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1 Introduction

In this talk I present recent results on the inverse N-body scattering problem in quantum
mechanics that were obtained with a simple geometrical time-dependent method. We study
the high velocity limit of the scattering operator and we obtain formulas with error term for the
reconstruction of the potential. In particular we prove that any one of the Dollard scattering
operators determines uniquely the potential. We also consider the inverse N-body scattering
problem in the case where the particles are in the presence of a constant external electric field.

This case is particularly interesting because potentials that are of long range in the absence of
a constant external electric field become of short range when the electric field is added. For

example in the two-body case the potentials that decay at infinity as 1/2  "y  1,
are of long range when there is no electric field and they require the introduction of a modified

free time evolution in order to define the wave and scattering operators. It is a remarkable

fact that when a constant external electric field is added the same potentials are of short range
in the sense that the ordinary wave and scattering operators exist, i. e. it is not necessary to

introduce a modified free time evolution. In the N-body case when the electric field is present
we take the standard free time evolution for the relative motion of the pairs of particles whose
reduced charge is different from zero and a Dollard modified free time evolution for the relative
motion of the pairs of particles with reduced charge zero. We study the high velocity limit of
the modified scattering operator and we obtain formulas with error term for the reconstruction
of the potential. In particular we prove that any one of the modified scattering operators in a
constant external electric field determines uniquely the potential. In the particular case when
the relative charge of all pairs of particles is different from zero we uniquely reconstruct the

potential from the canonical scattering operator defined with the standard free time evolution

in the presence of a constant external electric field. In all of the above mentioned results

in uniqueness and reconstruction it is only necessary to know the high velocity limit of the

corresponding scattering operator. The results presented in this talk are contained in the
papers by Enss and Weder ~1), ~2), [3] and by Weder [4].

2 The Results

Let mj and ij E =1, ... , N, n &#x3E; 2, be respectively, the masses and the positions of the

particles. The free Hamiltonian of the system is



XIX-2

As usual we work on the center of mass frame. The kynetic energy of the center of mass is

given by
I.... 1 -1 . -- . 19

We separate off the motion of the center of mass and we obtain the free Hamiltonian

The abstract Hilbert space of states, 7~ in the center of mass frame is represented in configu-
ration space by wave functions O in the space

with the measure induced on X by the norm on Similarly the set

of momentum space wave functions ~ is the space

where we give to X the dual metric induced by The configuration and

momentum space wave functions are related to each other by Fourier transform. The free

Hamiltonian Ho is self-adjoint on the domain D(Ho) = JV2,2(X). We consider potentials that
are a sum of pair potentials that are operators of multiplication by real valued functions.

We split each pair potential into a short-range part and a long-range part. The short-range
part is allowed to have singularities but it decays integrably to zero at infinity. The long-range
part has continuous derivatives, but it decays slowly at infinity

The class of short-range real valued potentials is defined as

Bti’k is Kato-small,
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For any set 0 E Ift,n we denote by F(x E 0) the operator of multiplication by the characteristic
function of 0. The class of long-range real valued potentials is given by

where is the space of continuously differentiable functions that tend to zero towards

infinity. To simplify the notation we will use y  2.. Clearly the separation into short-and

long-range parts is not unique, and it is well known (see [5]) that without lossing generality it
can be made in such a way that furthermore

1 |a|  4, where Da denotes the derivatives with the usual multi-index notation and E &#x3E; 0.

In what follows we assume that a spliting according to (2.4), (2.5) has been made and is kept
fixed. The interacting Hamiltonian is H = Ho + V, D(H) - D(Ho), and it is a self-adjoint
operator by the Kato-Rellich theorem.

The Dollard modified free time evolution is generated by the following time-dependent Hamil-
tonian

where = is the relative velocity of the particles j and k, and Pik =

mjmk/(mj + m) is their reduced mass. The Dollard propagator is given by

The modified Dollard wave and scattering operators are defined as follows

The existence of the strong limits in (2.8) is well known.

