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A non solvable operator satisfying condition (y)

by

Nicolas LERNER

Abstract : The main goal of the present paper is to provide an example of a principal type
pseudo-differential operator P = p(xDx) , with symbol p in satisfying condition (y) ,
so that the equation P u - f has no L 2 solution for most f in L2 .

This is an expanded version of a talk given in the PDE seminar at Ecole Polytechnique in

february 1992 ; it contains all the essential arguments necessary to the construction of our

counterexample, but could be considered as sketchy at some places. A final version of this article
will be submitted soon for publication somewhere.
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1. Introduction

We are interested in local solvability properties for pseudo-differential operators : the

operator P is said to be locally solvable if for any smooth f satisfying a finite number of

compatibility conditions, there is a distribution u local solution of P u = f ( see definition

26.4.1 in [5] for a precise statement). Most of the research in this domain was oriented toward a
characterization of local solvability of a principal type pseudo-differential operator in terms of a

geometric property of its principal symbol, the so-called condition (’if). We briefly recall here some
of the basic facts related to this problem.

Let P be a pseudo-differential operator of principal type ( i.e. the hamiltonian field Hp of
the principal symbol p is independent of the Liouville vector field ). If the principal symbol is real-

valued, a propagation-of-singularities result is true and implies global existence (see theorem
26.1.9 in [5]). When the principal symbol is complex-valued,the situation is much more

complicated ; in 1957, Hans Lewy found a principal type differential operator without solution.
His example,

is a non-academic one as the Cauchy-Riemann operator on the boundary of a strictly pseudo-
convex domain. The simpler models Dt + i t 2k+1 Dx were given later on by Mizohata [8]. Local

solvability of differential operators is now known to be characterized by condition (P) : the

symbol p is said to satisfy condition (P) if the imaginary part Imp does not change sign along the
bicharacteristic curves of lli ep (see Nirenberg-Treves [10] with an analyticity assumption, Beals-
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Fefferman [1] in the general case for local solutions, H6rmander’s theorem 26.11.3 in [5] for a

semi-global existence result).
In the pseudo-differential case, a (quite natural) extension of condition (P) is condition (y):

the imaginary part Imp does not change sign from - to + along the oriented bicharacteristic curves

ofIRep ( see definition 26.4.6 in [5] ). This condition was proven invariant by multiplication by an

elliptic factor in [10] (see also lemma 26.4.10 in [5] ). The importance of this geometrical
condition was stressed by Nirenberg and Treves [ 10] who conjectured condition is equivalent
to local solvability and proved it in a number of cases. The necessity of condition for local

solvability was established for general pseudo-differential equations after the works of Moyer [9]
in two dimensions and Hormander in the general case (Corollary 26.4.8 in [5] ). Moreover, the

sufficiency in two dimensions is proved in [6], yielding condition (t~) as an iff condition for

solvability in that case . H6rmander’s work on subellipticity (theorem 27.1.11 of [5]) showed that
if the symbol p satisfies condition (y) and a finite type assumption ( (27.1.8) in [5]) then the

quantization of p is hypoelliptic and thus the operator with symbol p is solvable.
It was shown by Nirenberg and Treves [ 10] that a solvability problem for a principal type

operator is equivalent by localisation and canonical transformation to proving an a priori estimate
for a first order pseudo-differential operator

where Q(t,x,Dx) is a first-order pseudo-differential operator with real principal symbol q . In that
framework, condition (y) for the adjoint operator is expressed as

In this paper, we construct a symbol q(t, x,4) in the S 1 class, i.e. a smooth function of fivel’O
real variables such that, for any five-uple of integers k , al , a2 , Pi, ~2 ,

