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CONSTRUCTION OF THE WAVE GROUP

FOR HIGHER ORDER ELLIPTIC

BOUNDARY VALUE PROBLEMS

D. VASSILIEV

1. Statement of the problem

Consider the spectral problem

where v &#x3E; 0 is the spectral parameter and A is a positive selfadjoint elliptic linear
differential operator of order 2m (m acting on half-densities on a compact
n-dimensional ( n &#x3E; 2 ) manifold M with boundary 8M -# ø. The B(j) are

linear differential operators describing the boundary conditions. The manifold, its
boundary and the coefficients of A , are assumed to be infinitely smooth, and
the problem (1.1), (1.2) is assumed to be regularly elliptic. By A we shall denote
the abstract operator in L2 (M) associated with the eigenvalue problem (1.1), (1.2).

Consider the time-dependent unitary operator U(t) : L~(M) -~ L~(M) defined
as

Here ~~ = 1J l ~ ~~rn~ &#x3E; 0 , v~ are the eigenvalues and Vk are the orthonormalized

eigenfunctions of the problem (1.1), (1.2), and t E (-oo , +(0) is a parameter. The
operator (1.3) is called the wave group. The wave group plays an important role in
the spectral theory of partial differential operators: knowledge of the singularities
of the Schwartz kernel of the operator allows one to derive with high accuracy
(by use of Fourier Tauberian theorems) asymptotics of the counting function N(A)
and of the spectral function e(A, x, y) .

The aim of this paper is to outline a scheme for the effective (modulo CCXJ)
construction of the Schwartz kernel of the wave group.
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As the manifold M has a boundary it is difficult to achieve this aim fully. So

we will be forced to restrict ourselves by introducing some microlocalization in
T*M and some localization in t . Microlocalization in T*M will be introduced by
studying the operator

instead of the original operator U(t) . Here P is a pseudodifferential operator of
order p satisfying certain acceptability conditions (see Section 2). Localization in t
will be introduced by performing our constructions on the time interval (T_ , T+)
which will be smaller than the original time interval (-oo , +oo) -

Sections 2-6 prepare the tools necessary for our construction, and Section 7
contains the main result.

2. Acceptable pseudodifferential operators

Let us introduce first the necessary notation.
0 def

By M def M 8M we denote the interior of M .
0 0

By T * M , T * M , T * aM we denote the cotangent bundles on M , M , aM
0

respectively. By T’M , T’M , T’aM we denote the cotangent bundles T*M,
0

T * M , T * aM with the zero section (ç = 0 , ~’ = 0 , see below) excluded.
Let us denote local coordinates (and points) on M , I aM by x = (Xl, X2, " . ? ~~) ?

x’ _ (xl, x2, ... , respectively, and their dual coordinates on the fibers T~ M ,
T~M 2013by ~=(~2~.~h ~=(~i~2~..,~-i). Thus (x, ~) , (x’~ ~~)
are local coordinates (or points) on the cotangent bundles T* M, T * aM .

Near aM we always use special local coordinates x = (x’, xn) such that 8M =
0

{xn = 0} , 1 and xn &#x3E; 0 for points in M ; consequently E = (ç’, gn) . Moreover, we
fix (specify) once and for all the choice of the coordinate xn near aM .

By A , B(i) we denote linear differential operators of orders 2m , 0  mj  2m

respectively the coefficients of which are complex-valued infinitely differentiable
functions of x &#x3E; x’ ~ these operators appear in (1.1), (1.2). By A 2m ( ~ x ç) , (xf, g)
we denote the principal symbols of the operators A, i.e. homogeneous
polynomials of degrees 2m , m~ in ~ obtained by leaving only the leading (of
orders 2m, mj ) derivatives in A, B~j~ , replacing each DXk clef by ~k,
~ = 1, 2,... ,~ .
We assume, without loss of generality, that the operators act from

the space of M-half-densities to the space of dM-half densities. Note that the
restriction of a M-half-density to aM is a dM-half density because we have fixed
the coordinate xn.

