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Strong unique continuation for second order
elliptic differential operators

R. REGBAQOUI
Faculté des Sciences, Département de Mathématiques
Université de Bretagne Occidentale, 6, Avenue Le Gorgeu, BP 809
F - 29285 BREST.

Abstract

We prove a strong unique continuation result for differential inequalities of the
form |P(z,D)u| < Cy|z|~?|u| + Colz|~!|Vul|, where P(x,D) = 3 a;(x)D;Dy is
an elliptic second order differential operator with Lipschitz coefficients such that
a;1(0) is real (we suppose P(0,D) = —A) . C; and C; are positive constants such

that Cy < @ . A counterexample du to Alinhac and Baouendi[2] shows that our
assumption on the constant Cy is sharp .

Résumé

Nous démontrons la propriété du prolongement unique fort pour des inégalités
différentielles de la forme |P(x, D)u| < Ci|z| 2|u| + Cs|z| }|Vu| , o P(x,D) =
Y- ajr(2)D;Dy, est un opérateur elliptique d’ordre deux & coefficients Lipschitz tels
que ax;(0) € R ( on suppose P(0,D) = —A) . C; et Cy sont deux constantes
positives telles que Cs < @ . Cette derniére condition est optimale comme le

montre un contrexemple dit & Alinhac et Baouendi[2] .

Introduction and main results

Let © be a connected open subset of R"(n > 2) containing 0, and let P(z, D)

> k=1 r(7)D; Dy be an elliptic differential operator in  such that a;;(0) is real and

a;i, is Lipschitz continuous in €.
In [3], Hormander proves that if u € H}. (Q) satisfying

and

[P(a, D)u| < Cula] **Jul + Cala] **|Vu| . € >0

/ _ JuPdz = O(RY) for all N> 0 when R 0.
T|<R

Then v = 0 in €.



It is well known from PIiS [5] that Hérmander’s result fails if we take the functions
ajr in any Holder’s class C* with a@ < 1. Counterexamples due to Alinhac [1] show that
it’s necessary to assume a;; real at 0 even if it is a smooth function.

In this paper we are interested in the critical case ¢ = 0 in Hormander’s result ; we
prove that the same result holds for inequalities of the form

|P(z, D)u| < C’l|x|’2|u| + C’2|x|’1|Vu| (1.1)

provided C5 < g .

Theorem 1.1.Let P(x,D) = X%, aj(x)D;Dy, be an elliptic differential operator in
a connected open subset 2 of IR" containing 0, such that aj(0) is real (we suppose
P(0,D) = —A for simplicity) and ajj, is Lipschitz continous in§) . Let u € H}.(Q) be a
solution of

|P(z, D)u| < Cylz| 2|u| + Cylz| |Vul (1.1)

with Cy < g and

/ lu|*dz = O(R™) , for all N >0 when R —0 . (1.2)
z|<R

Then wu s identically zero in Q.

Remark 1.2
a) In [2] , Alinhac and Baouendi constructed for any C' > 1 a smooth function u in
R? flat at 0 , with supp v = R? , and satisfying :

|Au| < Oz~ r~ ' Oul

where = = r(cosf , sinf) .
But one can easily check that |[r~*dpu| < (1 + €)|0,u| , where & can be taken as small
as we want . Then it follows from the identity |Vu|? = |0,u|? + |r~'0su|? that

2
A0 < (22 4 8)jal |V

where ¢ can be taken arbitrary small . This proves that our assumption on the constant
Cs in theorem 1.1 is optimal .
Similar counterexamples are constructed in Wolff[7] for higher dimensions .

b) In theorem 1.1 we have supposed P(0, D) = —A | this can be realised by a linear
transform, and then the condition C5 < ? should be replaced by C5 < g)\o , where
Ao is the smallest eigenvalue of the matrix (a;z(0)) (we may suppose (a;jz(0)) positive
definite ) .



c¢) As in Hérmander[3], Theorem 1.1 remains valid if we take the function aj; Lipschitz
continous in Q\{0} and |Va;z| < C|z|°~! for some § > 0. As it can be seen in the proof
we need only that |z|'7°|Vaj| — 0 as = —0 .

The proof of theorem 1.1 is based on Carleman’s method. First we show that any
function satisfying (1.1) and (1.2) should satisfy for all |a| < 2 :

/ IDulfdz = O(e %), ¢ > 0.
T|<R

This allows us to use strictly convex weights like exp(Z(log|z[)?),y > 0 , rather than the
usual weights |z| 7.

