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Wiener type algebras of pseudodifferential operators
Johannes Sj6strand

Centre de Mathématiques, Ecole Polytechnique
F-91128 Palaiseau cedex, France

URA 169, CNRS

0. Introduction.

In [Sl] we introduced a Wiener type algebra of pseudors (short word for ’’pseudodif-
ferential operators" to be used below), which is an "explicit" Banach algebra containing

In particular there is no loss of derivatives in the calculus. (For less explicit
semi-norms allowing a "no loss" calculus, see [GraUeW], [GraSch] and further references
given there.) We hope that these types of algebras may find applications in non-linear
problems or for problems in high dimension.

Here we review most of [Sl] and simplify some of the arguments there. We also
establish a non-commutative Wiener lemma: If A is an operator of our class which has
an L2 bounded left inverse B, then B is also in the class. The proof is an extension
of a (possibly new) proof of the classical Wiener lemma, which makes no use of Fourier
transform or of abstract theory, and which might apply to other classes of operators as
well. (We do not exclude the possibility of an abstract proof.) We also develop a calculus
of h-pseudors, based on a pretty sharp version of the stationary phase method, and give a
version of the sharp Ghrding inequality.

It is a pleasure to acknowledge stimulating discussions with J.-M. Bony and N. Lerner.
In particular, Bony pointed out to me the confinement characterization of Op(5w), which
is used in the proof of the inversion result mentioned above. I also have had instructive

conversions about the classical Wiener lemma with J.-P. Kahane, J. Peyriere and M.
Zworski, as well as indirectly with P. Gerard.

1. The symbol space Sw and oscillatory convolutions.

If e1, .., e~ is a basis in Rm, we say that F = is a lattice. Let F be such a lattice
and let xo C S(Rm) have the property that 1 = Eicr X], where (7jXo)(x)

We let Sw be the space of u G S’(Rm) such that

Here ,~ denotes the standard Fourier transformation:
is a Banach space with the norm

Lemma 1.1. The definition of Sw does not depend on the choice of r, Xo.
Proof. Let r’, xo be another choice. Put IxI2 = ¿kEr IXkI2, Ixl-2 = 1/lx12 which are
smooth and T-periodic functions. Let U(E) be the function in (1.1). We have,
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Here we make N integrations by parts by means of and observe

that

and similarly for the derivatives. We then get,

where ( ~ ~ -~ * U and * indicates convolution. j
We also observe that the definition of Sw does not change if we replace r, xo, by Rm,

xo e S, where = Xi 0 ~ 8, J = 1.

The H6rmander space of smooth functions on R’~ which are bounded with

all their derivatives, is a subspace of 5w? and we can take U = CNO-N for any N &#x3E; m.

Clearly, S is not dense in Sw for convergence in norm, so we need another notion of
convergence:

Definition 1.2. Let E 1, 2, 3, ... We say that uv - u narrowly when
v - 00 if uv - u in S’ (weakly) and if there is a U E such that I  U(~)
for all j E r, v =1, 2, ...

It is easy to check that this definition does not depend on the choice of r, xo (or
R’~, xa ). Moreover, S is dense in Sw for narrow convergence. In fact, it was noticed in [S]
that if u E SW , then we can find u v E S converging to u narrowly, such that

for every N, where C~ is independent of u.
If u E E Sw(Rk), then u ® v E More precisely, if r C Rm,

ri C R~ are lattices and E r, E r’ are corresponding partitions of unity, then
Xi 0 Xk, (j, k) E r x r’ is a partition of unity, and

It is also clear that if uv - u, vv -+ v narrowly, then uv 0 vv -+ u © v narrowly.
Let L C Rm be a linear subspace. Then we can define and if u E it

follows that UIL E SW(L). Moreover, u H UIL is narrowly continuous. To see this, we may
assume that L: ~" = 0, where x = E Rd, x’ E R’-d. Choose F = z, = F’ xf,
h’ = Zn-d, h" = Zd, and choose Xo such that 0 ~ suppxj n = 0. Then
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If u , v E Sw(Rm), then uv E and (u, v) H uv is narrowly continuous as in
the statement for tensorproducts. In fact, ~cv can be identified with ~~c 0 v I dia g( Rm xRm).
Theorem 1.3. Let be a non-degenerate quadratic form on Rm. Then the convolution
operator u H * u zs bounded from S, to Sw, J and 2s continuous in the sense of narrow
convergence.

