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In this lecture we discuss three spectral problems in which non-

Weylian asymptotics of eigenvalue counting function arise. Namely we
consider detaily operators in the domains with thick cuspst) and we
consider briefly operators with potentials degenerating at infinity and
operators degenerating at symplectic submanifolds. There following
common features of these problems: if problem isn’t too bad then stan-
dard Weylian asymptotics is valid, if the badness is temperate then the
same asymptotics remains true but with worth remainder estimate and
if the problem is very bad then Weylian formula is completely wrong (it
even predicts wrongly that spectrum is no more discrete); in the second
case correct asymptotics include non-Weylian term and in the third case
this non-Weylian term is principal; this term in fact is obtained by the
Weylian way for certain operator with operator-valued symbol in some
auxiliary Hilbert space.

1. Let us consider operator A in the domain X C $d with the cusp.
That means that

where K is a large enough exponent and

t)These results are obtained in cooperation with my post-graduate E.Filippov.
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d = d’ + d" 0  d’  d. If dl = 1 then instead of x’ E one can

consider x’ E 9~+.

Surely one can generalize our results to the case when there is more
than one cusp and their exponents d"... and /~... are different.

For the sake of simplicity we consider second-order operator

where = E CK are real-valued functions and we assume
that A is uniforrrily elliptic operator i.e.

and

(6) At 9X Dirichlet boundary condition is given’) and A with this con-
dition is self-adjoint in 

Let be an eigenvalue counting function of A.
First af all there are results due to Ivrii-Fedorova [1]:
Theorem 1. Let conditions (1) - (6) be fulfilled. Then

where

is a Weylian expression; moreover if

(H) the set of aIi the points of T *X periodic with respect to billiard fiow
has measure 0

’)One can consider more general boundary conditions but it is necessary to be very
careful with them.
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then

where xi is the standard Weyan coefficient
and volume is calculated in metrics induced at ~X by a .Riemann metrics
gjk, Wk is a volume unit ball in R~;

(ii) If Il = th en

where is given by (7) ivith additional restriction p(Xl) &#x3E; r-l/2 in
the definition of the domain of integration.
Remark 2. Condition "y is equivalent to ~’~ e 

and is equivalent to "VOld-10X is finite". Condition ",y &#x3E; is equiv-
alent to e L(R)" and is equivalent to "’VOIDX is finite" .

So our goal is to treat the Mi. Let us notify that

where

T) is the Schwartz kernel of the spectral projector of A, ~o E C~
and = 1 - ~o is supported 1 &#x3E; c. Then there is the standard

Weylian asymptotics for Noo(T) with the remainder estimate G( T(d-I)/2)
and even o( T(d-I)/2) provided (H). So we need to obtain asymptotics of

Let us change variables in the cusp 1 &#x3E; c}: x’, 
in the new variables Xi intersected ( &#x3E; c} coincides

with cylinder Rd’ x Y and one can treat A as a differential operator
with respect with operator-valued symbol acting in the auxiliary
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Hilbert space H = L2(y). Moreover let us consider a ball in

Rd’ with 7(x) = x’ 2. Making dilatation = x’ - and

dividing A by T for &#x3E; T-1/2/Go and by p-2 otherwise we come in
frames of [3] with h = l~~y(~’ ~rl~~, ~ = respectively and with
~ = where 6YD is a positive Dirichlet Laplacian in Y and
with Ht = (h2m(!:lm)YN + 1 -t~2m~2 ~r ~ D Bt~ with t’ = nxin(1, t+)
and with a large enough m = mI and arbitrary 1. Moreover in the second
case we are in frames of elliptical situation and in the first case we are
in frames of microhyperbolic situation provided

const.

Applying results §4.3.3 of [4] to y-admissible partition of unity we
obtain

Theorem 3. Let conditions (1) - (6) and (10) - (11) be fulfilled..
Then

where

where

where n(x’, ~’, T~ is an eigenvalue counting function for an operator
a(z’, 1’) in H with the Dirichlet boundary condition and a(x’,(,’) we
obtain from operator A (in the new co-ordinates~ replacing D’ by e.
Remark 4. Moreover in frames of theorem 3 with d" &#x3E; ( d’ --1 ~ ~

under condition (H) we can give an asymptotic formula for ~ with re-
mainder estimate o(T~d-1 )l~ . On the other hand in frames of theorem 3
with d"  (d’-l~~C under some condition of the global nature we can give
an asymptotic formula for iV with remainder estimate 
We don’t discuss them here for a sake of simplicity.
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We are not satisfied by asymptotic formula (12)-(14) because it gives
a very complicated answer: we need to calculate an eigenvalue count-
ing function for an auxiliary operator a depending on parameter (x’, ~1).
Now our goal is to give an asymptotic formula in which only an eigen-
value for single auxiliary operator is included.