Let’s introduce the following notations :
We shall denote by (.,.)2 the inner product of the Hilbert space L*(IR"\{0}) with respect
to the measure |z|"dz, and by ||.||2 the corresponding norm.We set

@, (x) = exp(Z (loglal)?) , 7 > 0.

Theorem 1.2.For any v > 0 (large enough), and for any v € C§(X\{0}) with X «
sufficiently small neighborhood of 0, we have the estimate

Cll o, P(x, Dyulls = v*/*|lpyulls + || ||, Va2 (1.3)

where C' is a positive constant depending only on P(z, D).

2 proof of the results

After a linear transform, we may assume that P(0, D) = A the Laplace operator in R".
As in Hérmander [3], let’s introduce polar coordinates in R™\{0} by seting 2 = e'w, with
t€Rand w= (w1, -, wy,) € S" 1. We have then

9,

5 = sl + )

where ; is a vector field in S"!. Then the operator P(z, D) takes the form

n

P(z,D)=—e Y aj(e'w)(w;oy — 1+ Q) (widy + Q).

k=1
While the Laplacian becomes

A =02+ (n—2)0 + A, (2.1)
where A, = 37, Q7 is the Laplace-Beltrami operator in S™*.

3



The vector fields €2; have the properties

ZWijZO and ZQjo:n—l.

j=1 j=1
The adjoint of ©2; as an operator in L*(S"™1) is
Since the functions aj; are Lipschits continous, we have

—ajp(e'w) =5, + O(e’) as t — —oo.

The operator P(x, D) can then be written in the form :

e'P(x,D)=0; +(n—2)0 + A+ > C;a(8)'Q° (2.3)
jtlal<2
where Q% denotes the product Q7" --- Q% | o = (aq,- -, a,) € N" and C}, are functions

satisfying
Cio(t,w) = O(e') and dCj,(t,w) = O(e') as t — —oo, for any d € {04, Qy, -+, }
Lemma 2.1. There exists a positive constant C such that for any v € C§°(IR"\{0}) , for

any T € {k + % , k€ IN} , and for any 0 >0, we have the estimate :

(1+5)/|x|727+4|Au|2|x|7"da: >C6 Y 7'*2/|x|727+4|Dau|2|x|7"dx

|a|=2
1
+(5-9) / 2|22 |Vl |e| " + 0572/|x|*27|u|2|x|*ndx (2.4)

Proof. Let v = e "'u and A,v = e"""A(e"'v). Then it suffices to prove ( with a new
constant C') :

//|62tATv|2dtdw > o Z 772//|(at)j9av|2dtdw

j+|al|=2
1 9 1 i 9
+ (5—5)//|(8t+7')v| dtdw + (5—5)]21//|ij| dtdw
+ Oor? / / lo[2dtdw (2.5)
By (2.1) we have

N, =R+ 21+n—2)0+T(T+n—2)+ A,

hence



A vPdtdw = PvPdtdw + A, v|Pdtdw
t

+ 2 10,0 dtdw + (277 + 2(n — 2)7 + (n — 2)?) |0,v|*dtdw
oo ffio

+ 72(T+n—2)2//|v|2dtdw - 2T(T+n—2)2//|ij|2dtdw. (2.6)
=1

We shall give a lower bound of
I(1,v) = T*(T +n—2)? // |v|2dtdw+//|va|2dtdw—27(7+n—2)2//|ij|2dtdw.
j=1

We recall that the spectrum of —A,, as an operator in L*(S™ ') is {k(k+n—2),k € N},
and each eigenspace may be identified with E} the space of spherical harmonics of degree
k. 1t follows that

//|va|2dtdw _ Zkz(k+n—2)2//|vk|2dtdw

k>0

and

Z//|ij|2dtdw =S k(k+n—2) //|vk|2dtdw,
j=1

k>0

where vy, is the projection of v on Ej.
After replacing in I(7,v), we obtain :

I(t,v) = Z(T(T +n—2)—k(k+n-— 2))2// || ? dtdw.

k>0
We have (T(T+n —2) —k(k+n— 2))2 = (r—k)*(r+k+n—2)2 and since 7 €
1
{k+§,k€]N} , we get