. 2 . la ..such that q satisfies ( 1.1 ) and such that no L esnmate can be proved for : + i q(t,x,Dx) :

we have
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9v0
for any Q neighborhood of 0~3 . We thus prove that the equation ~- + q(t,x,Dx)v = f has no
L2 solution for a general right -hand side f in L2 although the o p erator a t + q(t,x,Dx) satisfies

condition (y). Let’s remark here that , first of all, q is not homogeneous though in the most
classical class of pseudo-differential operators of order 1, and next, that we are only able to

disprove the L2 solvability ( which is quite satisfactory for a first order operator ) ; at the present
time, the author does not know if these two weaknesses could be easily overcome ; however, we

give in the fifth section an example of a bounded sequence of homogeneous symbols of order 1,

satisfying condition (l.l), so that no L2 estimate can hold for this family. At any rate, this

counterexample shows that no L2 estimate can be proved for a pseudo-different,ral operator
1 a .. 1 ...1 ~ + i q(t,x,Dx) in the S ¿o class under the sole assumption of condition ( 1.1 ).

The reader eager for precise statements and proofs may proceed directly to the main body
of the text, starting in section 2. However, we wish to devote some space to an informal
introduction to the main ideas involved in the construction, as well as outlining the steps of the

proof. Let’s choose first our notations : we want to discuss the solvability of an evolution operator

dt + Q(t) , where each Q(t) is a selfadjoint operator ( unbounded ) on a Hilbert space H . This isdt 
...... d ....

equivalent to discussing a priori estimates for dt - Q(t) = i [ Dt + i Q(t) ] . It is quite clear that
the above problem is far too general, and so we wish to start our discussion with the simplest non
trivial example : instead of dealing with infinite dimensional Hilbert space , let’s take IH = ~ 2 , so
that Q(t) is a 2 x 2 symmetric matrix, defining a (bounded!) operator on IR 2 , allowed to
depend on large parameters. Since it could be still complicated, let’s assume

where H is the Heaviside function(characteristic function of IR+), Ql and Q2 (2 x 2) symmetric
matrices. There is of course no difficulty solving the equation Lv + Q(t) v = f ; however, if
we want to get uniform estimates with respect to the size of the coefficients of Q(t), we have to

choose carefully our solutions, even in finite dimension . When Q, = Q2 , the good fundamental
solution is given by H( -t ) Ei exp -t Q¡ where E[ and E[ are the

spectral projections corresponding to the half axes. If we go back to (1.4) with Q2, there is a
trivial case in which the operator -4- + Q(t) is uniformly solvable : the monotone increasing
situation Ql :5 Q2 yielding the estimate 11 Dt u + i Q(t)u 11 2 ~ 11 Dtu 11 ~ where L 2
stands for IH).We eventually come to our first point: is it true that solvability for £ + Q(t)
implies the same property for .j- + a(t) Q(t) , where a is a non-negative scalar function ?
This question is naturally linked with condition (V), since whenever q(t,x,~) satisfies (1.1) so

does a(t,x,4) q(t,x,4) for a non-negative symbol a. We are thus quite naturally led to discuss the
uniform solvability of Q(t) , with
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(1.5) Q(t) = H(-t ) Ql + H( t - 0 ) Q2 , Q2 , (2 x 2) symmetric matrices , 0 &#x3E; 0.

The most remarkable fact for the pair of matrices Q2 is the 
" DRIFT " : the best way to

explain it is to look at the following picture:

- figure 1-

The condition Q2 does not prevent E+ and E - to get very close : let’s defme the drift for1 2

the pair Qi, Q2 as the absolute value of the cotangent of the angle between E+ and E ~ , so that1 2

the drift is zero when E2 c Ei and E+ c E+ ,+ 1 1 2

the drift is infinite when El n E2 is not reduced to zero ,

the drift is unbounded when the distance between the spheres of E+ and E - is zero.1 2

If we consider for instance the following pair of 2x2 symmetric matrices :

where v is a large positive parameter, ela" the rotation of angle av , with cos 2av = 2/v , the
drift goes to infinity with v , since
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(1.7) the square of the distance between the spheres ofE~ and E- is equivalent to 2/v.