Proof. We shall work with partitions of unity with compact support. By our density
remarks, it is enough to consider ~c in the case when u E S. Let r’ be a second lattice
and let Xb E Cgo have the property: X’j with xj = tjX’0. Let X0 E Coo0 satisfy:
X0X0 xo and put gk == Then for 1 E , E T, we have

where F is real-valued and where

[ere we have also used the Taylor sum formula:

Notice that the modulus of any derivative of ~) can be bounded by a constant which
is independent of x, y, j, l~.

We make 2N integrations by parts, using the operators,

with the notation Dx = (x) = 1 + x2, After estimating the resulting integrals
in a straight forward way, we get:

Since O is non-degenerate, E - 8zlF(j - k)&#x3E; is of the same order of magnitude as
(~~r-1~ - j + k) and similarly for (q - 8z lF( j - l~)~. With llT &#x3E; m, we then get:
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Summing over k in (1.3~ we get

and consequently u))(g)) is also bounded by the left hand hand side of
(1.5) (which is an L~ function).

The narrow continuity follows from the estimates above and from the fact that if

j

We now turn to the preparation of the calculus of h-pseudors. We let $ be a non-
degenerate quadratic form on Rfn and choose 0 such that 

where is the inverse quadratic form. In the following we shall assume that
0 ~ ~ 1.

Theorem 1.4. The map SW ~ u ~ E uniformly bounded with
respect to h. Moreover, if u E Sw, then Cmh-m/2eiip/h * u -+ u in SW norm, 0.

Proof. We prove only the last statement, since the first one can easily be obtained
from the same arguments. Let Cfgo, F be as above. Choose Co &#x3E; 0 so large that

&#x3E; Co # Let u E SW and let U = ELI.
Co, consider,

It follows that

Now consider for I
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with Xk as in the proof of Theorem 1.3 and where

Here

Here we notice that nxsuppyj,k = SUPPXJ - suppXk (with 11"x denoting the projection
(.r,~) - i), and we may assume that Co has been chosen so large that 
~(0,1), 0) ~ ~’ - In (1.8), we can always make integrations by parts in W and gain
negative powers of (~ - ~). As for the integration by parts in i, it depends on wether the
critical point - i - E+n is close to nxsuppYj,k or not.

In terms of the original coordinates, we get for all lV &#x3E; 0, that

We shall estimate

uniformly with respect to j . Since $ is non-degenerate, there exists liTa E N such that for
every ( j, g, n), we have ç;-1J E suppXk + B(O, 1)) for at most No values of k,ppx h ( , o es of k,
and for some k = k(j, E, 77), we have E, n)| for
the remaining values of 1~. It is then clear that 

h ~ )~ I (~~ ~~ ~)~
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Moreover, there exists a CI &#x3E; 0 such that if ]1
suppXk + B(0,1)) for all j, k (with 11 - kl &#x3E; C0) and consequently, 

... 
- - 

We have

and the estimates (1.12,13) are uniform w.r.t. j. Consequently,

where,

which tends to 0 in L1, when h - 0. Combining this with (1.6), we get

where

The theorem follows.

From the estimates above, it also follows that

Let $ be as in the preceding theorem and so that
Let u E S~ ( R’n ~ and assume that for some N E N, we have

Applying Taylor’s formula,
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to the function , we get

where according to Theorem 1.4, we have

2. Pseudor algebras.

For t E ~0,1~, a E S’(R2n), U E S(Rn), it is well known that we can define E

S’ (formally) by:

where for t = 1/2 (Weyl quantization) we drop the subscript t. For 0  h  1, we also
define

The operator space °Pt(Sw) is independent of t:

Proposition 2.1. Let t, s E [0,1], at, a8 E S’(R2n), and assume that Opt(at) _ 
Then at C Sw E Sw. Moreover the correspondence as H at E S, is bounded
and narrowly continuous.

Proof. Since at = it suffices to apply Theorem 1.3. j

The proposition immediately extends to From now on, we work with the

Weyl quantization. If a, b C we recall that the Weyl composition c = a~b, defined
by Op(c) = Op(a) o Op(b), is given by:

Theorem 2.2. The Weyl composition extends (uniquely) to a bilinear map Sw x Sw - SW
which is norm continuous and preserves narrow convergence of sequences.

