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HOLOMORPHIC MAPPINGS BETWEEN ALGEBRAIC

HYPERSURFACES IN COMPLEX SPACE

M.S. BAOUENDI AND LINDA PREISS ROTHSCHILD

0. Introduction

We give here an account of recent work [BR4] of the authors characterizing those
real algebraic hypersurfaces in ~~ between which all holomorphic mappings must
be algebraic. Some applications of this work were given in joint work with X. Huang
[BHR] to prove analyticity of sufhciently smooth CR mappings between such hy-
persurfaces. We outline here some of the proofs in [BR4], including a simplification
of one part, as well as some other improvements.
A real hypersurface in (CN is algebrazc if it is given by the vanishing of a real

valued polynomial with nonvanishing gradient. A germ of a holomorphic function is
algebraic if it is the root of a polynomial with holomorphic polynomial coefficients.
Similarly, a germ of a holomorphic map is algebraic if its components are. We
need to introduce the following definition. A real analytic hypersurface M in (C~
is holomorphically degenerate at a point po E M if there exists a nontrivial germ
of a holomorphic vector field, with holomorphic coefficients, tangent to M in a
neighborhood ofpo. (See also Stanton [S], where this definition was introduced.)
We have the following.

Proposition 0.1. If M zs a connected real analytic hypersurface, then M is holo-
morphically degenerate at a given po E M if and only if it is holomorphically de-
generate at every poznt in M.

If ~ is connected, we shall say that M is holomorphically nondegenerate if it is
not holomorphically degenerate at any point in ~, or, equivalently, by Proposition
0.1, it is not holomorphically degenerate at a given point po in M. We can now
state our main result.

Theorem. Let M and M’ be two algebraic hypersurfaces in CN and po If
is connected and holomorphically nondegenerate., and H is a germ at po of a

biholomorphism of tCN mapping M into Me , then H is algebraic,. Conversely, if
M is algebraic and holomorphically degenerate at po, then there exists a germ o f
a biholomorphism of CN at po, mapping M into itself and fazing po, which is not

algebraic.

The following is an easy consequence of the Theorem and of a result in [BR3].

The authors were partially supported by National Science Foundation Grant DMS 9203973.
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Corollary. Let M and M’ be as in the first part of the Theorems and H a holo-
morphic mapping defined neighborhood of M in CN with H(M) Then
H zs algebraic if either the Jacobian determinant of H does not vonish identically
or kI’ does not contains any nontrivial complexe variety.

We shall say that a property holds generically on M if it holds in an open, dense
subset of .~. It should be noted that if M is generically Levi nondegenera,te, then
M is holomorphically nondegenerate. The converse, however, holds only in e2.
For instance, the hypersurface in e3 given by (RZ,)2 + (~Z2 )~ - (,RZ3 )2 = 0 is
Levi degenerate at every point (with ~Z ~ 0), but holomorphically nondegenerate.
In 1977 Webster [WI] proved the first part of the above theorem for the Levi
nondegenerate case. Previous results were proved by Poincar6 [P] and Tanaka [T]
for pieces of spheres in We note here that Webster’s result has been extended

in some cases to nondegenerate hypersurfaces of different dimensions. See e.g.
Webster [W2], Forstneric [Fo], Huang [H] and their references.

1. Normal coordinates and the Levi type of a hypersurface

Let M C (~~ be a real analytic hypersurface, given by p(Z, Z) = 0 near po with
dp ~ 0 and ~V = n + 1. We can find (see [CM], [BJT]) holomorphic coordinates
(z, w), (called normal coordinates), z E en, wEe vanishing at po such that near
po, M is given by

where Q(z, X, T) is holomorphic in a neighborhood of 0 in c2n+1 and satisfies
Q(z, 0, r) Q(O, T. We associate to ~ the complex hypersurface in

locally defined near by

where p(Z, Z) is the defining function for M near po as above. We define the germ
of an analytic subset Vp,, C (~~ through po by

Note in fact that Vpo C M. Recall that M is called essentially finite at po if

vpo = We also recall (see [BR2]) that the set of essentially finite points in
each connected component of ~ is either empty or open and dense. In the sequel
we assume po = 0. 

