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Direct images of elliptic pairs and microlocalization

PIERRE SCHAPIRA JEAN-PIERRE SCHNEIDERS

1 Introduction

Let f : X - Y be a morphism of complex analytic manifolds. In [7], we introduced
the notion of a proper f -elliptic pair (M,F) on X , and proved that the direct
image of such a pair is an object of with coherent cohomology. When

f is projective and F = one recovers the classical direct image theorem of
Kashiwara [3] (as well as its generalization to the non proper case of [2]). When
Y = ~pt}, M is a compact real analytic manifold, X a complexification of M,
F = CM and is elliptic on M in the classical sense, one recovers the classical
finiteness theorem for solutions of elliptic systems.

In this paper, we shall prove that direct image commutes with microlocalization.
More precisely, denote by Ex the sheaf of (finite order) microdifferential operators
on T ~X ([5] or see [6] for a detailed exposition), and still denote by f , the direct
image for E-modules (see below). Then, we prove that

This result was established by Kashiwara [3] when F = 0152x and f is projective. It

was also announced in a non proper case in [2].
In the last section, we show that this result has interesting applications in the

study of correspondences for D-modules, as for example, in the case of the Penrose
transform considered by (l~.

2 Direct image of D and E modules

Let f : X - Y be a morphism of complex analytic manifolds.
Recall that the proper direct image of a right Dx-module A4 is defined through

the formula 
-

where denotes the differential transfer module associated to f .
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At the microlocal level, we consider the following diagram:

J i 7r

and recall that the microlocal proper direct image of a right Ex-module M is defined
through the formula

where Sx-y denotes the micro-differential transfer module associated to f .
The microlocalization of a right Dx-module is the right Ex-module 

defined on T ~X by setting

3 The topology of the sheaf Cyjx(0)
Proposition 3.1 Let X be a complex analytic manifold. Assume Y is a complex
submanifold of X and denote by CYlx(O) the sheaf of holomorphic microfunctions
of order 0 on TYX. Then, for any compact subset K C the space

has a canonical DFN topology.

Proof: Working locally, we may use a coordinate system (xl, ... , xd, yl, ... , yn-d)
where Y is defined by the equations

Denote by (~1, ... , ~d) the corresponding coordinates on TIX. It follows from [5,
Thm 1.4.5] that, for any open subset U of TyX, the formula

establishes a one to one correspondence between holomorphic microfunctions

and sequences of homogeneous holomorphic functions
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such that for any compact subset K c U

for some c &#x3E; 0.

Let us first construct the requested DFN topology in two special cases.
Case a. Assume K is a convex compact subset of TYX on which gk / 0. Denote

by p : TYX -~ PYX the canonical projection. The preceding discussion shows that
the map

is an isomorphism. Using this isomorphism, we endow with the usual

DFN topology of T(p(K) x {0}; If, moreover, 0 on K, one has

Hence, the DFN topology of f(K; does not depend on k.
Case b. Let 7r denote the canonical projection of the bundle TYX on its base Y

identified to the zero section. Assume K is a convex compact subset of TYX such
that 7r(K) C ~. It follows from (3.1) that

is an isomorphism. We use this isomorphism to transport on f(K; CYlx(O)) the
usual DFN topology of r(-x(K); Oy).

One checks easily that, if Kl c K2 are two compact subsets of TYX of the kind
treated in case (a) or (b) above, then the restriction map

is continuous.

Let K be an arbitrary compact subset of The preceding discussion shows
that we can find a finite covering (Ki)iEI of K by compact subsets such that

and r(Ki f1 are DFN spaces. Thanks to the exact se-

quence
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we may use a to transport on r(K; the DFN topology of ker,Q. To show
that this topology is independent of the chosen covering, it is sufficient to show that
it is equivalent to the topology induced by a finer covering. Since such a topology
is obviously weaker, the conclusion follows from the closed graph theorem.

Since a direct computation shows that the above defined topology is independent
of the chosen coordinate systems, the conclusion follows easily. o

Corollary 3.2 Let X be a complex analytic manifold. Assume K is a compact
subset of T ~X . Then

has a canonical DFN topology.