We now claim the non-uniform solvability of the operator gt + Q(t) ,with Q(t) given by (1.5), Q,

and Q2 by (1.6). We set up,with 0)1 and co2 unit vectors respectively in E+ and E2 ’

Let’s compute now

where I I stands for the norm on H . On the other hand,

if 10&#x3E;2 - 0&#x3E;112 ~ ~ an easily satisfied requirement subsequent to(1.7) . Consequently, using

(1.9), ( 1.10), we get

Since 001 and CO2 can be chosen arbitrarily close and independently of the size of the "hole" 0, we

get easily a non-solvable operator by taking direct sums. Note that ( 1.11 ) can be
satisfied by a compactly supported u since the eigenvalues corresponding to 001 and m2 are

going to infinity with v, in such a way that there is no difficulty to multiply u by a cut-off function.
In the next sections, we ’ll say more about the drift of an ordered pair (Q1, Q2) of selfadjoint
operators ; it will turn out that the solvability of ) + Q(t) will depend very closely upon the
... 

dt d 
+drift of the family (Q(t)), and that the solvability of all the operators dt a(t)Q(t) , when a

is a non-negative scalar function, will require more or less that the drift for the family Q(t) is
bounded.
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What we’ve done so far is to get an "abstract" non-solvable operator obtained by change of
time-scale from a monotone increasing situation ; the basic device for the construction was the
unbounded drift of Q2. Since we are interested in pseudo-differential operators, the next

question is obviously : is an unbounded drift possible for Q2 , both of them pseudo-
differential ? We ’ll see the answer is yes, leading to our counterexample. It is quite interesting to

remark that differential operators satisfying condition (P) do not drift, as shown by the Beals-

Fefferman reduction : after a non-homogeneous microlocalisation and canonical transformation ,
their procedure leads to an evolution operator

where a is a non-negative symbol of order 0 (in a non-homogeneous class). Then, a Nirenberg-
Treves commutator argument gives way to an estimate, after multiplication by the sign of ~l .
Quite noticeable too, the fact that 2-dimensional pseudo-differential operators satisfying condition
(y) do not drift, since the sign function is monotone matrix on operators whose symbols are
defined on a lagrangean manifold ; the last remark led the author to a proof of local solvability in
two dimensions [6] and for oblique-derivative type operators [7]. Our definition of the Fourier
transform is 

-

Let’s first study the very simple case

where A is a large positive parameter. Consider ~1 a unit vector in E+ , i.e.

and C1&#x3E;2 a unit vector in E2 , i. e.
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A convenient way of estimating the drift of the pair (Qi , Q2) is to get an upper bound smaller than
1 for : this quantity is 0 if the pair is not drifting, is 1 if the drift is infinite.

We have

and thus,

where

is the Airy function.

Consequently,

since for 1/6 with a non-negative K, supported in the interval [1,2],
xp L2 , (1.16) gives

the last term is a positive constant, independent of A (the Airy function given by ( l.15) is positive
on 1R + ) . A picture will be useful for the understanding of these ine q ualities :
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- figure 2 -

this picture in the (xl,41) symplectic plane shows that even though 001 and CO2 are "living" in two
far away strips, one of which is a curved one, their dot product could be large. If we add one
dimension to get an homogeneous version, A would be I ~ 1 I + 142 1 , so that the above

localisations in the phase space appear as two different second microlocalisations with respect to
2

the hypersurfaces f 41 = 0 ) on the one hand, ~ 41 + I t x2 1 = 0 } on the other hand (see [ 2],
[3] ). These second microlocalisations are somehow incompatible so that the long range interaction
between two far away boxes corresponding to two different calculus could be large, as shown by
the equality (l.19). However, the pair given by ( 1.12) has a bounded drift, i.e. the quantity ( 1.18)
is bounded above by a number strictly smaller than 1. This implies the solvability of

where a(t,x,~) is a non-negative symbol of order zero, flat at t = 0 . Since we are not going to
use this result, we leave its proof to the reader with an hint : compute the real parts of
 Dtu + iQ(t)u , i H(t-T)E+u &#x3E; ,  Dtu+iQ(t)u , -i H(T-t)H(t)E-u &#x3E;, for non-negative T,
 Dtu + iQ(t)u , - i H(T-t)E-u &#x3E; ,  Dtu+iQ(t)u , i H(t-TH(-t)E[u &#x3E;, for non-positive T ,
use the bounded drift , meaning Eg + E -1 invertible, and the Nirenberg-Treves commutator

