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Abstract. The problem under investigation is the structure of the singular
spectrum of Discrete Schrodinger Operator with decaying potential. We will consider
both cases of slowly decaying and quickly potentials. In the last case the potential is
supposed to be separable one and so we actually study the Friedrichs model operators.

Keywords. Discrete Schrodinger Operator, singular spectrum, point spectrum,
Hausdorff dimension, Friedrichs model.

Introduction. In Hilbert space £%(Z) of all square summable sequences U =
{UIS2 _ oo, U2 = X, [Un]?, we will consider the bounded Discrete Schrédinger
Operator L

(LU)n =Up4a +Up_1 + qnun , n € Z . (1)

Here the potential ¢ = {gn}5% _, gives rise to the diagonal operator Q in ¢*(Z) :
(Qu)n = gnldn. In what follows we will suppose that @ is a compact operator
(¢gn — 0) and in general selfadjoint one (¢, € R, n € Z), although the case of

nonselfadjoint () is also possible. By the well-known Weyl theorem [1] on the com-
pact perturbation we have that the essential spectrum of L(&.(L)) coincide with the
spectrum of the unperturbed operator Ly : (Lold)r, = Un+1 +Un—1,n € Z. Therefore
S (L) = [-2,2]. Let us prove this elementary fact with the only purpose of intro-
ducing some notations and discuss the connection between the Discrete Schrodinger
Operator and the Friedrichs model.

A straightforward calculation shows that under Fourier transform

{Up} € £X(Z) — U(t) := \/% i U, e™ € Ly(0,2r) ,

n=—oo

the operator (1) goes into the operator Lin L,(0,27) of the following form

(Lu)(t) = (2cost) u(t) + : "K(t,x) w(z)dz (2)

with the kernel K(t,z) = ¢(t — z). Here the function ¢(t) is 2n-periodic in t and
represents the Fourier series with Fourier coefficients g, : ¢(t) := Yoo gne'™.

Of course the operators L and L are unitary equivalent. Formula (2) provides us
an example of so-called generalized Friedrichs model [2] : the perturbation of the
operator of multiplication by some function of independent variable ¢ by an integral
operator, which of course is not necessary of convolution in general. Obviously the
continuous spectrum of L coincides with the continuous spectrum of the operator
of multiplication by the function 2cost in L2(0.27) and hence & (L) = [-2,2]. In
the case that the sequence {g,} is real we have that the kernel K(¢,z) is Hermitian
(K(t,z) = K(z,t)) and the operator L selfadjoint. In what follows we frequently
will additionally suppose that the according integral operator is a positive selfadjoint
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operator in Hilbert space. In the case of Discrete Schrodinger Operator this means
that the sequence g, is positive. Moreover it will be interesting to extend the class
of operator under investigation, including the so-called separable potentials [3] :

K(X,t) =) dxpr(@)pr(t) , ox € H := L2(0,27)
—

That means that the operator of perturbation in (2) is not convolution operator in
H but finite rank operator of the general type. Of course the belonging of @ in (1)
to the class of finite rank operator leads to the fact that the sequense ¢, is finite and
don’t give us any interesting examples. So the extension of the class of perturbations
@ is of immediate interest to the singular spectrum perturbation theory. Then there
is well-studied connection between the decaying property of the potential {¢g,} and
the smoothness of Fourier series ¢(t) with Fourier coefficients {g, } [4]. In general, the
more rapidly decreasing potential we have, the more smooth is the function ¢(¢) and
therefore the kernel K(¢,z) by both variables on the Cartesian product of two unit
circles T rather than on [0,27] x [0,27]. Moreover we will speak about the decaying
property of the potential even in the case of the separable potential. In the last case
this means that the finite rank kernel K(¢,z) in (2) is “sufficiently” smooth function
by both variables on T x T. The correspondence between the decaying properties of
¢n and the smoothness of ¢(t) was investigated by numerous mathematicians [4].