In order to do it we treat the different parts o cusp by différent way.
Let us consider first cusp ~X, c  lx’ 1  T1~2~ ~ } with an arbitrary
6 &#x3E; 0. Let be in these frames and let us consider the ball 

with p = and a function ~’(x’~ _ tjJ°((x’ - supported
in this ball while tjJ° is a smooth function supported in the ball B(o,1~.
Then from §4.2 of [4] follows estimate

where U(x, y, t) is a Schwartz kernel of operator exp X is a

smooth function supported in ~-1,1~ and equal to 1 at ~-1/2,1~2~,
= X(t/T), Ti = Elhl, hi - p-Ir-I/2, e &#x3E; 0 is a small enough

constant and k’ n are Weylian coefficients such that

and ~V is arbitrary, dS is a Riemannian density at 8X. Hence in the

same frames for ’ljJ’ replaced by 0’«x’ - 1’) lei y)) with a small
constant E1 &#x3E; 0 and y = y(1’ ) left-hand expression in (15) doesn’t exceed

...11 -- 1. --, »- -

On the other hand microhyperbolicity property for symbol a and the-
orem 2.1.14 [3] yields that if £ is supported in [-1, -1/3] U (113,1~ then

with an arbitrary s and T E Tl, T2~, T2 = f/h2, h2 = ’)i-Ir-I/2; ; there-
fore the left-hand expression of (15) with Tl and 0’ replaced by T2 and

also doesn’t exceed C-d’ -d"-T(d-v)/-1. Applying Tauberian argu-’ P
ments we obtain that
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where Kn =  r, for n = d we should take logarithmic term etc.d-n n)

We can sum the this estimate on partition of unity and then we obtain
finally that

where tPl(X’/() - with ~’ e 
-r = (, N &#x3E; 2 and R is the remainder estimate in theorem 3. The

problem is that we know the algorithm how to calculate and k£ with
n &#x3E; 2 but we don’t know the simple formulae for them. There are two
ways: we can fix 6 such that contribution of all these terms was less
than remainder estimate but it will give us extra restrictions when we
consider the remaining part of cusp. The second way is to compare
this formula with the formula for operator A° which in the "cylindrical"
co-ordinate system equals

in the domain 1 &#x3E; c} x Y with the Dirichlet boundary conditions;
the exact answer for this operator can be obtained by separation of
variables. Using this exact answer and continuous dependence of the
Weyl coefficients we obtain
Proposition 5. Let conditions (1) - (6) and (10~ - (11) be fulfilled.

Moreover let us assume that

with

Then the absolute value of the difference between

and the same quantity calculated for A doesn’t exceed R.
On the other hand in ] &#x3E; ( = T~~2~’-~ } the difference between

operators A and A is small and using this fact and the microhyperbolicity
property again one can prove
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Proposition 6. Let conditions (1)-(6), (10), (11) and (17) be fulfilled
with v &#x3E; v*. Then

These two propositions, properties of coefficients ~... and k... and

asymptotics of yield
Theorem 7. Let conditions (1) - (6), (10), (11) and (17) be fulfilled

with v &#x3E; v*. Then

where 00 is arbitrary compactly supported function equal 1 in the

neighbourhood of 0, ( E [C, rD, 8 &#x3E; 0 is a small enough exponent,
= det (g jk ), bar means that the corresponding object are calculated

for operator A and R is given by (13).
Remark 9. (i) It is easy to calculate the last term in the right-hand

expression in (20) in terms of an eigenvalue counting function of operator

in Y with the Dirichlet boundary condition.
(ii) In frames of theorem 7 with d" &#x3E; and condition (H)

one can replace remainder estimate p T~d-1)/2 by o ,r(d~1)/2 provided
Cl - oo as T - oo. On the other hand in frames of theorem 7 with
d"  (d’ - 1)p and certain condition of the global nature (which is

equivalent to 1 and all the eigenvalues of A are simple") one can
replace remainder estimate 0 T~d~-1)~~‘+1 )l~~ by o T~d~-1)~~+1)i2~,

(iii) If p(x’~ coincides with lx’1-1’ only asymptotically (but quickly
enough) one can obtain equality ~~~’ ~ _ by an appropriate change
of variables.
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2. Let us consider now Schrôdinger operator

in Rd with a potential V = Vo + v1 where

(23) 8( x) = C Rd is a conical CK-manifold,

the last inequality means that the diameter of the canyon  T~
tends to 0 at infinity for every T. Then the standard Weylian theory [5]
yields
Theorem 10. Let conditions (21) - (24) be fulfilled. Let us assume

that rrz &#x3E; q -f- n + qn and qdn + pq -f- dn  pm where p = codim ~. Then

with

where in the case mp  nd we restrict a domain integration in the
standard definition by inequality ~ i -  

a large enough constant Co.
Remark 11. In frames of this theorem with &#x3E; n~d-1 ~ under

stabilizing condition for Yo and a standard condition to Hamiltonian flow
remainder estimate holds [5].
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Let us assume now that

Let us change variables x such tx" = 0}; then in the new
variables the coefficients of the senior part of A are not necessarily con-
stant. Let us replace D’ by l’in A; then we obtain operator-valued
symbol a( x’, 1’) in the auxiliary Hilbert space H = let n( ~’, 1’)
be its eigenvalue counting function.
Then the methods similar to used in the first part yield
Theorem 12. Let conditions (21) - (24) and (28) be fuifilled and let

us assume that

The

where

( E arbitrary, 8 &#x3E; 0 is small. E cf!
equals to 1 m the neighbourhood of 0 and asymptotics formula (27) re-
xna.ins true for N(T).

All the comments to theorem 3 remain true and under certain ad-
ditional conditions we can obtain the similar asymptotical formulae in
which an auxiliary operator a depends on the parameter of the smaller
dimension (normally we obtain dim - - 1-dimensional parameter in-
stead of 2dimE-dimensional).

3. Eigenvalue asymptotics with accurate remainder estimates for
maximally hypoelliptic operators with symplectic characteristics are pre-
sented in [6].
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