

SEMINAIRE

Equations aux Dérivées Partielles 1996-1997

Masaki Kashiwara and Pierre Schapira **Laplace transform and Fourier-Sato transform** *Séminaire É. D. P.* (1996-1997), Exposé n° XIV, 3 p.

http://sedp.cedram.org/item?id=SEDP_1996-1997_____A14_0

 $\begin{array}{c} {\rm U.M.R.\ 7640\ du\ C.N.R.S.} \\ {\rm F-91128\ PALAISEAU\ CEDEX} \end{array}$

 $\begin{array}{l} {\rm Fax}: 33\ (0)1\ 69\ 33\ 49\ 49 \\ {\rm T\'el}: 33\ (0)1\ 69\ 33\ 49\ 99 \end{array}$

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ ¹ Review on formal and moderate cohomology. Let M be a real manifold, and let \mathbb{R} -Cons(M) denote the category of \mathbb{R} -constructible sheaves on M, $D_{\mathbb{R}-c}^b(\mathbb{C}_M)$ its derived category. Recall first the functors $Thom(., \mathcal{D}b_M)$ of [4] and the dual functor $.\otimes C_M^{\infty}$ of [6], defined on the category $\mathbb{R} - Cons(M)$, with values in the category $Mod(\mathcal{D}_M)$ of \mathcal{D}_M -modules on M. (The first functor is contravariant).

They are characterized as follows. Denote by $\mathcal{D}b_M$ the sheaf of Schwartz's distributions on M and by \mathcal{C}_M^{∞} the sheaf of \mathcal{C}^{∞} functions on M. Let Z (resp. U) be a closed (resp. open) subanalytic subset of M. Then these two functors are exact and moreover:

$$\mathcal{T} \hom(\mathbb{C}_Z, \mathcal{D}b_M) = \Gamma_Z(\mathcal{D}b_M) ,$$

$$\mathbb{C}_U \overset{w}{\otimes} \mathcal{C}_M^{\infty} = \mathcal{I}_{M \setminus U}^{\infty} ,$$

where $\Gamma_Z(\mathcal{D}b_M)$ denotes as usual the subsheaf of $\mathcal{D}b_M$ of sections supported by Z and $\mathcal{I}_{M\setminus U}^{\infty}$ denotes the ideal of \mathcal{C}_M^{∞} of sections vanishing up to order infinity on $M\setminus U$.

These functors being exact, they extend naturally to the derived category $D^b_{\mathbb{R}-c}(\mathbb{C}_X)$. We keep the same notations to denote the derived functors.

Now let X be a complex manifold and denote by \overline{X} the complex conjugate manifold and by $X_{\mathbb{R}}$ the real underlying manifold. Let \mathcal{O}_X be the sheaf of holomorphic functions on X, let \mathcal{D}_X be the sheaf of finite order holomorphic differential operators on X. The functors of moderate and formal cohomology (see [4], [6]) are defined for $F \in D^b_{\mathbb{R}-c}(\mathbb{C}_{X_{\mathbb{R}}})$ by :

$$\mathcal{T} \hom(F, \mathcal{O}_X) = R \mathcal{H} om_{\mathcal{D}_{\overline{X}}}(\mathcal{O}_{\overline{X}}, \mathcal{T} \hom(F, \mathcal{D}b_{X_{\mathbb{R}}})),$$

$$F \overset{w}{\otimes} \mathcal{O}_X = R \mathcal{H} om_{\mathcal{D}_{\overline{X}}}(\mathcal{O}_{\overline{X}}, F \overset{w}{\otimes} \mathcal{C}_{X_{\mathbb{R}}}^{\infty}).$$

Laplace transform. Consider a complex vector space \mathbb{E} of complex dimension n, and denote by $j: \mathbb{E} \to \mathbb{P}$ its projective compactification. Let $D^b_{\mathbb{R}-c,\mathbb{R}^+}(\mathbb{C}_{\mathbb{E}})$ denote the full triangulated subcategory of $D^b_{\mathbb{R}-c}(\mathbb{C}_{\mathbb{E}})$ consisting of \mathbb{R}^+ -conic objects (i.e. objects whose cohomology is \mathbb{R} -constructible and locally constant on the orbits of the action of \mathbb{R}^+ on \mathbb{E}).

Let
$$F \in D^b_{\mathbb{R}-c,\mathbb{R}^+}(\mathbb{C}_{\mathbb{E}})$$
 and set for short

$$\mathcal{T}\mathrm{Hom}(F,\mathcal{O}_{\mathbb{E}}) = R\Gamma(\mathbb{P}; \mathcal{T}\mathrm{hom}(j_{!}F,\mathcal{O}_{\mathbb{P}})),$$

$$W\mathrm{Tens}(F,\mathcal{O}_{\mathbb{E}}) = R\Gamma(\mathbb{P}; j_{!}F \overset{w}{\otimes} (\mathcal{O}_{\mathbb{P}}).$$

These are objects of the bounded derived category $D^b(W(\mathbb{E}))$ of the category of modules over the Weyl algebra $W(\mathbb{E})$. Let \mathbb{E}^* denote the dual vector space

¹This paper is summary of [7]

to E. One denotes by F^{\wedge} the Fourier-Sato transform of the sheaf F, an object of $D^b_{\mathbb{R}-c,\mathbb{R}^+}(\mathbb{C}_{\mathbb{E}^*})$. (See [5] for an exposition.) One identifies $D^b(W(\mathbb{E}^*))$ to $D^b(W(\mathbb{E}))$ by the usual Fourier transform.