Now the main questions under consideration in the paper are the following ones.
What is the singular spectrum structure of the Discrete Schrodinger Operator L on
the continuous one ? How does it depends on the decaying properties of {¢, }, or the
smoothness properties of the kernel K (¢, z) in the representation (2). There are many
papers devoted to the investigation of the singular spectrum of L from the different
viewpoints. For example B. Simon proved in [5] that if the potential g, satisfies the
estimate ¢, = 0(n°~!/2) with some & > 0 than in typical situation the spectrum of
L is pure point (with probability 1 in some rigorous sense) and therefore the point
spectrum is dense on the interval [-2,2]. But the approach of the paper [5] is not
constructive. On the contrary D. Pearson [6] in the case of Schrédinger Operator in
L;(R) gave a constructive example of Schrodinger Operator with decaying potential
(but very slowly) and pure singular continuous spectrum. See also the paper [7]
where have been investigated D.S.0. without absolutely continuous component of
their spectrum but with unbounded potentials g¢,.

Let us consider two rather different classes of decaying potentials ¢, — 0. The
n— 00

first one consists of quickly decaying potentials ¢, such that
> lanl <00 (3)
n

In that case the operator @) belongs to the trace class v; and by according to Kato-
Rosenblum theorem [8] an absolutely continuous spectrum L Ga_c,(L) coinsides with
[-2,2]. Moreover under condition (3) there are no eigenvalues inside the open interval
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(=2,2) (G,(L) N (—2,2)) = ¢ and the spectrum is free of the singular continuous
component. Since this class is not interesting for the purposes of the investigation of
the singular spectrum on the continuous one, we will substitute the diagonal operator
@ in formula (1) by the selfadjoint finite rank (or even trace class) operator of the
general type, i.e. we will speak about the “decaying potential”, keeping in mind
that the decaying” , properties means here the appropriate smoothness of Hermitian
nonnegative kernel K(¢,z) in (2).

The second class consists of so-called slowly decaying potential while the se-
quence ¢, does not belong to the class ¢!. Here the spectrum transform under
perturbation of this class is very complicated, so we will bound ourself by the class
of diagonal perturbation ¢ in (1). In what follows we will represent a survey of some
results, mainly from the paper [10], [11], concerning Discrete Schrodinger Operator
with potentials from both classes.

1. Quickly decaying potentials.

Consider the operator L in Fourier representation H := Ly(0,27)
(Lu)(t) = (2cost)u(t) + (Vu)(t)

with separable potential V. The operator V is supposed to be selfadjoint, nonnegative
and belonging to the trace class v;. So we will not restrict ourself by the class of
finite rank operator V. The condition V' > 0 is not very essential here but convenient
for simplicity of the statements. Therefore the operator V is an integral operator
with kernel K (t,z) :

(Vu)(t) :/0 7TI&"(t,;zc)u(:c)d:c .

Let us assume that the function A'(¢,z) is Hermitian (K(¢,2) = K(z,t)), periodic
both in ¢ and = with period 27. The condition V' > 0 means that

N

Z K(zi,zr)iér >0

i k=1

for arbitrary finite sequence of complex numbers {£;}[¥, and arbitrary set {z;}]V., C
(0,27) (see [12]). This operator have been studied by L.D. Faddeev [14] and

B. Pavlov, S. Petras [13] where in particular the following facts were established. If
K(t,z) belongs to the class Lip a with a > 1/2 by both variables then the singular
continuous component is absent in the spectrum of L and the point spectrum G,(L)
is finite. But for a < 1/2 the nontrivial singular continuous spectrum and infinite
point spectrum may occur [13]. In the case of rank one perturbation (K(¢,z) =
S(t)S(z),S € H) the structure of the singular spectrum was completely investigated
in [13]. The answer for the problem of studing of the singular spectrum for rank
V > 2 (Faddeev-Pavlov problem [14]) is contained in the following theorem [10].
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Theorem 1.— Let V € v;,V > 0, and suppose that the kernel of perturbation
K(t,z) is periodic in t and = with period 27 and satisfies the condition (a < 1/2)

K(z+h,z+h)+ K(z,2) - K(z 4+ h,z) — K(z,z + h) < C|h**,z2,h e R . (4)
Then for arbitrary ¢ > 0 the singular spectrum 63(2) satisfies the estimate
mes{G,(L)N (-2 +¢,2— )}’ =0(62*),6 -0, (5)
where mes A being Lebesgue measure on R of the §-neighbourhood of the set A C R.
Give some comments to the conditions (4), (5).

