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The Role of Green’s Functions in Inverse Scattering at Fixed Energy

James Ralston, UCLA

In this talk T will discuss some key steps in the recovery of electric and magnetic fields
from the scattering amplitude at fixed energy. This is part of my joint work with G. Eskin
[ER], but I hope that the version here will be a more transparent. The Hamiltonian for
a particle in external electric and magnetic fields with potentials A(z) and V(z) in R"™ is
given by

H = (i0; + A(z))* + V(z) = —A + P(z, D),

so that P(x, D) is a symmetric operator of order one. Since we wish to solve the inverse
problem at fixed energy, it is natural to assume that the coefficients decay exponentially,
and we assume

109V (z)| < Ce™°l71 |9 A(z)| < Ce°l*!,

for |a| < n+ 6. To define the scattering amplitude, we introduce the distorted plane
waves at energy k? for this problem. These are the solutions of (H — k?)¢ = 0 of the form
¢ = exp(i( - x) + v with |{| = k, where v = lim._,0, v. and v, is the L? solution of

(—A — (k? 4 i€))ve = —P(x, D)(e" + v.).

This is, of course, the construction of distorted plane waves by the limiting amplitude
principle, and with the strong hypotheses on the potentials used here one can show that
the limit v exists in the appropriate spaces for any £ > 0. This is essentially a consequence
of [A] and [H], see [ER, p. 200]. The scattering amplitude is defined in terms of the
asymptotics of v as |x| goes to infinity. Setting r = |z| and 0 = x/|z|, we have

ezkr

’U(T@, C) = m(a(gv C) + 0(1/7’)),

where a(6, () is the scattering amplitude.

Theorem [ER]: When n > 2, V(z) and rotA(x), the magnetic field, can be recovered
from a(0, kw), (0,w) € S"~1 x §7~1

Remark: One cannot expect to recover A(x), because the conjugating H with multi-
plication by exp(if), f of compact support, does not change the scattering amplitude, but
it replaces A(x) by A(z) + grad(f).

In the case that V and A have compact support this theorem is a simple consequence
of the result of Nakamura, Sun and Uhlmann [NSU] which is based on their earlier work
[S] and [NU]. The case A = 0, i.e. no magnetic potential but exponentially decaying
electric potential, was proven by Novikov in [N]. Isozaki discusses the method of [ER] from
different point of in [IJ.

1. The Green’s Functions.

If we define g = P(z, D)(exp(i¢ - ©) + v) and let h denote the Fourier transform of g,
then we have



—np; h(n)e™?
V= (27’(’) lzm6_>0+ /Rn m

_ h(n)e”
—(om) [ C g
(2m) /Rn772—k2—i077

Using this representation for v, we can write the Fourier transform of the equation

(=A — E*)v + P(z, D)v = —P(x, D)e'*™®

as

n N2 —k2—140

Ba()) b+ o [ dn = —5(§ ~ C.0).

where p(&, €) is the Fourier transform of the symbol p(z, ) in z. Note that h = h(n, (),
though we will often suppress the second variable as in (1). Equation (1) is just a version
of the Lipman-Schwinger equation, but it is particularly well suited for inverse scattering.
If one computes the asymptotics of v from the integral representation above, one finds
a(0,¢) = c(n,k)h(k0,(). The coefficient ¢(3,k) = 1/(4x), but it is more complicated
in other dimensions. Thus (1) expresses the relation between the coefficients and the
scattering amplitude in a particularly compact form.

Equation (1) is a Lipman-Schwinger equation in terms of the outgoing Green’s function
for —A — k2, i.e. the inverse Fourier transform of the distribution (n?> — k% —i0)~!. As
it stands, (1) is not useful for the inverse problem because the integral term in it involves
values of h off the sphere |£| = k, and it contains no parameters that could be used to
suppress that term. A method for overcoming this was introduced by Faddeev, [F]. One
can replace the Green’s function in (1) by a new Green’s function depending on several
parameters. Moreover, this can be done in such a way that the solution of the new equation
for all parameter values will still be determined on the sphere || = k by the scattering
amplitude at energy k2. The new parameters will provide the freedom needed to solve the
inverse problem. Faddeev’s method in this problem is as follows. Define the distribution

9o (f) = lim 7€)

=04 Jpn E2 4+ ic(v- € —0)
) £(6)
e @0 E—0)

where |v| = 1 and o is real. We let h*(£, o) denote the solution, assuming it exists, of
the equation obtained by replacing (n? — k% —i0)~! in (1) by (n* — k®> +i0(v - € — o)~ L.
The function h* = h¥* (£, (, o), but we will often suppress the dependence on v and ¢. The

distributions ¢, , and
f(€)
olf) = = d
9o(f) /Rngg_,@_l0 ¢

dg

dg,
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only differ by a measure supported on the sphere |{| = k. One computes

G (f) = g0(f) — d(k, ) / £ (kw)dw,

kw-v>0o

and this relation leads to

Ba()  W(6Ga) = b€ —dlkn) [ R ko) (kG 0)d

kw-v<o

Hence, assuming that (2) is uniquely solvable for h*, which turns out to be a conse-
quence of the unique solvability of the defining equation for h*, the restriction of A* to
|€] = k is determined by the restriction of h to || = k, i.e. the scattering amplitude.