In order to define the high velocity states we introduce appropriate coordinates. We will re-
construct the pair potentials V k one by one. Let us assume that the pair of interest consists
of particles 1 and 2. As usual we take as one coordinate their relative distance and the corre-

sponding momentum

As the remaining N - 2 coordinates we take the distance of particle j = 3, ... , N to the center
of mass of particles 1 and 2, and the corresponding momentum
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with

j = 3, ... N. Let ~o be a state in ?i whose momentum space wave function (given by Fourier

transform) is a product function

The high velocity state is defined

or equivalently

where v = iil =1, and for j = 3, ... , N, vi = 0, e; # k. In the high velocity
state 4liv the average relative velocity of the pair (1 2) is v and all other particles have minimal

velocity proportional to v 2 relative to all other particles.

The intuitive idea behind our reconstruction method is that the time that the particles spend in

the interaction region is proportional to 1 w. So in the high velocity limit the interaction goes
to zero and the scattering operator goes to the identity. Then substracting the identity from
the scattering operator and after rescaling we are able to reconstruct the potential from the

leading term as v -3 oo. Here it is relevant that in the high velocity limit the spreading of the
wave packet under the free time evolution can be neglected and it only remains a translation.
The reconstruction formulas are given in the following Theorem.

Theorem 2.2 (Enss and Weder [3]) suppose that V. E VSR and V’ E VLR. Then for all 0,, ~v
as in (2.11)

Moreover suppose that in (2.3) 0  p  ~y -1. Then for any 1  jo  n,

If the long-range part of the potential, VI, is a priori known, we obtain from (2.11) the Radon
transform of Viz. Inverting this Radon transform we reconstruct Vl-’2. This reconstruction

method is of particular interest in the short-range case, Vt - 0. Using formula (2.13) we
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obtain from the high velocity limit of the commutator of SD with a component of p the Radon
transform of the corresponding derivative of the potential Inverting this Radon tranform
and integrating we reconstruct Since we actually reconstruct the scalar product of the
potential between states we only need to consider v in a two dimensional subspace in both
reconstruction methods. See [3] for details. Moreover we obtain the following result in the
uniqueness of the inverse problem.

Corollary 2.2 
.

Any one of the modified Dollard scattering operators, SD, determines uniquely the potential
V. In particular the scattering map SD (V ~, ~ ) : --~ ,C(~l ~ is injective.
Let us now consider the case of scattering in the presence of a constant external electric field. We
will only discuss here the two-body case. For the N-body case see Weder [4]. The Hamiltonian
of a particle, or of a two-body system in the center of mass frame, in a constant external electric
field is the following operator in L2(JRn)

0 is the electric charge of the particle, or the reduced charge of the two-body system. We will
take an electric field directed along the -xl direction, i. e. E = (-E, 0 ... 0), E = E &#x3E; 0.H/
is essentially self-adjoint on the space of Schwartz. We also denote by HOE its unique self-adjoint
realization. In what follows we always assume that n &#x3E; 3. We introduce now an appropriate
class of real valued potentials.

Definition 2.3

We denote by vE the class of potentials, VE(x), such that

bounded,

and for some 0  p  4y - 3

for some 2  

The interacting Hamiltonian is now defined as

The wave operators are defined as
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and the scattering operator is given by

The existence of the strong limits in (2.18) is well known (see [4] for references to the original
contributions).

The high velocity states are now defined as .

with $ E 

The reconstruction formula when the constant external electric field is present is given in the

following theorem. Recall that v = v~~v~.

Theorem 2.4 (Weder [4])
Suppose that VE E VE.
Then for all Wv as in (2.20) with v . E = 0,

Using (2.21) we reconstruct from the high velocity limit of the commutator of S’E with p?o the
Radon transform of the corresponding derivative of the potential, and integrating we reconstruct
VE (see [4]). In particular we prove the uniqueness of the inverse problem.

Corollary 2.5
The scattering map S’E(~) : is injective.
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