Proof. is a convolution operator as in Theorem 1.3, so it suffices to apply
that theorem together with the remarks of section 1 about tensorproducts and restriction
to subspaces. j
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It is then clear that Op(5w) is a Banach algebra. Since 5w is closed under complex
conjugation, we have .4 E Op(SW ) =&#x3E; A* E Op(S,v), where A* denotes the complex adjoint
of .4. Following the idea of the proof of Kohn-Nirenberg [KN] for L2 boundedness, we see
tha,t a E S«. ~ Op(a) E ,C(L’(R’~), L~(Rn)), and Cllallsw. Here we
only recall the basic idea and refer to [Sl] for further details: We may equip Sw with a

° 

&#x3E; such that &#x3E; IIlalll I _ ° If .4 = 
&#x3E; IIIalll I  1 we

can construct B = (I - .4*.4)~ = 7 2013 ~*~4 + ... as a convergent power series in 
and ..4 * ~4 + B~ = I, so  1.

For h-pseudors, we have the composition formula

when Oph(c) = Oph(a) o OPh (b), and the map 6’w 0 (a, b) ~ Sw is uniformly
continuous wih respect to /1,. Moreover, if a, b E Sw are independent of It, then -~ ab
in 5w when h - 0. These facts follow from Theorem 1.4.

If a, b are independent belong to Sw for ~r~~  N E N, then
b) E Sw N, and from the observation after the proof of

Theorem 1.4, we infer that

where,

Let SW,N be the space of symbols of the form,

(2.6) ~; h) = ao (x, ~) + ç) + .. + ç) + ç; h),

with (9c",)aj E Sw for lal + j  N and rN(.; h) uniformly bounded in SW for 0  h  1.(x,E)
Then, if a, b E Sw, we have aj hb E sW, N . Moreover, if we define Sw, N as the space of all
a E of the form (2.6) with rN(.; h) -~ aN in 6’w? when h --&#x3E; 0, then for a, b E 
we have E 

3. The confinement point of view.

In this section, we work with h = 1. Let F C R2n be a lattice and let xo E S(R 2n)
with ¿jEr Xj = 1, where 7-jXo. Put xj = The following result was pointed
out to me by J.M.Bony:

Proposition 3.1. Let A : S(Rn) -7 S’(R n) . Then the following two statements are
equivalent:
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and

The property (3.2) defines a special case of classes of operators considered by A.
Unterberger [U] and by J.M. Bony [B].
Proof. Using properties like: k) and operators like X2, X-2
of the next section, it is easy to prove (cf section 1) that the property (3.2) only depends
on A and not on the choice of the lattice and on xo. We may even replace T by R2n and
get the following property equivalent to (3.2): Let Xo E S(R2n) have the property that
f = f Xo(x - t)dt ~ 0:

For a = (ax,aç) E R2n, let = where C &#x3E; 0 is chosen
so - 1. Here the norm is that of L2, if nothing else is specified and the
corresponding scalar product will be denoted by (.1..). Let xa E S(R2n) be the Weyl
symbol of the orthogonal projection onto Cea, so that

A straight forward computation shows that,

so the requirement prior to (3.3) is satisfied. Since eo is L2-normalized, we have

Another straight forward computation shows that

where 0 = CXo for some C &#x3E; 0 and with xo given in (3.5). Let

Then

so we get the equivalence.



IV-10

4. A non-commutative Wiener lemma.

As a warm up exercise we shall first give a proof of the classical Wiener lemma, which
does not use any kind of Fourier transform. (See [Lo] for an abstract proof and [Z], [LKa]
for a short direct proof by Calderon.) Then by generalizing this proof, we establish that if
an operator in Op(Sw ) has an L2 bounded inverse, then the inverse belongs to the same
class. Let us recall that the corresponding statement with Sw replaced by S8,0 is wellknown
and follows from the so called Beals lemma [Be]. (It is less well-known that Shubin [Sh]
independently obtained a similar result for the classes S~’§o .)

Let 0  90 E with 7jOO ,f (~- j). (In this first part we
shall work systematically on Z ’.) Put ~~(~) _ k).
Notice that ¿kEzm O’k = 1. Also notice that an equivalent (E dependent) norm on 
is given by

where in this section 11 - 11 will always denote either the £2 or the .~2 norm depending on
the context.