argument (see e.g. lemma 26.8.2 in [5]). We now start over our discussion on pseudo-differential
operators and study the following case, which turns out to be the generic one, using the
microlocalisation procedure of [ 1 ] and the Egorov principle of [4] :
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with a non-negative V = ~p’ . Following the lines of the computations starting at (1.12), the

question at hand is to estimate from above

with

This means estimating from above the X (L 2)norm of the product 11 = H(-Dx) H(Dx),
where H(Dx) is the Fourier multiplier by the Heaviside function H. If 0 is 2 H(x), then

2

where F is the Fourier transform, and a the Hardy operator,whose kernel is 

(the norm of 92 is obviously  1 from (1.24) ). It is not difficult to see that the norm of the Hardy
operator is exactly 1, as shown in section 4. As a consequence,we get an unbounded drift for the

pair ( D ; D + ), at least in a formal way; we will approximate the Dirac mass byxl xl 2

a sequence of smooth functions 1 v W(v xl) , where W is non-negative with integral 1, and in2

order to get a symbol , we’ll perform this approximation at the frequencies equivalent to 2v .

Moreover, we shall choose carefully the size and the regularization of the "hole" 0 depending on
this frequency.
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2. Statement of the result

Theorem 2.1
1 22

There exists a real valued symbol q = t,x in the class on Rt x ~2 x 1R,i.e. a smooth77~~ ~c~ ~ ~~/ = ~~~ ~ ~ l,o c~~ ~~ 2!?~ jc .c 2!? ~ , f~. ~ ~~99rA

function q satisfying (1.2), for which condition ("7.7) is fulfilled, such that there is no

o f the ori g in in so that the 

has an solution v for any f in ~(.il). There is a sequence uk of functions in C"OO(R 3), with
L2 norm 1 and support uk-~ (0) such that

3. The operator Q(t)

~ 
are positive constants),
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oc and fi bounded as well as all their derivatives.

Moreover, we set-up

where

Lemma 3.1

The function Q defined by (3.1 ) E and satisfies (1.1).

We’ll begin proving Q is a smooth function. Let’s remark that the open rings

are disjoint when v runs through the integers, and that

It is thus enough to check

¿..1,V .1,V 
-

which is a smooth function since av is COO and zero on [ 0 , 8v]. To get (1.2), we must verify

for (41, ~2) E Av , where the constants C do not depend on v. We may assume ~1 E { 0,1} and
~2 = 0 = 0.2 . Since t xj t xj 2,v 2 1,v 1,v
get for 0 ,
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Moreover, we have for ~1 = 1,

so that (3.5), (3.7)’ , (3.12) and (3.13) give (3.11). We need to prove(1.1) : assume Q(t,x,ç) &#x3E; 0

and s &#x3E;t . Since ~ belongs at most to one A, , we know Q(t,x,~)(resp. Q(s,x,~)) must be the

product of a positive quantity by av(t) (resp,av(s) In fact, the function a

given by (3.4) is non-negative, and t - qv(t, is non-decreasing(from W &#x3E;_ 0 in (3.4)). This

concludes the proof of lemma 3.1 .

4. Drift of operators
Following the heuristic discussion in section 1 about the drift ,we consider first the Hardy

operator.
Lemma 4.1

the Hilbert transform, i.e. the convolution with E+ (resp E- ) the projector

defined by (E+K)(~) = H(~)x(~) (resp(E_K)(~) = H(-~)K(~)), where H is the characteristic
function of IR+, the Hardy operator S2 is i E+X E- C, where (Cx)(~) = Z(L2)norm of
S2 is 1 and its kernel is H(~)H(r~)l~t.(~+r~). Set-up, for E &#x3E; 0 ,

, where 1’stands for the gamma function. We have

AoJ

Proof It is pure routine to check that the kernel of Q = i E_C is and

this factorisation implies readily that the of Q is smaller than I.It is thus enough to

prove (4.2): from the change of variables t = (~+T))/2, t sin0 = (§-q)/2 , we get
7C/2

(4.3) Ke )L2 J cos~o do which satisfies (4.2) for e &#x3E; 0 .
0

We consider now

We set, with 1(e given by (4.1) , J = [ 8, ,1] , ~ J the characteristic function of J ,
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Lemma 4.2

There exists a constant Co , such all positive ~~’~~ 0  ~ . 1/2 ,

0  ~~ and W as in (4.4), .