The first condition on the pseudodifferential operator P is that the support of
its Schwartz kernel p(x, ~) is separated from the boundary of the manifold M x M.

in order to formulate the other conditions (see Definition 2.4 below) we have to
consider the following Hamiltonian system of equations on T’M:
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Here h(x, ~) _ (~2~(~?~))~~~~ &#x3E; 0 is our Hamiltonian, the dot ’ 
° 

denotes

differentiation with respect to time t, the subscripts denote partial derivatives, and
(x*, ~*) _ (x* (t; y, r~), ~*(t; y, 1])) is the solution (trajectory) satisfying the initial
condition 

-

As our manifold has a boundary it may happen that at some moment of time
t = T the ray x* hits the boundary. In this case we shall reflect the trajectory
(X*,~*) in accordance with the following reflection law: x* (t) and ~*’ (t) are

continuous continuous at the moment of reflection and the value of the Hamil-

tonian is preserved. It is easy to see that this reflection law may give up to m
reflected trajectories corresponding to a given incident trajectory. When writing
(x* (t; y, 1J), ~*(t; y, 1J)) we shall assume that this trajectory depends continuosly on
(t; y, 1J), which means that we have specified a particular type of reflection.

Let T_  0  T+ be some fixed numbers.

DEFINITION 2.1. We shall say that the trajectory (x* (~; y, r~), ~*(t; y, 77)) is well-

defined on the interval (T_ , T+) if it experiences on this time interval a finite
number of reflections, and at each moment of reflection T C (T- , T+) we have
~*’ (T; y, r~) # 0, and all the fIn-roots of the algebraic equation

are simple.

The last condition in Definition 2.1 implies, in particular, that the reflections
are transversal. However this condition has wider implications. Note that when we
say "the fIn-roots of the algebraic equation are simple" we mean all the roots in the
complex plane, not only the real ones. The role of the complex gn-roots will become
clear in Section 4 when we introduce the concept of a boundary layer oscillatory
integral associated with the canonical transformation. In a sense, the complex gn-
roots correspond to Hamiltonian trajectories which leave after reflection the real
space and become complex (in the analytic situation this statement has a precise
meaning) .

o

DEFINITION 2.2. We shall say that the point (y, r~) C T’M is acceptable if it
satisfies the following three conditions:

(1) the Hamiltonian trajectory originating from this point does not reach the
boundary on the time interval (T_ , 0) ;

(2) any billiard trajectory originating from this point is well-defined on the
time interval (T- , T+) (in the sense of Definition 2.1) and does not reach
the boundary at the moment t = T+ ;

(3) for any billiard trajectory (x*(t; y, r~), ~*(t; ~, r~)) originating from this
point at any moment of reflection t = T e (0, T+ ) the number v -

r~) is not an eigenvalue of the auxiliary one-dimensional spectral
problem



IX-4

on the half-line

Definition 2.2 (as well as all other definitions in the remainder of this section)
obviously depends on our choice of the numbers T_ and T+ .

, 
0

DEFINITION 2.3. We shall say that the open conic set 0 C T’M is acceptable
if it is connected, simply connected and all the points (y, q) E 0 are acceptable.

DEFINITION 2.4. We shall say that the pseudodifferential operator P is accept-
, 

0

able if there exists an acceptable open conic set 0 C T’M containing cone supp P .

In order to understand the properties of acceptable points and sets let us now
introduce the notion of type of a billiard trajectory.

DEFINITION 2.5. Consider a billiard trajectory (X*(t;y,n),~*(t;Y,71)) which
0

originates from an acceptable point (y, q) E T’M . Let

be the moments of reflection of this billiard trajectory; r &#x3E; 0 . (Note that in view
of Definitions 2.1, 2.2 the number of reflections r is finite.) For i = 1, 2, ... r
consider the equation

(this is the conservation of the Hamiltonian condition which appears in our defi-
nition of the reflection law). Having numerated the real gy-roots of the equation
(2.5) in order of growth, let us denote by 2ni the sequential number of the root
Çn = (y, q) + 0; y, 77). Then the multiindex n = nlln21 ... In, is called the type
of the billiard trajectory.