1 1
(T—k)2(7'+k+n—2)2>§T(T+n—2)+§k(k+n—2),

which gives
1 9 1& 9
I(7,0) 2 57(r +n-2) // o fdtdw + 5 Z// 1,02 dtdw.
j=1
If we replace in (2.6) we obtain

//|62tATv|2dtdw > //|8tzv|2dtdw + 22//|8t9jv|2dtdw
j=1



1 & 1
+3 > //|ij|2dtdw + 57’(7—1—71—2) //|v|2dtdw
i=1

+ (27 4+ 2(n - 2)7 + (n - 2)°) // 1002 dtdw (2.7)

If we multiply (2.6) by m and add to (2.7) , and using the inequality

|Av]Pdtdw > C, Q% |2 dtdw
/] /]

|a|=2
we obtain the desired result (2.5) . Thus lemma 2.1 is proved .

Remark.2.1. The estimate (2.4) in lemma.2.1 remains valid if we suppose u € H? ()

with compact support and satisfying for all || < 2 and all N > 0, / |Duf*dx =
|z|<R

O(RY) as R — 0. We can easily see this by cutting u off for small |z| and regularising .

Lemma 2.2. Let u be as in theorem 1.1. Then u € H?

loc

(Q) and satisfies for all |a| < 2
/| 1D P = O ") as R0 (2.8)
z|[<R

where C'is a positive constant .

Proof. First we shall prove that u € H?.(Q2) , and satisfies for all |a] < 2 :
/ |D%%dz = O(RY) |, for all N > 0 as R — 0. (2.9)
|z|<R
Let u € H..(Q) be a solution of (1.1) satisfying (1.2) . From (1.1) we have immediately
P(z,D)u € L2,.(2\{0}) . By regularising and using Friedrichs’ lemma and ellipticity of
P(z,D) , we get without difficulties v € H?.(Q\{0}) .
Following Hérmander[4](Corollary17.1.4. , p.8) we obtain for all |a] < 2:

/ |D%%dz = O(RY) , for all N > 0 as R — 0. (2.10)
R<|z|<2R

Hence wu is the sum of a function in H?_.(Q2) and a distribution with support at 0. But

no distribution with support at 0 is in L7 . . It follows that « € H?.(2) .
Since u € HZ,.(Q) it is clear that from (2.10) we have also :

/| _ |Dtulde = O(RY)  for all N > 0 as R 0
z|<R

Let’s now prove (2.8) . By assumption we have for all v € H? (Q) :

|P(z, D)v(z) — Av(z)|* < Colz* Y |D*(x)|? (2.11)

laf=2



where Cj is a positive constant depending only on P(z, D).
Let 6 > 0 to be chosen later . Let v € HZ (Q) , whith supp(v) C {z,|z] < 077"},
and satisfying for all || <2 :

/| | D" uPdr = O(RY)  forall N >0 as R 0.
z|<R

By remark.2.1 at the end of the proof of Lemma.2.1 , we can apply (2.4) to v. If we
combine it with (2.11) we get :

(1—1—5)/|:c|’27’”+4|P(ac,D)v|2dac > 0572/|x|*27*nla\|v|2dx
1
+ (5= 0) [ Je] = 2| Volde

+ (05— 2051 +0)8%) 72 3 / 2|27~ DOy [2d (2.12)

|a|=2

where C' is as in lemma 2.1.

Let u € HL,(Q) be a solution of (1.1) satisfying (1.2) . Thus we can apply (2.12) to
v = x;u , where x, € Cg°(R") such that x, =1 for |z| < 367, and x, = 0 for
|z| > 6771 . Then for 7 sufficiently large we have, with R = 377" :

(1+0) / 2|27 P (e, D) (o) Pde > Cor? /
|| <

|x|f2rfn|a\|u|2dx
R

1
+ (= — 5)/ 2| 27 "2 | Vul?d
2 |z|<R

+ (€8 —200(1+6)8*) 72 Y / 2|27 Do P (2.13)

a]=2 lz|<R

But

Jlal P D) owPde = [ el P, Dy

+ [ Jal PG, D) () P
|z|>R

and since wu is a solution of (1.1) it follows that

[1al7 P, D) ) Pde < 263 [ fal Tl

|z|<R

+ 203 Z 2| 27 " 2| DYu)Pdr + 2| 27" P(z, D) (x,u)|?dz.