Theorem 0.1 The classical Laplace transform extends naturally as isomorphisms in $D^b(W(\mathbb{E}))$:

(0.1)
$$L_{\mathbb{E}}: T\mathrm{Hom}(F, \mathcal{O}_{\mathbb{E}}) \simeq T\mathrm{Hom}(F^{\wedge}[n], \mathcal{O}_{\mathbb{E}^*}),$$

(0.2)
$$L_{\mathbb{E}}: W \operatorname{Tens}(F, \mathcal{O}_{\mathbb{E}}) \simeq W \operatorname{Tens}(F^{\wedge}[n], \mathcal{O}_{\mathbb{E}^*}).$$

Applications 1. Let M be a real vector space of dimension n such that \mathbb{E} is a complexification of M. As a particular case of the theorem, we obtain a characterization of the Laplace transform of the space of distributions on M supported by (not necessarily convex) cones. Let γ denote a closed subanalytic cone in M and let $\Gamma_{\gamma} \mathcal{S}'_{M}$ denote the space of tempered distributions supported by γ . One has $\Gamma_{\gamma} \mathcal{S}'_{M} \simeq T\mathrm{Hom}(\mathbb{C}_{\gamma}[-n], \mathcal{O}_{\mathbb{E}})$. Hence, we get that the Laplace transform of distributions induces an isomorphism:

$$L_{\mathbb{E}}: \Gamma_{\gamma} \mathcal{S}'_{M} \simeq T \mathrm{Hom}((\mathbb{C}_{\gamma})^{\wedge}, \mathcal{O}_{\mathbb{E}^{*}})$$
.

When γ is proper and convex, this result is well known, since $(\mathbb{C}_{\gamma})^{\wedge} \simeq \mathbb{C}_{U}$ where U is the open convex tube $\operatorname{int}\gamma^{0} \times \sqrt{-1}\mathrm{M}^{*}$, the interior of the polar cone to γ , and the right hand side denotes the space of holomorphic functions in this tube, tempered up to infinity. When $\gamma = M$, one recovers the isomorphism between \mathcal{S}'_{M} and $\mathcal{S}'_{\sqrt{-1}M^{*}}$.

Let us consider now the case where γ is a non degenerate quadratic cone.

Let us consider now the case where γ is a non degenerate quadratic cone. Let (x', x'') denote the coordinates on $M = \mathbb{R}^n = \mathbb{R}^p \times \mathbb{R}^q$ with $p, q \geq 1$, and let $\gamma = \{x; x^{'2} - x^{''2} \leq 0\}$. Let (u', u'') denote the dual coordinates on M^* , and let $\lambda = \{(u', u''); u^{'2} - u^{''2} \geq 0\}$. One checks easily that $(\mathbb{C}_{\gamma})^{\wedge} \simeq \mathbb{C}_{\lambda}[-q]$. We get the isomorphism:

$$L_{\mathbb{E}}: \Gamma_{\gamma} \mathcal{S}'_{M} \simeq H^{q} T \mathrm{Hom}(\mathbb{C}_{\lambda \times \sqrt{-1} M^{*}}, \mathcal{O}_{\mathbb{E}^{*}})$$
.

This last result is essentially due to Faraut-Gindikin [2] (in a different langage and with a different proof).

Applications 2. Denote by $\mathcal{O}_{\mathbb{E}}^t$ the conic sheaf on \mathbb{E} associated to the presheaf $U \mapsto T\mathrm{Hom}(\mathbb{C}_U, \mathcal{O}_{\mathbb{E}})$. One easily deduces from the main theorem that the Laplace transform induces an isomorphism:

$$(\mathcal{O}^t_{\mathbb{E}})^\wedge[n]\simeq \mathcal{O}^t_{\mathbb{E}^*}$$
 .

This gives a new proof of a result of Hotta-Kashiwara [3] and Brylinski-Malgrange-Verdier [1] on the Fourier-Sato transform of the sheaf of holomorphic solutions of a monodromic \mathcal{D} -module.

References

- [1] J.-L. Brylinski, B. Malgrange and J.-L. Verdier, *Transformation de Fourier géométrique II*, C.R. Acad. Sci. **303** (1986) 193-198.
- [2] J. Faraut, S. Gindikin, Private communication to P.S., (1995).
- [3] R. Hotta and M. Kashiwara, The invariant holonomic systems on a semi-simple Lie algebra, Inventiones Math. 75 (1984), n° 2, 327-358.
- [4] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. **20** (1984), n° 2, 319-365.
- [5] M. Kashiwara and P. Schapira, Sheaves on manifolds, Grundlehren der Math. Wiss. Springer 292 (1990).
- [6] M. Kashiwara and P. Schapira, Moderate and formal cohomology associated with constructible sheaves, Mémoires Soc. Math. France 64 (1996).
- [7] M. Kashiwara and P. Schapira, *Integrals transforms with exponential kernels and Laplace transform*. RIMS-1102 preprint (1996) and Journal of the AMS, to appear.

M. Kashiwara RIMS, Kyoto University Kyoto 606 Japan

P. Schapira

Institut de Mathématiques ; Analyse Algébrique Université Pierre et Marie Curie Case 82 4, place Jussieu F-75252 Paris Cedex 05

email: schapira@math.jussieu.fr