REMARK 2.6. For real Çn the equation (2.5) is equivalent to

The equation (2.6) is an algebraic equation of order 2m, so it can have not more
that 2m real ~-roots. Consequently each of the natural numbers ni appearing
in the type of a billiard trajectory n = can take not more than

m possible values: 1  m .

Definition 2.5 basically means that a billiard trajectory is uniquely determined
on our time interval by its starting point and type.

Further on in this paper for the sake of convenience we always deal with the
equation (2.6) instead of (2.5).
LEMMA 2.7. Let (y, q) be an acceptable point. Then there exists only a finite

number of types of billiard trajectories originating from this point.
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, 
0

LEMMA 2.8. Let 0 C T’lVl be an acceptable open conic set. Then the set of
types of billiard trajectories originating from a point (y, q) c 0 does not depend on
the choice of this point.

Further on in this paper the operator P will be assumed to be acceptable (in
o

the sense of Definition 2.4), and 0 C T’M will denote some acceptable open conic
set containing cone supp P . By ?t(0) we shall denote the set of types of billiard
trajectories originating from points (y, q) E D ; the notation is justified in
view of Lemma 2.8. By (y, 77) we shall denote points from 0 .

The Schwartz kernel of the operator (1.4) admits an effective construction for
any acceptable pseudodifferential operator P . However the representation of the
result in the general case requires the use of graph theory notation. So in order to
avoid technical complications we shall assume further on in this paper that we have
only one reflection on the time interval (0, T+) , i.e. that the set 9t(0) consists

only of multiindices of length 1. The construction for an arbitrary set of types
’J1( 0) is the same as for one reflection, only the notation is more complicated.

3. Standard oscillatory integrals

Let us denote by 0  tl (y, 71)  T+ the moment of reflection, and by 2q the
number of real fIn-roots of the equation (2.6) (i = 1). Obviously, the set 
contains in our case (case of one reflection) exactly q elements and these elemets
are the numbers 1, 2, ... , q .

By

we shall denote the trajectory before reflection. By

we shall denote the real reflected trajectories.
Set

l =1, 2, ... , q . Under this notation the sets D (1) are identical for all 1 =1, 2, ... , q , I
however we will stick to this notation because these sets might become different
when one considers the case of an arbitrary number of reflections.

Set also
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According to this definition the set ~’ is a subset of (T , T+) x 8Mx x 0. However
we shall often view the set C ’ as a subset of (T- , T+) x M~ x 0 , using the obvious
inclusion 

All the phase functions appearing in this paper, including the ones introduced in
the following definition, are assumed to be positively homogeneous in q of degree 1
and with non-negative imaginary part. The fact that we allow our phase functions
to be complex-valued is crucial, because otherwise we would not be able to produce
a global construction.

DEFINITION 3.1. We say that the phase function cp is a standard phase function
associated with the canonical transformation (3.1) if it is defined on a connected

simply connected conic neighborhood O C (T- , T+) x Mx x 0 of the set C and
satisfies the following conditions:

By a we denote the set of all standard phase functions associated with the canonical
transformation (3.1).

DEFINITION 3.1 ~~~ . We say that the phase function is a standard phase
function associated with the canonical transformation (3.2) if it is defined on a
connected simply connected conic neighborhood 0(l) C (T- , T+) x M~ x 0 of the

and satisfies the following conditions:

By a, we denote the set of all standard phase functions associated with the canon-
ical transformation (3.2).