Proof. Noting first that 1 , we get, using (1.12) and
lemma 4.1,

To evaluate the first term in the right-hand side of (4.6), we remark

with

We estimate

with



XII-15

The inequality (4.12) is obtained as (4.3) setting y = (x/2)sinO . We have moreover

To prove (4.14), we first change the variables x = 2t , y = -y’ in (4.13), drop the ’ later on, and
estimate from above (t 2 _ y 2)~ ; this quantity can be estimated by ( t 2 - (t - 6&#x3E;~ )~n whenever

y ~ t - õ ~ 0 and by t~ if y E (t - ô,t) and t E ( 8/2 , S ). Eventually, one gets from (4.14)

where Cl is an absolute constant. Consequently, we have from (4.15), (4.12)

where C2 is an absolute constant.

We set, with A2 defined in (4.10~,

We have on , so we get

where C3 is an absolute constant.
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Consequently, the inequalities (4.16), (4.18) and their analogues for the integrals in (4.8) over A3

(smaller than over Al) and A4 (smaller than over A2) give from (4.8) the existence of an absolute

constant C , such that, for any e E (0,1/2], 8 E (0 , 

We need now to check the second term in the right - hand side of t4.6), namely

We obtain, from (4.1 ),

, where C5 is an absolute constant .

Finally, we obtain the result of the lemma 4.2, collecting the inequalities (4.21), (4.19),(4.2), and
the equalities (4.6),(4.7),(4.20).

We consider now , with the notations of lemmas 4.1 and 4.2, for positive g and X ,

We obtain the following
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Lemma 4.3

There exists a constant Co , such that for all positive numbers ~, S satisfying 0  E  ll2 ,
2 -1 ....

0  S  E all functions W and 0 as in (4.4), all positive numbers A, p so that A p 2! 1, all
functions ~1 and ~2 given by (4.22) and (4.23),

Proof The equality (4.24), 1, lemma 4.2 and 1 give the result.

be a choice of parameters satisfying (3.5), (3.7)’, and the conditions in lemmas 4.2 and 4.3 .We
consider the operator

where a and (3 satisfy , the function W

satisfies (4.4). We have

with

We define

, with
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with 0 defined in (4.4).We can state now

Lemma 4.4

There exist a constant Co and an integer vo such that, if v is larger than vo , and J1 , E , J , ~ ,

are given by (4 32 -34), we have

)are unit vectors in L2 .

Moreover, these functions have the following spectral properties :

Finally,

Proof. The inequality (4.35) is a refonnulation of lemma 4.3, the spectral properties are obvious
on formulas (4.32) and (4.34) and (4.37)follows from (4.33).

We are going to follow the lines of the construction ( 1.8 -11 ).We define

where Pv is a function with norm 1 in L2(1R) such that
- - . ’A - - - . I A

we set-u with oc Qi, e as above :e set-up, wIth ~~ 1 ’ ~~ 2 ’ v as above J
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Lemma 4.5

The function ujt) defined in (4.40) belongs to L2( R2 ) and

(4.41 ) spectrum(uy(t)) c L1v , 
2

where Av is defined in (3.9) and the spectrum is the support of the Fourier transform in IR~1,~2.
Moreover, with / / standing for the L2( ~1.~2 ) norm, we have, with a, f3 given in (3.6), 

""1’~2

XI -x2

The commutator [ x v~ ~ ~‘’~ J is L2 bounded and, for v &#x3E; vo,2

Proof. From (4.38), (4.39) and (4.36) we get that the Fourier transform of is supported in

the rectangle, 2~~~  2 v+l/4 Consequently, on t  0 ,
from (4.31), (4.30), we obtain that the square of the modulus of the Fourier transform of uv(t) is
smaller than exp{- J2p(s)ds v l 1, ~2 2 , where 5’ stands for the
Fourier transform.On the support of the unit vector for v &#x3E; Vo, we have 2 2v-1 - 