aj=1 7 [I<E |z|>R

Now if we replace in (2.13) we obtain



(1+4) /

|z|>R

|x|_2T_n+4|P(Z‘,D)(XTU)|2CZZ‘ > (572_2(14—5)012)/ |x|—27—n|u|2d$

|z|<R
1
4 (——5-2(1+5)0§>/ |22 VP da
2 |z|<R

+ (€8 —200(1+6)8*) 72 Y / |27 Doy Pdx

a]=2 lz|<R

We have by hypothesis C5 < g , hence if we choose ¢ sufficiently small we have

(% —0—-2(1+ (5)022) >0, and (C6 —2Cy(1+0)6%) > 0. Thus for 7 sufficiently lagre
we get

¢ || 7T P, D) () P > Y 722 || 722l Doy P (2.14)
|z|>R <2 |z|<R

where C' is a new positive constant .
By construction of y, we have |D%,| < C'R™®l where C" is a positive constant, . It
follows then

WRle_%_”“lP(x,D)(XTU)Ide‘ < C"R™>77"|ul 3 (2.15)
where ||u||g> is the H?norm of u in the ball B(0,2R) , and C” a positive constant .
On the other hand we have

Z 7_272|a\ |x|72rfn+2|a\ |Dau|2dx > Z 7_272\a| |x|7277n+2|a\ |Dau|2da:
la|<2 |z|<R T e lz|<R/2
> 7_272|a\(R/2)72’rfn+2\a| |Dau|2dx
|az§:2 lz|<R/2

If we combine this estimate with (2.14) and (2.15) we get for sufficiently small R :

s IDul?dx < Cllul|%R7227%
<2 lz|<R/2
that’s .
> |Dul?dz = O(e %) (2.16)
lal<2 |z|<R/2
where a is a positive constant (we can take a = $log?2 ).
1

We recall that 7€ {k+1 k€ N} and R=I1r"'. It follows that R must be in the
set { Ry, k€ N}, where Ry = %(k%—%)‘l . But since R < Rpy1 <2R; and Ry — 0
as k — oo, one can easily see that (2.16) holds for all small positive R with a replaced
by § . This achieves the proof of the Lemma .

To prove theorem 1.2 we need a lemma that we take from Hérmander [4] (p. 12).
Let’s introduce the following notations :



1 1
For k =1,---,n, we set D, = =€, and Dy = —0;. We denote by D% any product of
i

i
the form D§°--- D% | a = (ag, -+, a,) € N If we set wy = 0 it follows from (2.2)
that Dj = Dy +i(n — 1)wy for any k € {0,---,n}.

Lemma .2.3. Let I be an open interval of R, and A(t,w) € C*(IxS" HNL>®(IxS"1)
such that DA € L>®(I x S*™) for k = 0,---,n. Then There exists a positive constant
M such that for any u,v € C°(I x S™™) , and for any o, B € IN"™ | with |al, |B] < 2,
we have :

[(AD®u, D%v)y — (ADPu, D*v)s| < M S~ ||L D uls||L D vl|s (2.17)
OL’,/B’

where the sum is taken over all o/, 3" such that max(|a/|, |f']) < max(|«a|, |3]) and |o'| + |3']
<lal+ 8] = 1, and where L(t,w) = max (|A(t,w)[V?, | DoA(t, w)[/2, -+, | Dy Alt, w) [/2).

Proof. First we note that when |a| = |3] = 0, the left hand side of (2.17) is zero and
the statement is abvious. When |a] =1 and || =0 we have

(ADpu,v)s — (Au, Dyv)s = (ADgu,v)y — (Di(Au),v)s. But Dj = Dy +i(n — 1)wy,
for any k € {0,---,n}. Hence

(ADu,v)y — (Au, Dyv)s = —((i(n — 1)wp A + D A)u, v)s ,
and by Schwarz inequality we get :
|[(ADyu,v)s — (Au, Dyv)s| < M||Lul|2||Lv]|2 (2.18)

which proves the lemma when |a| =1 and |3| = 0.

When |a| = || =1 we have

(ADyu, Djv)s — (ADju, Dyv)s = (D (ADyu),v)2 — (Dp(ADju), v)s

= <(A[D], D]c] + Z(n - 1)w]ADk - Z(n — 1)kaDj)U, U>2 + <(l)3(f1)l);c - Dk(A)DJ)U, 2}>2.

An easy computation shows that [Dy,D;] = wpD; — w;Dy if k,j € {1,---,n} and
Dy, Dj] =01if j=0or k =0. Thus if we replace in the last identity we get

[(ADu, Djv)s — (ADju, Div)s] < M(|LDjulls + |EDl)|Evlze (219)
This proves the lemma when |a| =[5 =1.