Properites of phase functions of the type described above were studied in [1].
Let us mention briefly some of these properties:

(1) the classes a, are non-empty;
(2) the classes at are contractible as topological spaces;
(3) any phase function which is defined locally and satisfies locally the condi-

tions of Definition 2.1 can be extended up to a phase function of the class
a or 81 1

(4) it is possible to choose a phase function of the class a or at which is locally
linear with respect to x in some local coordinates.

Consider now the expression det2çxn. * It is easy to see that it is a a (1/2)-
density with respect to x and a (-1/2)-density with respect to y. Consequently
the argument of this expression does not change under changes of local coordi-
nates. Let us choose a particular continuous branch arg0(det2çxn) of the argument

, specified by the following condition: arg0(det2çxn) 1 t=O,X=Y = 0 . *
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For any phase function 81 there exists a phase function p such that

It can be shown that formula (3.3) implies

Formula (3.4) allows us to choose a particular continuous branch of

the argument specified by the following condition:

We denote by S p the class of complex-valued C°°-functions a(t, x; y, n) which
admit an asymptotic expansion

with ap-k(t, x; y, q) positively homogeneous in r~ of degree p - k. We also use
the notation == (27r) -n dr¡2 ... dTI, -

DEFINITION 3.2. We say that

is a standard oscillatory integral associated with the canonical transformation (3.1)
if

(1) the phase function cp and the amplitude a E s p are defined in a connected
simply connected conic neighborhood O C (T_ , T+) x Mx x 0 of the set
C ;

(2) cp is a standard phase function associated with the canonical transformation
(3.1), i.e., 

(3) supp a C (T , T+) x M, x 0, where 0 is some conically compact conic
subset of O .

In formula (3.5)

The function ~ in formula (3.5) is a cut-off around the set C .
A distribution l(t, x, y) which can be written modulo C°° ((T_ , T+)xMxxMy)

as a standard oscillatory integral (3.5) associated with the canonical transformation
(3.1) is called a standard Lagrangian distribution of order p associated with this
transformation.
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DEFINITION 3.2(l). We say that

is a standard oscillatory integral associated with the canonical transformation (3.2)
if

(1) the phase function and the amplitude e SP are defined in a
connected simply connected conic neighborhood 0(l) C (T- , T+) x M. x 0
of the set C (1) ; ,

(2) is a standard phase function associated with the canonical transforma-
tion (3.2), i.e., cp(l) 

(3) C (T- , T+) x Mx x 0 , where 0 is some conically compact conic
subset of 0.

In formula (3.6)

The function ç(l) in formula (3.6) is a cut-off around the set C (l) .
A distribution which can be written modulo C°° ((T- , T+) x Mx x

My) as a standard oscillatory integral (3.6) associated with the canonical trans-
formation (3.2) is called a standard Lagrangian distribution of order p associated
with this transformation.

Any standard oscillatory integral (3.5) can be rewritten (modulo C°°) with an
amplitude a(t; y, q) independent of x. The restriction of this amplitude a to the set
~ is called the (full) symbol of our standard Lagrangian distribution. For a given
Lagrangian distribution and a given phase function p the (full) symbol is defined
uniquely modulo S -00. The leading homogeneous term ap (of degree p) of the
symbol a is called the principal symbol. The principal symbol does not depend
on the choice of a particular phase function, and is determined by the standard
Lagrangian distribution itself.

It will be convenient for us to introduce the linear operator 6 mapping the orig-
inal amplitude a(t, x; y, q) of an oscillatory integral into the corresponding symbol
a(t; y, r~) . The operator 6 depends, of course, on the phase function ~p . This

operator admits an asymptotic expansion into a series of positively homogeneous
in q terms:

where the operators are positively homogeneous in 71 of degree -r . The

explicit formulae for the operators (5 -r are
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and

for r ~ 1. Here the coefficients ck are determined from the following recursive
system of linear algebraic equations:

_ Similar formulae hold for standard Lagrangian distributions I(’) (t, x, y) associ-
ated with canonical transformations (3.2).