Proof: Apply the preceding proposition to 0

Proposition 3.3 Let X, Z be complex analytic manifolds and let Y be a complex
submanifold of X. We identify TtzxY)(Z x X) and Z x TýX. We denote by q :
Z x TYX the second projection. Then, for any Stein compact subset
K c Z, one has

Proof: Let S be a complex manifold. Denote by ps : Z x S -~ S the second
projection. By classical results of analytic geometry, we know that

Using the explicit isomorphisms constructed in the proof of the preceding proposi-
tion, the conclusion follows easily. 0

Corollary 3.4 Let Z, Y be complex analytic manifolds and denote by

the second projection. Assume K is a Stein compact subset of Z. Then

Proof.- Apply the preceding proposition to 
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4 Main result

Theorem 4.1 Assume f : X --~ Y is a morphism of complex analytic manifolds
and (.J~I, F) is an f -elliptic pair on X with f -proper support. Then the canonical
map

is an isomorphism in 

Proof: Recall that we have the commutative diagram

Hence, we have successively

Note that there is a canonical map

Hence, we get a canonical morphism

When f is a closed embedding, (4.1) is an isomorphism. Hence (4.2) is an

isomorphism for any M E and any ~’ E 

In the general case, consider the graph embedding

and the projection

Since (J1~I,~’) is an f -elliptic pair, the pair u ~Y) is p-elliptic. Since our

result holds for closed embeddings and
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we are reduced to prove the theorem for the pair and the map p.
We may thus assume that f is the second projection from X = Z x Y to Y and

that F = where G is an object of Db _,, (Z) . Moreover, working as in [7],
we may also assume that 0p Dx where N is a coherent Dxly-module.
In this case,

and

Hence, we are reduced to show that the canonical arrow

induces an isomorphism

As a matter of fact, as a and

a scalar extension of 4.3 gives the theorem.

Using the realification process developed in [7], we may assume from the be-
ginning that Z is a complexification of a real analytic manifold M and that G is
supported by M.

Since the result is local on T ~Y (hence on Y), we may assume also that jV has
a projective resolution C* by finite free ÐXly-modules (see [7, Prop. 3.1]).

As for G, we may assume it is isomorphic to a bounded complex T’ of the type

where the sets Ik are finite and is a subanalytic compact subset of (see [7,
Prop. 3.10]).

Hence,

and the components of this last complex are finite direct sums of sheaves of the type
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where K is a subanalytic compact subset of M.
Note that

The right hand side of (4.4) is acyclic for ¡1ft thanks to usual properties of Stein
compact subsets. Moreover, Corollary 3.4 shows that the right hand side of (4.5)
is also acyclic for ¡1f!. Hence, the morphism (4.3) of D b(SY(o)) is represented in

by the morphism

Let us denote by R. the complex

Its components are direct sums of sheaves of the type

which are DFN-free Oy-modules. As in [7], it is easy to check that the Oy-linear
differential of Ro is continuous with respect to the these natural topologies. Hence,
we may consider R as a topological complex of DFN-free Oy-modules. Using Corol-
lary 3.4, we have successively

and (4.6) is represented as the canonical morphism

Since R* has Oy-coherent cohomology, Lemma 4.2 below allows us to conclude the
proof. D

The following lemma is easily deduced from the results in §1-2 of (4~.
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Lemma 4.2 Let S be a complex analytic manifold. ss unie ll’ is a DFN Os-module
and a complex of DFN-free Os-modules. If .I’ is bounded from above and

has Os-coherent cohomology then the natural morphism

is a quasi-isomorphism in C-(0)).

5 Applications

Let f : X - Y be a morphism of complex manifolds.

Corollary 5.1 Let Jlif be a coherent Dx-module endowed with a good filtration.
Assume:

(i) f is proper on supp M,

is finite n X Xy I* Y, where r*Y = T ~Y 1 TYY.
Then, for j / 0, is a flat connection (i.e. its characteristic variety is
contained in the zero section).

Proof: The second hypothesis implies that is concentrated in degree zero
on r*y. The first hypothesis and Theorem 4.1 imply that

.
Hence, for j ~ 0, is contained in the zero section. Since E is flat

over 7r-"D, the conclusion follows easily. D

As we shall see now, we may apply this last result in the study of correspondences

when assuming

and denote by p2 the projection T*(Z x X ) --~ T*X. Assume:
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Corollary 5.2 Assume (5..1) and (5.2) and let N be a coherent Dz-module endowed
with a good filtration. Then 0, is a flat connection.

The proof follows immediately from Corollary 5.1, since g being smooth, is

concentrated in degree zero and endowed with a good filtration.

Example 5.3 (Penrose Correspondence (see [1])) Let T be a T-vector space
of dimension 4, F(l, 2) the flag manifold of type (l, 2), i.e. the set of couples of linear
subspaces 1 c p of T of dimension 1 and 2 respectively. Define similarly F(1) (the
complex projective space of dimension 3) and F(2) (the Minkowski compactification
of (U4) . Then, we get a correspondence:

and one checks easily that hypothesis (5.1) and (5.2) are satisfied. Moreover, p2 in-
duces an isomorphism A ~ V, where V is a smooth regular involutive submanifold
of Note that V is the characteristic variety of the wave equation. We refer the
reader to [1] for a detailed study of the Penrose correspondence in the framework of
D-modules.
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