When || or |3] =2 it suffices to set v’ = Dju or v = Djv and apply (2.18) and
(2.19) to these functions .

Proof of theorem.1.2.



We use the same notations 1as in Lemma 2.13 :
fork=1,---.n, we set D, = = and Dy = —dt. We denote by D® any product of the
0 0

form D§°--- D o = (ag, -+, ) € N"TT,
Set u=e 2"y and P,u=e’”Ple 2770) | v >0, v € CF(R™{0}). (We recall
that we work in polar coordinates z = e'w). Thus by (2.3) the operator P, can be written

eth,Y = (0 —yt)* 4+ (n —2)(0; — yt) + A, + Z Cia(t,w) (0 — )70,

J+lal<2

where the functions Cj, satisfy Cj, = O(e') as ¢ — —oo, and Dy(Cj,) = O(e') as
t — —oo, for any k € {0,---,n}.
The estimate (1.3) in theorem.1.2 is then equivalent to

c//|eztp,yv|2dtdw > 73//|tv|2dtdw+7//|8tv|2dtdw+72//|ij|2dtdw (2.20)
j=1

(C a positive constant).

We shall prove (2.20).
Let P, be the operator obtained from P, when 0;,2; and Cj, are replaced by —d;, —{;
and C}, respectively. We shall give a lower bound of the difference :

D(v,v) = [[e* Pl — [l P, |3,
and the sum

S(v,v) = [let Pyl + |t Py o]l

We have
D(vy,v) = 4Re{(07 + 7v*t* — (n — 2)yt — v + AL)v, (=279t + n — 2)O)s + R(v,v),
where R(7,v) is a sum of terms of the form :
74"a|"ﬂ|Re(<ADav, DPv)y — (ADPv, Dav>2>

with Ja| < 2,]8] < 2 and A is a function satisfying for |a| < 1,|D*A] = O(t'e!) as
t - —oo. (In fact the function A is obtained from products of the functions Cj, or
products of such functions and the function #* for k < 4).

Let Ty < 0 such that |Tp| islarge enough to be chosen later . If v € C§°(]—o0, Ty[xS" 1)
we have by lemma 2.3 :

(AD, D%}y — (ADPv, D*0)s] < 3 [|L D*'[lo|L D7
al7ﬁl

where the sum is taken over all o', 3 such that max(|/|,|f|) < max(|al,|3]) and
/| + 8| < |a|+|8] — 1, and where L satisfies L(t,w) = O(t?¢!/?) ast — —oo . It
follows then :

10



[R(y,0)] < 30 4% “HPNLD3 . (2.21)

laf<2

Integration by parts gives, with v € C§°(] — oo, Ty[xS" 1) ,
4Re((0F + 72 — (n — 2)yt — v + A)v, (=29t +n — 2)9w)y =
= dyllowllz + 1 F()vllz — 4y D 1950113
j=1
where f2(t) = 129%2 — 12(n — 2)7?*t — 292 + (n — 2)27.
It we combine this with (2.21) we get

D(v,v) = 49[10wll3 + 1 (D)ol3 = 49 D 190[5 = > +* LD |3, (2.22)
j=1

lof <2
We have directly from the definition of P, and P, with v € C§°(] — oo, Ty[x.S" ) :
L.
Styv) = IO = 71)* + (n = 2)(0 = 71) + Au)olls

1
+ 570 +71)” = (0 =2 +98) + Au)olls — X v Ca D3 (2.23)

laf<2

where C, are functions satistying C, = O(te’) as t — —oo.

We have
S (0 = 1) + (0 = 2)(8, = 1) + Al
+ I 42 — (0= 2)(8+ 1) + Al
= IR0l + e Al + 23 17002001
j=1
o0 = 3 10l + eyl
where

(=27 + (n—2)t 1) =292 +2(n — 2)yt 1 + 29t 2,
RA(t) = (Vt—(n—2)y —yt7")* = 2(n—2)yt7° — 6yt
Ct) = 20y = (n—2)yt =yt ) + 6174

11



If we replace in (2.23) we obtain :

S(y,v) 2 (710503 + 7 Auvlls + 23 171025013
j=1

Hlg®)drll3 + ()]s = 3 ) yoll; = 30 **lICaD |3,
j=1

la|<2

Multiplying (2.22) by v and adding to (2.24) we obtain

YD(v,v)+ S(y.v) = [l 0Fvllz + ([t Avvls +2 3 (It a0l

j=1

+ 47%100ll3 + [lg) w3 + IF(E)v]l5 + [[R(t)v]3

— D OQll5 = 4> X (0] = 3o A H L D],
j=1 j=1 <2

where L' = O(t%e!/?) as t — —co .