4. Boundary layer oscillatory integrals

When we constructed the reflected trajectories of the Hamiltonian system of
equations (2.1) (see Section 2) we used as the initial values of g£ at t == ti the real
çn-roots of the algebraic equation (2.6) (i = 1). However, we can also choose as
the initial value of g£ at t == tr one of the rrz - q complex gn-roots with poitive
imaginary part. This gives us m - q complex reflected trajectories

These complex trajectories are understood as formal Taylor expansions in powers
of t - tl. We shall use the sign -- to decribe the equality of two formal Taylor
expansions in powers of t - tl.

Similarly to Definition 3.1~1~ we introduce

DEFINITION 4.1 ~l~ . We say that the phase function is a boundary layer
phase function associated with the canonical transformation (4.1) if it is defined on
a connected simply connected conic neighborhood 0(l) C (T_ , T+) x M~ x 0 of
the set ~~ and satisfies the following conditions:

By 8)~ we denote the set of all boundary layer phase functions associated with the
canonical transformation (4.1).

The properties of boundary layer phase functions are similar to those of standard
phase functions. In particular one can specify the choice of a particular continuous
branch of the argument 1

Similarly to Definition 3.2~~~ we introduce
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DEFINITION 4.2~1~. We say that

is a boundary layer oscillatory integral associated with the canonical transformation
(4.1) if

(1) the phase function and the amplitude aCl) E SP are defined in a

connected simply connected conic neighborhood 0(l) C (T- , T+) x Afp x 0
of the set T’ ;

(2) is a boundary layer phase function associated with the canonical trans-
formation (3.2), i.e., c~~l~ e bi

(3) C (T- , T+) x Mx x 0 , where 0 is some conically compact conic
subset of 0 . 

’

In formula (4.2)

The function ç(l) in formula (4.2) is a cut-off around the set T’ -
A distribution which can be written modulo CCXJ((T_, T+) x x

My) as a boundary layer oscillatory integral (4.2) associated with the canonical
transformation (4.1) is called a boundary Lagrangian distribution. of order p asso-
ciated with this transformation.

Any boundary layer oscillatory integral (4.2) can be rewritten (modulo C°° )
with an amplitude a(t; y, q) independent of x. The jet of this amplitude a is called
the (full) symbol of our boundary layer Lagrangian distribution. Here by a jet we
understand the equivalence class of all amplitudes a(t; y, q) E S p defined in some
conic neighborhoods of the set ~t = t1 (t; y, n) I C (T_ , T+) x 0 which differ by
amplitudes with an infinite order zero at t = t~ (t; ~, TI) . In other words, the jet of
the function a at t = ti is uniquely determined by the set of Taylor coefficients

1 atkalt=t. , &#x3E; k =0,1,2,...k! t=t 1
The leading homogeneous term ap (of degree p) of the symbol a is called the

principal symbol. The principal symbol does not depend (as a jet) on the choice of
a particular phase function, and is determined by the boundary layer Lagrangian
distribution itself.

The (full) symbol of a boundary layer Lagrangian distribution can be computed
by the same formulae as the (full) symbol of a standard Lagrangian distribution,
see end of Section 3.

5. Boundary oscillatory integrals

Boundary oscillatory integrals are the oscillatory integrals which appear when
one takes the restriction IXE8M of a standard or boundary layer oscillatory integral.
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Thus, the phase function c~’, amplitude a, and cut-off ~ in a boundary oscillatory
integral do not depend on the variable xn.

The theory of boundary oscillatory integrals is similar to that of standard oscil-
latory integrals (see Section 3); in fact it is slightly simpler because we have one
variable less and because 8M is a manifold without boundary. The only substan-
tial difference with standard oscillatory integrals is that in the case of boundary
oscillatory integrals the weight factor should be taken as

This ensures that the boundary oscillatory integral is a half-density with respect to
x’ E aM and with respect to y E M.