1. The first one means that the kernel K(¢,z) satisfies Lipschitz condition of
index a. Actually if we define by K /,(t,z) the kernel of integral operator ViZ >0
square root of the operator V, then

27
/ |I{1/2(t + h,:c) —_ I(l/z(t,flf)lzdaﬁ S C1/2|h|a 3 t, h € R
0

with the same constant C as in (4). Of course if rank V' < co then the last condition
is equivalent to belonging K(t,z) to the class Lip a by both variables.

2. The condition (5) leads to the following estimate for Hausdorff dimension [16]
of the set G4(L) on R
H—-dimGy(L)<1-2a,

depending on the smoothness index @ < 1/2. Here we see that only interval a €
[0,1/2] is interesting for the styding of the singular spectrum. If o > 1/2 then the
singular spectrum coincides with the finite set of eigenvalues of finite multiplicity

[19].

3. Moreover if we have a sequence A, of eigenvalues of L such that Ap =
const/nY,n € N, then v > 13‘;& and counterexamples show that this estimate is
sharp.

4. We will touch briefly of the singular spectrum structure near the points
—2,2, i.e. near the boundary of the continuous spectrum. This situation has been
investigated by S. Yakovlev [17]. We will mention only one result emphasizing the
difference between the structures of the singular spectrum near the boundary of the
continuous one and inside of the interval [—2.2]. Let the condition (4) be statisfied
and A, = 2 —¢/n",¢c > 0, be the sequence of eigenvalues of L accumulating at the
boundary of the interval [—2,2], then v > 4a/1 — 2« and this estimate is sharp and
can not be improved even for rank one perturbation V. So we have the doubling of
the critical degree for the sequence of eigenvalues accumulating to the boundary of
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the continuous spectrum. Of course this effect is closely connected with the following
fact : (2cost)’ =0 2cost = £2.

The proof of Theorem 1 is founded on the detailed investigation of the root set
of some operator-valued analytic function M()\) on the upper half plane A € C,.
Here M()) is defined by

1

M\ = 2 =
(W) =I+V <2cost—)\

Jviaechi-2,

M(\):H— H forevery A€ C\[-2,2].

Moreover M(\) is a so-called operator-valued R-function (or Nevanlinna class func-
tion) [10], i.e. M()) is analytic by A in C4 and Im M(\) = (M*(\) — M(X))/2t >
0, € C4. In the case of V' € 41 we have that (M(X) —I) € y1,A € C4 and the
smoothness condition (4) leads [10] to Lipshitz continuity in the nuclear norm

|IM(A™) — M(N)|]4, <const|A! =A% Im A, A >0.
Therefore it is possible to introduce the set of all roots of the function M(X) :
A:={keR:Je€H ,e#0, M(k)e =0}
Here M (k) := slim._.4o M(k + i¢). It is very easy to chek that
A D G,(L)

so our study of the singular spectrum structure can be reduced to the investigation
of the root set A for fixed operator-valued R-function M. The main instruments
for that investigation are the elaborated theory of the boundary behaviour for the
arbitrary 7;-valued R-function [10] and the sharp estimates of the norm M~!(\) in
the neighbourhood of the fixed root £k € A. For k € AN(—-2+¢,2+¢),e > 0, we
have :

M7 =0(x —k[*) , A e Cy (6)

It is necessary to remark that it is very easy to prove the estimate
M = 0(1x — &%)

but the doubling of degree & —— 2a here needs very elaborated techniques. The
bound (6) enables us to estimate the Hausdorff dimension for the set AN(—2+¢,2—¢)
and therefore for G4(L) N (-2 + ¢,2 — €) too. At first such estimate was proved in
paper [13] for V, rank V = 1, when M(]}) is actually a scalar function. But there are
many difficulties even for rank V' = 2 when M () could be reduced to 2 x 2 matrix
function.
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2. Slowly decaying potential.