It is convenient here to change variables in h* and introduce h, defined by h. (&, (,0) =
h*(§ + ov,( + ov,0). Then h, is a solution of

p — 1/ h* A~
B h(©)+en [ PERIEIII g e, ctov)

At this point we would like to extend the variable o into the upper half plane. Since
the function ((n+i7v)% — k%)~ is locally integrable for 7 > 0 and has the limit (n* — k2 +
i0n - v)~! as 7 goes to 0, it is natural to define h, (&, (,i7) by the equation

P& —n,n+itv)h.(n,,iT)
. (n+ i70)2 — k2

Eq.(4)  hu(6,¢,im)+ (2m) / dn = —p(n — ¢, + irv)

This is the final version of Lipman-Schwinger equation that we will need, and it
involves the last of the fundamental solutions (Green’s functions) that we will use. To

see the potential usefulness of h.(&,(,i7) consider its restriction to the curves y4(s) =
(&(s),¢(s),i7(s)) where d € R™ and |d| < 2k, and

Eq.(5)  &(s)=d/2+ sp,C(s) = —d/2 +sp,7(s) = \/s? + d? /4 — k2

Here 1 and v are chosen so that |pu| = |v| =1,d-p =dv = p-v = 0 — this is
why we need n > 2. If one assumes that the integral term in (4) goes to zero as 7 goes
to infinity — which is not hard to show when A = 0 — then the asymptotic behavior of
h«(&(s),¢,i7(s)) will determine the asymptotic behavior of p(d, ((s)+i7(s)v) which brings
us very close to recovering A and V. Note that, in the case A = 0, p(d, (s + iT(s)v) is
just the Fourier transform of V' on the ball |d| < 2k which does determine V', since V'
is exponentially decreasing. Thus we need to show that h,, at least on the curves 4 is
determined by the scattering amplitude. Since as s goes to zero (74) crosses the the set of
(&,¢,0) where h,(&,(,0) is determined by the scattering amplitude, we are faced with the
following problem:



Can we define h,(§,(, z) on an open subset of Imz > 0, |Rez| < ¢, so that it will be
an analytic continuation of h, (&, (, o) into the upper half plane?

2. The Analytic Continuation.

Now we need to introduce the Banach space in which the equations will be solved.
The natural choice is a space which reflects the properties of the inhomogeneous term in
Eqgs. 1,3 and 5, i.e. p. Our hypotheses coefficients imply that, p(§ — ¢, + zv) is analytic
in (¢, ¢) for [Imé|, |[Im¢| < /2 and decreases like |£|7" 76 as |£| goes to infinity. Hence we
introduce

B={fcC(|Im¢&| <6§/3): fis analytic in [Imé| < §/3and sup(1+|€|)" T £(€)| is finite}.

On this space we have the operator

Eq.(6)  [AGT)f](€) = / n ﬁ(é‘(; XZZ ;L);T_V)kf; ™) 4

which we wish to continue analytically to an operator A(z) for z in a set of the form
Imz > 0, |Rez| < €. To study A(iT) we introduce the coordinates n, =n-v,n' =n—nyv,
r =|n'| and w = n'/|n|. Since for z = o + it

(n+z2v)-(n+2v) =k>=r>+(n, +0)* =72 = k*2it(n, + 0),

we see
a) for |o| < e and |n,| > 2¢ the denominator in the integrand in (6) does not vanish.
b) for |o| < € and |n,| < 3e and e sufficiently small compared to k£ the denominator of
the integrand in (6) will not vanish for r < k/2 or 7 > 2(7% + k?)*/2, and
c) for |o| < € and |n,| < 3¢ and e sufficiently small, if we write

(n+2v) - (n+2v) = (r = VB)(r + VB),

we may assume that Rey/B is positive and the absolute value of Im+/B is bounded
by 6¢ uniformly for 7 > 0.

Introducing p(s) = 1 for |s| > 2¢ with support 1 = p(s) contained in |s| < 3¢, we
can can multiply the integrand in (6) by p(n,) and by 1 = p( eta,) producing A;(iT) and
As(iT) with A(iT) = A1(iT) + Az(it). In view of a) the analytic continuation of A; is
immediate. Using the analyticity of f and p, we will deform the integration in r from 0
to infinity in the definition of A into the upper half-plane for n, > 0 and into the lower
half-plane for 7, < 0. In view of b) and ¢) we can do this so that the contour stays on
the real axis near r = 0 and for r near infinity, stays within the domain of analyticity of
f and p, and the denominator of the integrand in A, does not vanish when i7 is replaced
by ¢ + it with |o| < e. This makes the analytic continuation of A, possible, and from the
form of the contour deformation one sees that A(z) extends continuously to A(c) on the
real axis, where A(o) is the operator in (3).

3. Remarks on the rest of the proof.

It is not difficult to show that A(z) is compact on B. Thus by standard results
on analytic compact operator valued funcions, if I + A(z) is invertible at one point in
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Imz > 0, |Rez| < ¢, it will be invertible everywhere outside a discrete set and its extension
to Imz = 0 will be invertible outside a closed set of measure zero. When A = 0, one
can show that the norm of A(iT) goes to zero as 7 goes to infinity. Hence, in that case
h«(€, ¢, 2) is analytic in (§,(, 2) on {|[Im¢| < €} x {|Im(| < €} x {D} and h.(ya(s)) is
analytic in s. One computes lim,_, hy(74(s)) = V(d) and completes the proof. When the
magnetic field is present, the argument is more complicated because we could not prove
that A(iT) goes to zero as T goes to infinity, and it probably does not. This required a
rather long detour that is really the bulk of [ER]. In the end we found that

Eq.(1)  lim hi(ya(s)/s = 2A(d) - (u +iv)

Varying p and v, one sees that this determines A(d) for |d| < 2k modulo scalar
multiples of d. Thus we recover A(x) modulo a gradient and hence rotA. Curiously, (7) is
exactly what one would obtain from (4) if A(i7(s)) went to zero.
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