N - -

Let L1, ... , Ln , n = N-1, given by L~ _ a basis of the
CR vector fields on M near 0 with the ajk real analytic. We need to introduce the
following vector-valued functions. For a multi-index a, let Ya be the real analytic
function defined near 0 in ~~ by

where PZ denotes the gradient of p with respect to Z and La = We
have the following lemma whose proof could be essentially found in [BHR].
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Lemma 1.5. Let M be a connected real analytic hypersurfaces in The f ollowing
conditions are 

(i) M is holomorphically nondegenerate.
(ii) Z), a E span generically in a neighborhood of po in M.
(iii) There exists an integer k, with 1  ~  it so that Z),  kl span

cN genericolly neighborhood of po in M.

We say that the hypersurface M is k-holomorphically nondegenerate at Z E
M  span with k minimal. In particular, it is easy to

see that lVl is 1-holomorphically nondegenerate at Z if and only if the Levi form
of M is nondegenerate at Z. Note that if M is connected and holomorphically
nondegenerate then there exists £ == £(M), 1  .~(~l)  ~V - 1, such that M is
.~-holomorphically nondegenerate at every point in an open dense subset of ~l. We
call £(M) the Levi type of M. The Levi type of M is 1 if and only if M is generically
Levi nondegenerate.

If M is given by ( 1.1 ), or equivalently by w = z, w ), and Z = (z, w), then

2. Proof of the first part of the Theorem

Assume M, ~’, po and H are as in the assumptions of the Theorem. By Lemma
1.5 and the comments following, by slightly moving po, we may assume that M
is f-holomorphically nondegenerate at po, with £ = R(M), the Levi type of M as
defined in §1. We choose normal coordinates (z, w) for M, vanishing at po, and
normal coordinates (z’, w’ ) for M’ vanishing at We write the mapping
H = ( f, g) with z’ = f (z, w) and w’ = g(z, w). We assume that A4 is given by (1.1)
and M’ is given by w’ = Q’(z’, z’, w’ ). Since H(M) we have for (z, w) E M
in a neighborhood of 0,

Since the manifold M introduced in (1.2) is given by T = w) for (z, x, 11), T) E
C2N , and a simliar equation for M’, it follows from the above that we have for

E .l~I

We now introduce the following holomorphic vector fields which are tangent to 

Note that the Lj commute with each other. Since M and lVl’ are algebraic, and
the functions Q and Q’ are obtained by the implicit function theorem, it follows
that they are algebraic also.
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Lemma 2.3. For in a neighborhood of 0 in M the f ollowing holds:

with ~~y~, 101  ~ and the W j holomorphic functions of their arguments.

Proof. By Lemma 1.5, identity (1.6), and the choice of po, we have

Since H is a biholomorphism at the origin, it follows from the choice of normal

coordinates, that the matrix is invertible. Using this, applying repeatedly
the ,C~ to (2.1) and using (2.5), we may obtain the lemma by the use of the implicit
function theorem. D

We are now ready to prove the first part of the Theorem. We first prove the
following preliminary result.

Lemma 2.6. For every integer q the mapping z -+dq H(z, 0) is holomorphic
algebraic neighborhood of 0 in en .

Proof. We begin with the identity (2.4). We note that for z E ~’~ close to 0, the
point (Z’ wi (~ 7) - (z,O,O,O) is in M, since Q(z,O,O) 0. Since the coefficients of
,C~ given by (2.2) are algebraic holomorphic, for any holomorphic function J((, r),
the functions (z, w) ~ are algebraic holomorphic. Evaluating
(2.4) at (z, o, o, 0), we obtain the conclusion of the lemma for q = 0 since g(z, 0) = 0.