Any boundary oscillatory integral with amplitude a(t, x’; y, q) can be rewritten
(modulo C°°) with an amplitude a(y, q) independent of x’ and t. This amplitude
a is called the (full) symbol of our boundary Lagrangian distribution. The leading
homogeneous term ap (of degree p) of the symbol a is called the principal symbol.
The principal symbol does not depend on the choice of a particular phase function,
and is determined by the boundary Lagrangian distribution itself.

Consider now a differential operator B(x’, Dx) of order b, and suppose that
acts from the space of half-densities on M~ into the space of half-

densities on In particular, B can be the identity operator, it acts into
the space of half-densities on dMx because in Section 2 we agreed to specify once
and for all the choice of the "normal" coordinate. Denote by Bb (x’, ç) the principal
symbol of 

LEMMA 5.1. Let be a standard Lagrangian distribution of order p as-
sociated with the canonical transformation (3. 1), and let ap (t; y, r~) be its principal
symbol. Then (B I) laM x is a boundary Lagrangian distribution of order p + b
with principal symbol 

~’

LEMMA 5.2. Let 1(’) (t, x, y) be a standard Lagrangian distribution of order p
associated with the canonical transformation (3.2), and let ag)(t; y, TI) be its prin-
cipal symbol. Then (B I(l)) laMx is a boundary Lagrangian distribution of order
p -~ b with priracipal symbol



IX-12

LEMMA 5.3. Let (t, x, y) be a boundary layer Lagrangian distribution of or-
der p associated with the canonical transf ormation (4. 1), and let a(l)p (t; y, n) bep z z (4.1), p )
its principal symbol. Then (B I(l») I 8Mx is a boundary Lagrangian distribution of
order p + b with principal symbol (5.1).

6. Characteristic properties of distributions
associated with the wave group

Denote by up (t, x, y) the Schwartz kernel of the operator (1.4), that is

We will attempt to approximate the distribution up(t, x, y) by the distribution

where

is a standard oscillatory integral associated with a canonical transformation (3.1)
(see Definition 3.1), and

are standard oscillatory integrals associated with the canonical transformations
(3.2) (see Definition 3.2~~~, l  q) and boundary layer oscillatory integrals asso-
ciated with the canonical transformations (4.1) (see Definition 4.2~1~, 1 &#x3E; q) re-
spectively. The amplitudes a, E SP are to be determined is such a way that

u p (t, x, y) approximates up (t, x, y) modulo C°° . Note that these amplitudes should
be independent of x (we can always search for oscillatory integrals with amplitudes
independent of x in view of the results of Sections 3, 4).
LEMMA 6.1. Let the oscillatory integrals (6.2), (6.3) be such that
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Then

Recall that by p(x, y) we denote the Schwartz kernel of the (acceptable) pseudo-
differential operator P, that is

Lemma 6.1 is a version of Lemma 2.2.2 from [2] and Theorem 1 from [3].

7. Main result

THEOREM 7.1. In the case of one reflection for any set of phase functions cp E -ð,
== l, 2, ... , q, E I l == q + 1, q + 2, ... , m, associated with our

Hamiltonian billiards there exist amplitudes a, all) =1, 2, ... , m, such that
the distribution (6. 1) coincides with the Schwartz kernel up (t, x, y) of the operator

modulo C°°((T_ , T+) x Mx x My) .
Theorem 7.1 is proved by substituting (6.1)-(6.3) into (6.4)-(6.7), computing the

symbols of all the oscillatory integrals (in accordance with the formulae described
in Sections 3-5), and integrating the resulting ordinary differential equations in the
variable t.

The procedure outlined above is a version of the procedure suggested initially in

[2]. The difference is that in this paper we used the technique of global oscillatory
integrals with complex phase (1~, which significantly simplifies the construction (we
do not have to match local oscillatory integrals in time and in space) and makes it
invariant with respect to changes of local coordinates.

Our construction is described in greater detail in Chapters 2, 3 of [4].
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