~ ~1 + ~2 ~ v~ (Logv) + 2 2v+1/2 - 2~~~ . . This proves (4.42) and (4.41) for t  0 .The

inequality (4.44) is a consequence of the spectral location of 0)~ with respect to Q (V) in (4.36) and
of (4.30) . Moreover, on Ov  t , the Fourier transform of uv(t) is supported in the rectangle ,

I j: 1 ~-I/~ ~-~~i: ~~+I/~ f h.. 1 d ~’ ~2v-1.~2v-l/2  ~2 i-2 ~~2v-l1411 - 2 ,2 - ’-,2 - 2 which is included in 2  2  42+ 1 ~2 2 -  2 +
2 2v+1/2 - 2 2v+l proving (4.41) on Ov  t . Similarly , collecting the information on the

support of the Fourier transform of and Xv 92(v) ,we get (4.41) on 0  t  Ov. We remark

now that the commutator [ Xv, Q 2 = [ X ( 2-v+ï Di), 2 v W(v since the symbols
1 22

X ( 2-v-’2- 1 §1 ) and 1 v W(v x 1) both belong to S( + ’ 1 d4i 1 2 ) with semi-norms2 
v-2 2v

independent of v (here we use H6rmander’s notation (18.4.6) in [5] ~, we get , using theorem
18.5.4 in [5], that the commutator[ Xv , Q ’ ] has a symbol in
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which gives (4.45). The proof of the lemma is complete.

We shall use a modification of the operator Q(t, x, Dx) defined in (3.1) : we set

where y and x are given by (3.2), (3.3), and Op(a) stands for the operator with symbol a. The
operator Q(t) has a symbol in the Si,o class since , if Q is given by (3.1 ), Q(t) - Op( Q(t,x,~) )
has a symbol in the S00 class. We set

and we calculate Lu" , with Uv given by (4.40) : we get easily

so that

Next we consider vv(t) = X (t / AvSv)uv(t) , with

We estimate 11 Lv []  11 vv -2 and get easily the same estimate as in (4.48), up to an absolute
constant. Note that the commutator estimate (4.45) is useful to handle the fact that the Fourier
transform of fl(v) is not supported in Av : we thus get to deal with
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which is handled using (4.45). Lemma 4.5 and the above discussion yield a proof of theorem
2.1. The main point here is that, first the spectral information (4.41) shows that the operator L

given in (4.46) "sees" only vv through its term with index v, and second, that the spectral
information (4.36) yielding (4.42) and (4.44) allows a cut-off function to enter the game. It

should be noted here that the drift concerns the large values of the spectrum, which is important to

violate local solvability; the drift for the kernels would only allow to violate global solvability.

5. Remarks on the homogeneous case
We shall consider the following family of homogeneous pseudo-differential operators,

depending on the parameter v , using the notations introduced in the previous sections :

where yo is homogeneous with degree 0, non-negative , supported in the cone Ç2 &#x3E; I , smooth
2 2on IR B0, co a smooth non-negative function in JR 2 , ~ vanishing in a neighborhood of zero,

identically equal to one for l. The symbols 6 are homogeneous ( for I 1) , satisfy
condition ( 1.1 ), and their semi-norms are bounded independently of v. It is possible to choose pv
in (4.38) such that support pv c [ ( 1- ev )2 , 2 (1+ ev )] , with ev going to zero ; the

uncertainty on t2 will be then A t2 - 2~ ev and we can choose ev = 2-v/ 2 and take a Ax2 - 2’~ .
Eventually, we see that no L2 estimate can be proved for the family of operators with symbols
(t + i 4v ’ ) ~2 in spite of the fact they uniformly satisfy condition (1. 1). This suggests
that the construction of the previous sections can be lifted to the homogeneous case without loss
on the dimension.
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