We have for all € > 0,
n n 1
D 1EQ0ll5 + 47 3 1901l = 25 +27°)v, Av)s
j=1 j=1

1
< e*1||(§£2 + 2992 et T A v]|5.

(2.24)

(2.25)

(2.26)

If |Ty| and v are large enough we have 7 f? + h? — €71 (302 + 29%)%* > (12 — 91 )y*¢?
for all t €] — oo, Ty[ . by choosing 0 < € < 1 such that 12 — 9¢™' > 0, we get from

(2.25) and (2.26) :

¥D(v,v) + S(y,v) = ([t vl + (1= o)t Auulls + 23 [t 003

j=1
+llg(t) a3 + 297 M100]3 + (12— 9 )y ltvlla — Y- * 2| L' D3
la]<2
By ellipticity of A, we have
[t Al = C Y ([0l
|a|=2
and since

Lo
Ylitwlls + 51 Avvlls

DN | =

Y 0|5 = =7 (v, Ayv)s <
j=1

we have

(1= e)llt Al + (12 = 9 )y fltv]l3 = C 30 4* 2 et Q|

laf<2

12
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where C' is a positive constant . If we replace in (2.27) we obtain

YD(y,0) + S(y,0) 2 C 30 4 A D |F — 37 4 LD

la|<2 lor|<2

We recall that L'(t,w) = O(t?¢!/?) ast — —oo. Hence if |Ty| is sufficiently large we get
for v € C§°(] — oo, Ty[xS" 1) :

YD (v,v) + S(y,v) > C" Y A2l =lelDey||Z O a positive constant.

al<2
But
YD(v,v) + S(y,v) = Al Pl —[le* P, olf3
+ et Pl + et Py w3
< (y+ )Pyl
that’s

(v + Dl Pl = " 37 4 el D13
jal<2

which is better than the desired result.

Remark.2.2. By using a sequence of cut-off functions for small |z| and regularising
we can see that theorem.1.2 remains valid if w € HZ.(X) with compact support and

satisfying for all |a| < 2, /|| |D“u?dz = O(e “® 'Yas R—0, C >0 .
z|[<R

Proof of theorem 1.1

Following Hormander [4] (theorem 17.2.1) it suffices to prove that u = 0 in a neigh-
borhood of 0.
Let w € HL,.(Q) be a solution of (1.1) satisfying (1.2) . By lemma 2.3 wu is in H7, and
satisfies (2.8). Thus by remark.2.2 above we can apply (1.3) to the function {u where
¢ € C5°(R") such that {(z) = 1 for |x| < Ry and &(z) = 0 for |x| > 2Ry, (Ry > 0 small
enough). Then we have, with C' a positive constant,

C [ @l I, D) u)Pde > 5 [ @l |ufda

|£U|<R0
+ o> ||Vl ds
|z|<Ro
On the other hand we have

[ @l P D) e e = [ G2lal P (e Dyufda
T 0
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+ [ @Elal P, D) (Eu) Fda
‘$‘>R0

and since wu is a solution of (1.1) we get
[ el P D) EuPdr < 207 [ Glel ufde
z|<Ro
+ 2022/ || "2Vl de
|z|<Ro
[ @l P(w, D) (u)Pda.
|z|>Ro
We obtain then

[ @lal P D)) fde > (4 2063 |
|[z|>Ro |

o3| 7" uldx
:U|<R0

@2z "2 Vuldr,

by - 2005)/

|z|<Ro

We recall that ¢, (x) = exp(Z(Log|z])?). Hence for [z| > Ry we have @2 (z) < exp(3(LogRy)?)
and @2 (z) > exp(2(LogRy)?) for |z| < Ry. Then for ~ sufficiently large we get

[ lal PG D)(u)fde = (of —20¢8) |
|z|>Ro

| 7" uld
|z|<Ro

+(y— zccg)/ 2|2V 2da.

|z|<Ro

Letting v — oo, we get u = 0 in B(0, Ry).
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