Let a and assume that the convolution operator a* is invertible in the £2 sense:

It is then clear that the inverse of a* is of the form b* for some b E g2 and the Wiener
lemma states that b is actually in We shall now prove this:

First notice that

where we write (~E)2 - (~E)-2 - and notice that these functions are
bounded from above and from below by positive constants independent of E. Hence,

Here has the matrix
we have

It is then clear that
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Co, sufficiently large, we know that

and the matrix of [a*, simplifies to,

we estimate the corresponding operator norm by means of Shur’s lemma:

L Similarly,

and Combining this with (4.4), we get a new function UE tending to 0 when 6-~0,
such that

Replacing UE by a multiple, we then get from (4.3), that

which we view as a convolution inequality for the function j H Choose E &#x3E; 0 small
enough, so that and let 0  VE E .~1 be the function with

Then from (4.8), we get,

Chossing u = b to be solution of a * b = we get in particular that,
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which is the conclusion of the Wiener lemma. Notice also that if lal  A, A E ~1 and
for all E .~2, then ~.B E .~1, such that lbl  B.

Remark. Since our proof does not use Fourier transform we have the following immediate
generalization: Let be a matrix with Ik(x,y)1  A(x - y), a, y E Zm for some
A E f’. Assume further that !( u( x) == ¿y has a bounded inverse of norm  1

in ~C(.~2,.~2). Then there exists B E .~1 depending only on A, such that the matrix 
of the inverse, satisfies: y) ~ I  B(~ - y).

The proof above can be extended to a proof of the fact that if a E SW(Rm) and l~a
is a bounded function, then lla E This also seems to follow from abstract theory and
we are still in the commutative setting. (See [Lo].)

We now attack the pseudor case. Let m = ~n and let E Z 2 n be as before.
Let x J be the Weyl quantization (and sometimes we shall drop the superscript when it is
clear that we discuss pseudors.) Consider the operator x : Z~ 3 ~ ~ EDL2,
and its adjoint: x* : easy to see that ,x is a bounded operator.
(See for instance the beginning of [HeS].) Moreover x* has a bounded right inverse for
the following reason: Let Xo E Co be equal to 1 in a large region containing suppxo,
and put 5~j = For a given u E L 2, put Uj For a given u E L2, put

Here, we may arrange
so that" xW ~ (~  2 and the claim follows. By duality, x has a bounded left
inverse and hence,  It follows that X2 =def ~(~’v ~2 = X*X has a bounded
inverse and we shall denote it by x~~ . It is wellknown from the usual Beals lemma, that
X-2 e Op(sg 0).

Put W J = £ 9 J(v) x§§ . Defining (~E)2 as above, we conclude as there, that (~E~2 has
a bounded inverse (WE)-2 belonging to a bounded set in for E &#x3E; 0 small enough.
Also, if we define wE in the same way as x, we see as before that wE has a bounded left
inverse, and that /lull uniformly with respect to E &#x3E; 0.

If B : S - S’, we consider Lk,k Assume that the matrix

which gives,

11/ ~ I ,

so that according to Proposition 3.1, we have I
Consider,

where we are free to choose the constant C. In order to estimate the norm of this commu-

tator, we consider
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and write (with N &#x3E; m):

In the same way,

Now estimate,

Then, from (4.12) and the subsequent estimates with

1 tend to zero we conclude that

with Ue -+ 0 in £l and hence,

In particular,

, with C large enough, so that

Consider,
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Write,

and conclude that

Similarly, write

to conclude that,

Using these estimates in (4.17), we get with i

» I

We are interested in the £2 -+ £2 norm of the corresponding matrix,
We use the Shur lemma and start by estimating

We have:

so the expression (



IV-15

as earlier. Summing up:

When estimating sup E. of (4.18), the contribution from the last term in (4.18) can be
treated as in (4.20) and we are left with estimating

so sup ~~(4.18) can be estimated by the RHS of (4.21), and we get for

Combining this with (4.15), we conclude that with a new UE:

- when E --+ 0. For E &#x3E; 0 small enough, let
be the inverse of ( , Then

Let B be a left inverse of A, so that:

and in particular,
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so that,

and we conlude from Proposition 3.1, that B E Summing up, we have proved:
Theorem 4.1. LetA E have an L2 bounded left inverse B. Then B E Op(Sw).