Now consider the alternative situation of a slowly decaying potential ) |gn| =
oo. In what follows we will study the point spectrum of L (with diagonal operator
Q) in the continuous one. It is well-known [18] that if the potential ¢, decreasing
at infinity more quickly than Coulomb potential (¢, = 0(1/n)) then there are no
eigenvalues in the interval (—2,2). The situation at boundary points —2,2 require
a separate consideration. But in the case of Coulomb like potential, decreasing at
infinity as 0(%),n — oo, it is possible to give a constructive example of L with
arbitrary prescribed finite set of eigenvalues in (—2,2). For the continuous analog-
Schrodinger operator in La(R) we can refer to the paper [9]. As it was mentioned
earlier for slowly decreasing potential the spectrum of L could be pure point [5].
What will be with spectrum of L if ¢, — 0 slowly than Coulomb-like potential ?

Specifically let g,n tends to infinity arbitrarily slowly. Can the point spectrum &,(L)
be dense on the interval [—2,2] ? The following theorem [11] provides us the positive
answer on the previous question.

Theorem 2.1.— For arbitrary positive sequence A, — oo (arbitrary slowly)
n— oo

there exists a no negative potential {g,}, such that
gn < An/ln|, neZ (7)

and Discrete Schrodinger Operator L with the potential ¢, has dense point spectrum
on [—2,2].

2) Actually we can construct the examples of the potential satisfing the con-
dition (7), whose point spectrum included an arbitrary infinite set of eigenvalues
{A1,A2,-+} C (—2,2) with only condition having technical character : for arbitrary
n € N the set {m,arccos Az, -,arccos A, /s } is rationally independent.

Remind that a set of real numbers {ay,--,an} is rationally independent if and
only if the equality > 7_, prax = 0 with rational coeficients pr € Q ,k =1,---,n
leads to that pr =0,k =1,---,n.

The proof is connected with some ideas of the dynamical system theory, ergodic
theory and group theory. For example the milestone of the proof is the property
of ergodicity of the winding of the N-dimensional torus with N — co. So we have
in general that for the potential decreasing at infinity slowler than Coulomb like
potential its point spectrum could densely cover the interval [—2,2] : & (L) =

S, (L). Therefore we see that there exists a sharp jump in the behavior of the singular

spectrum (its point component) when the decreasing of ¢, at infinity goes through

Coulomb boundary. Actually there are no eigenvalues on (—2,2) if n g, — 0 but
n—oo

it can occur the dense point spectrum for the potential with ng, — oo arbitrarily
n—oo

slowly.
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Finally we briefly argue the intermediate situation of Coulomb like potentials :
gn = 0(%),n — co. We will mention a few elementary facts concerning the problem
of existing of an eigenvalue of L at some point A € (—2,2) depending on two factors :
decreasing property of the potential and the distance between A and the boundary
of the continuous spectrum +2.

Theorem 3.—

1) Let 0 < A, 2 and the potential {g,} satisfies the condition

1 n
L el =g Ll =

n

then (—AX) N G,y(L) = ¢.
2) On the other hand if

1 n
Zexp{—\/ﬁ ; gk} < o0

n

then for every p € (—2,—\) U (A,2) such that the set {w , arccos p/2} is ratio-
nally independent (of course this additional condition is not essential and looks like
technical one) there exists some potential {q, }, equivalent to {qn}, so that Discrete
Schrédinger Operator L' with the potential {q),} has p its eigenvalue.

Above we have mentioned the notion of the equivalence between two potentials.
By the last one we understand that

Yo lael/ Y lakl — 1 (8)
k=1 k=1

Actually for constractive examples in section 2 of the theorem 3 we have resemblance
between ¢, and ¢], even more close than it was reflected in the condition (8).

Corollary.— As the direct consequence of the theorem 3 the following criteria of
the absence of point spectrum on (—2,2) holds. If for every C > 0

D exp{-CY |gkl} = o0 (9)
n=1 k=1

then ©,(L) N (—2,2) = ¢. But if the condition (9) is failed for some C > 0 than
there exists a potential q;,, equivalent to ¢,, such that Discrete Schrédinger Operator
L' with the potential q;, has an eigenvalue in the interval (—2,2).
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