To prove the lemma for q &#x3E; 0, we take x = 0 and r = w in (2.4). Differentiating
the resulting identity q times with respect to w and evaluating at w = 0 gives the
desired result for the fj . From (2.1) we have on JI~(

As before, we take X = 0 and T = w in (2.7), differentiate q times in w, and evaluate
at w = 0. The conclusion of the lemma for 9 then follows from that for the fj. D

To complete the proof of the first part of the Theorem, we use (2.4) in which we
take T = 0 and substitute Q(z, x, 0) for w to obtain

which holds as an identity in (z, x) E near 0. Note that after this substitution
the coefficients of the vector fields £j are then algebraic holomorphic in (z, X).
Since M is .~-holomorphically nondegenerate at 0, and the coordinates are taken
to be normal, we conclude that the vector function Qx(z, X, 0) does not vanish
identically. Hence we may assume there is (z°, x°) such that QXl (zO, xo, o) ~ 0.
Note that (z°, I xo) can be chosen arbitrarily close to 0 in Put WO = x 0,0).
By the implicit function theorem , we can find an algebraic holomorphic function

defined near (zO, wo) and satisfying 8(z°, wo) = such that the following
identity holds for (z, w) near (z°, wo) in cn+l:
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We now take x = (0(z, w), xg,... , (2.8). After making this substitution, we
consider that (z, w~ are independent variables near (z°, (Recall that r has been
set to 0 throughout this part of the proof.) After this substitution the functions

are seen to be algebraic holomorphic, by using Lemma 2.6. This proves that the

components w) of H are algebraic. To prove that g(z, w) is algebraic we again
use (2.7) with the same substitution as above. The already proved algebraicity of
the f ~ gives that of g. This finishes the proof of the first part of the Theorem. D

3. Proof of the second part of the
Theorem; Flow of holomorphic vector fields

We now give the proof of the second part of the Theorem. Let po E M and assume
that X is a nontrivial germ at po of a holomorphic vector field tangent to M. To
any such X, there is a holomorphic one parameter group of local biholomorphisms
in (~~ sending M into M defined by the complex flow of X i.e.

Then ~(t, Z~ is holomorphic for t E  e, and Z E V, where V is an open
neighbrhood of po in CN. For fixed t, the map Z H- ~(t, Z) is a local biholomorphism
preserving M, and if X ( po ~ = 0, then po .

The second part of the Theorem will be a consequence of (ii) of the following
proposition.

Proposition 3.2. Let M be a real algebraic hypersurface in CN) M, and
X a germ at po of a nontrivial holomorphic vector field tangent to M. Then the

following hold.

(i) The germ at 0 of the holomorphic complex curve t ~--&#x3E; ¢(t,, ~~ ), where ~(t, po )
is the flow of X starting from po given by (3.1)~ is contained in 

defined by (1.3).
(ii) There exists f, a germ at po of a holomorphic function and arbitrarily small

t such that is the flow of Y = fX, the mapping Z ~2013~ is a

nonalgebraic local biholomorphism mapping M into 

Proof. We show that the function t H h( t) = ~(~(~?Po)?~) vanishes identically
for ( E eN close to po with = 0. If X = ¿~1 then =

~~ 1 which must be a multiple of h(t). Since = 0,

by the uniqueness of the solution of differential equations, we conclude that h( t) = 0,
proving (i).

To prove (ii). by standard arguments using the local group property, we have
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We may assume X(po ) = 0. If for some arbitrarily small t the map Z H 0(t, Z)
is not algebraic, we are done. Otherwise, we assume 0, and let f (Z) - eZ1
and Y = We denote by 0(t, Z) the holomorphic flow of Y. By (3.3) for the
vector field Y instead of X , and 1, we have

If Z - 0(t, Z) is algebraic for some fixed t, then since all the coefficients ak
are algebraic, it would follow from (3.4) that the function Z - is

also algebraic. Note that Z - Zi - 91 (t, Z) is algebraic and not constant (since
al 1= 0). However, if A(Z~ is any nonconstant algebraic holomorphic function, then
the function Z - cannot be algebraic. This contradiction proves (ii). D

4. Remarks

Remark 4.1. It follows from Proposition 0.1, Proposition 3.2 (ii) and the openness
of the set of essentially finite points that a connected real analytic hypersurface M
is holomorphically nondegenerate if and only if ll~ is essentially finite at some point
PO E M.

Remark 4.2. An algebraic holomorphic function h(Z) is said to be of degree m if
it satisfies a polynomial equation P(Z, f (Z)  = 0, where P(Z, X ~ is an irreducible
polynomial in N + 1 variables of total degree m. By the total degree of an algebraic
hypersurface M we mean the total degree of its defining real polynomial. An

inspection of the proof of the Theorem shows that the degrees of the components
of H are bounded by a constant depending only on the dimension N and the total
degrees of and 
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