5. The sharp Garding inequality.

Proposition 5.1. Let a E S,,2; a = ao(x, ~) + with 0. Then there
exists a constant C &#x3E; 0 such that

Our proof will follow the idea of the proof of the sharp Garding inequality in [CF]
and a very short proof can be obtained by adapting Exercise 4.9 of [GriS]. (See also [T].)
We here give a slightly longer proof which illustrates the use of pseudors in the complex
domain in the spirit of (52,3~. See also [H2]. Our arguments below will be a little sketchy.

Let §(x, y~ be a holomorphic quadratic form on Cn x Cn with

Then : (y, -~y(~, y)) H (~, ~~(x, y)) is a linear canonical transformation. Put 4)(x)
supyERn - y). Then it is easy to check that (D is strictly pluri-subharmonic, that

is I-Lagrangian and R-symplectic, in the sense that 0, Ruj A, is non-degenerate,
where u A is the complex symplectic form, and finally that 1~~ _ 
Consider the "linearized" FBI (or generalized Bargmann) transform:

, where ’H(Cn) denotes the space of entire
functions and L(dx) = denotes the Lebesgue measure. Choosing CO &#x3E; 0 suitably,
we can arrange so that T : L2 (Rn ) --~ is isometric. Consider then the orthogonal
projection TT* = H~ - T (L2), where

is the complex adjoint of T.
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Let be the holomorphic quadratic form with It is easy to

check that

for some Cl &#x3E; 0 (and here is the critical value of i

One can check directly the uniform boundedness of the RHS: 

Consider on the other hand the identity operator on Hip as a pseudor:

(equipped with a suitable integration contour). Write 2(~c/&#x3E;(~, 0) - 0)) = it ax B) ~
(x - y). Then we relate n and
Then with a new C:

A suitable integration contour, is given by 0 = y and since .

We know that IIu = u for u E H~ and that TT*u = u for some non-trivial u E H~. Hence
CI = Cl , so II = TT*. In particular T is unitary.

If a E and b E S(11~ ~ are related by b o K = a, then since we are in a metaplectic
situation,

where A = Oph(a) and

Here the (only possible) integration contour (in general) is given by 7

well adapted to since we then have -
- - - - - I -

consider operators of the form

where ft(x) is given by . For

t = 1/2, we can change variables 0 -4 q and we then get the same integration contour as
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in (5.12). For t = 0, we get 0 = y and the operator becomes very similar to ~.10 . For
intermediate values of t, we also have a well adapted contour, since tx + (1- t)y) -
0(y, tx + (1- t)y) is affine linear in t.

For t = 0, we also notice that Aou = Ilaou, where ao = ao(y, y), so Ao is a Toeplitz
operator and in particular we have 0 in the sense of self-adjoint operators on H4, if
ao &#x3E; 0.

We now require at to depend smoothly on t, and ask when At is independent of t
(when acting on H4,). The t-derivative of the RHS of (5.13) is

and the contribution from (x - y) a can be transformed by means of integrations bydx

parts in 0 (or rather by means of Stokes’ formula). We see that At is independent of t if

Recalling that we work on 0 = x, we can rewrite this as

Identifying C~ with R2n in the standard way we see that the symbol of - 49X is

which is  0 when 0 # g E Cn. Hence (5.15) is a heat equation with the
solution

for any given ao E S. The results of section 1 about carry over to 

when (I)-’ is positive definite, so if ao is independent of h and all its derivatives of order
 2 belong to Sw, then aim = ao + hr(x, 0; h), with r(.;h) bounded in Sw. We can partly

2

reverse this and observe that if ai = + h) E S,,2 and if ao &#x3E; 0, then
2

in £(Hcp, and in particular, However from
2 2 H.1,

the change of variables 8 +-+ n, we see that A 1 is a h-pseudor in the Weyl quantization and
2

with the symbol a symbol in Sw,2 with leading part &#x3E; 0. The relation (5.11) allows us to
go from the L2(Rn) setting to that of Hcp and the theorem follows. j

It would be interesting to know if there is a corresponding low regularity version of
the Melin inequality.

It seems possible also to prove the L2 boundedness directly in the FBI presentation in
two different ways: either by contour deformation (and suitable almost analytic extension)
or by estimating the kernel of IIBII (illustrating the general point of view of ~5~~ ) and then
in both cases by applying Shur’s lemma. We leave this open until needed.
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