)\left\|e^{2 t} P_{\gamma} v\right\|_{2}^{2},
\end{aligned}
$$

that's

$$
(\gamma+1)\left\|e^{2 t} P_{\gamma} v\right\|_{2}^{2} \geq C^{\prime} \sum_{|\alpha| \leq 2} \gamma^{4-2|\alpha|}\left\|t^{1-|\alpha|} D^{\alpha} v\right\|_{2}^{2}
$$

which is better than the desired result.
Remark.2.2. By using a sequence of cut-off functions for small $|x|$ and regularising we can see that theorem.1.2 remains valid if $u \in H_{l o c}^{2}(X)$ with compact support and satisfying for all $|\alpha| \leq 2, \int_{|x|<R}\left|D^{\alpha} u\right|^{2} d x=\mathrm{O}\left(e^{-C R^{-1}}\right)$ as $R \rightarrow 0, C>0$.

Proof of theorem 1.1

Following Hörmander [4] (theorem 17.2.1) it suffices to prove that $u=0$ in a neighborhood of 0 .
Let $u \in H_{l o c}^{1}(\Omega)$ be a solution of (1.1) satisfying (1.2) . By lemma $2.3 u$ is in $H_{l o c}^{2}$ and satisfies (2.8). Thus by remark.2.2 above we can apply (1.3) to the function ξu where $\xi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\xi(x)=1$ for $|x| \leq R_{0}$ and $\xi(x)=0$ for $|x| \geq 2 R_{0},\left(R_{0}>0\right.$ small enough). Then we have, with C a positive constant,

$$
\begin{gathered}
C \int \varphi_{\gamma}^{2}|x|^{-n+4}|P(x, D)(\xi u)|^{2} d x \geq \gamma^{3} \int_{|x|<R_{0}} \varphi_{\gamma}^{2}|x|^{-n}|u|^{2} d x \\
+\gamma \int_{|x|<R_{0}} \varphi_{\gamma}^{2}|x|^{-n+2}|\nabla u|^{2} d x
\end{gathered}
$$

On the other hand we have

$$
\int \varphi_{\gamma}^{2}|x|^{-n+4}|P(x, D)(\xi u)|^{2} d x=\int_{|x|<R_{0}} \varphi_{\gamma}^{2}|x|^{-n+4}|P(x, D) u|^{2} d x
$$

$$
+\int_{|x|>R_{0}} \varphi_{\gamma}^{2}|x|^{-n+4}|P(x, D)(\xi u)|^{2} d x
$$

and since u is a solution of (1.1) we get

$$
\begin{aligned}
\int \varphi_{\gamma}^{2}|x|^{-n+4}|P(x, D)(\xi u)|^{2} d x & \leq 2 C_{1}^{2} \int_{|x|<R_{0}} \varphi_{\gamma}^{2}|x|^{-n}|u|^{2} d x \\
& +2 C_{2}^{2} \int_{|x|<R_{0}} \varphi_{\gamma}^{2}|x|^{-n+2}|\nabla u|^{2} d x \\
& +\int_{|x|>R_{0}} \varphi_{\gamma}^{2}|x|^{-n+4}|P(x, D)(\xi u)|^{2} d x .
\end{aligned}
$$

We obtain then

$$
\begin{aligned}
\int_{|x|>R_{0}} \varphi_{\gamma}^{2}|x|^{-n+4}|P(x, D)(\xi u)|^{2} d x & \geq\left(\gamma^{3}-2 C C_{1}^{2}\right) \int_{|x|<R_{0}} \varphi_{\gamma}^{2}|x|^{-n}|u|^{2} d x \\
& +\left(\gamma-2 C C_{2}^{2}\right) \int_{|x|<R_{0}} \varphi_{\gamma}^{2}|x|^{-n+2}|\nabla u|^{2} d x
\end{aligned}
$$

We recall that $\varphi_{\gamma}(x)=\exp \left(\frac{\gamma}{2}(\log |x|)^{2}\right)$. Hence for $|x|>R_{0}$ we have $\varphi_{\gamma}^{2}(x)<\exp \left(\frac{\gamma}{2}\left(\log R_{0}\right)^{2}\right)$ and $\varphi_{\gamma}^{2}(x)>\exp \left(\frac{\gamma}{2}\left(\log R_{0}\right)^{2}\right)$ for $|x|<R_{0}$. Then for γ sufficiently large we get

$$
\begin{aligned}
\int_{|x|>R_{0}}|x|^{-n+4}|P(x, D)(\xi u)|^{2} d x & \geq\left(\gamma^{3}-2 C C_{1}^{2}\right) \int_{|x|<R_{0}}|x|^{-n}|u|^{2} d x \\
+ & \left(\gamma-2 C C_{2}^{2}\right) \int_{|x|<R_{0}}|x|^{-n+2}|\nabla u|^{2} d x .
\end{aligned}
$$

Letting $\gamma \rightarrow \infty$, we get $u=0$ in $B\left(0, R_{0}\right)$.

REFERENCES

[1] S. ALINHAC, Non-unicité pour des opérateurs différentiels à caractéristiques complexes simples, Ann. Sci. E.N.S. 13 (1980), 385-393.
[2] S. ALINHAC and M.S. BAOUENDI, A counterexample to strong uniqueness for partial differential equations of Schrödinger's type ,Comm. Partial Differential Equations. 19 (1994), 1727-1733.
[3] L. HÖRMANDER, Uniqueness theorems for second order elliptic differential equations, Comm. Partial Differential Equations. 8(1) (1983), 21-64.
[4] L. HÖRMANDER, "The Analysis of Linear Partial Differential Operators III ", Vol.3, Springer-Verlag, Berlin/New York, 1985.
[5] A. PLIŠ, On non-uniqueness in Cauchy problem for an elliptic second order differential equation. Bull. Acad. Pol. Sci. 11 (1963), 95-100.
[6] T.WOLFF, A counterexample in a Unique Continuation problem, Comm.Anal.geom. Vol. 2 (1) (1994), 79-102.

