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Abstract : We describe the asymptotic structure of the spectrum and the resonances of
the equation

_"/)zx + V(ex)z)"/’ = E’lf) ’

where V (€, z) is a periodic function of the second variable and ¢ is a small parameter.

1. Introduction

The standard constructions of the semiclassical approach can be applied to the equa-
tions of the following form

L(ez,—i0; ) =0, z € R?. (1.1)

Generally, the symbol L(, p) here is operator-valued. Equations (1.1) admit formal asymp-
totic solutions of the form

P = expg O(ex) Ze"z/)n(sx) . (1.2)

n>0

It is known also that this class of formal solutions can be enlarged essentially since equations
(1.1) reproduce their structure after the Fourier transformation with respect to some subset
of the variables z;,-- -, z4.

Solutions (1.2) can be described in terms of the corresponding classical Hamiltonian
system with the Hamiltonian £(€, p) and with the standard symplectic structure. The liter-
ature devoted to the general ideas of the semiclassical approach is extensive and sufficiently
well known.

In recent years there have appeared a series of works devoted to the asymptotic in-
vestigations of the equations of the following more general form

L(ez, z ,—i0z)p =0. (1.3)
The symbol L£(€, z, p) was considered as a periodic function of the second variable z [1-3].
Such equations have various applications and arise quite naturally in solid state physics.

From a mathematical point of view equations (1.3) can be treated as natural generalizations
of usual semiclassical equations (1.1).

The main idea of the generalization is quite simple. Consider a function ¥(¢, z) which
is a solution of the equation

L, ,—i0; —iede)p =0, (1.4)
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then the function to(z,e) = (ex,z) obeys equation (1.3). But equation (1.4) is an
equation of form (1.1) with the operator-valued symbol

£(£7 T, _iaz - P) .

This idea has been indicated already in [4], in [1-3] it was shown that the idea leads to
essentially new asymptotic consequences.

Spectral applications of the semiclassical approach have absolutely different charac-
ters in cases d = 1 and d > 1. We shall consider here spectral properties of ordinary
Schroedinger differential equations

—gz + V(ez,z)yp = Ey (1.5)

with the potentials V(§,z) which are real smooth functions, periodic with respect to the
second variable . A part of the results has been already described in [2,5-9].

This work has been written during my stay in the University Paris VII.

I want to express my gratitude to A. Boutet de Monvel who was my host and was very
helpful in course of this visit.

2. Classification of spectral problems

One is interested in the spectral properties of equation (1.5) in Ly(R)-space. Assume
that the period of the function z — V' (€, z) is constant and is equal to a, a > 0.

It is known that the simpler equation
—zz + V(ez)yp = Ey (2.1)

has definite spectral properties only if the potential V(£) has more or less definite asymp-
totic behavior at infinity. One can distinguish three definite types of this asymptotic
behavior :

i) V() =400, { > 00,
i) V(€) — const , £ — o0,
111) V()= -0, £ 00.

In all the cases one has to assume also that there is some regularity in the asymptotic
behavior of V at infinity. The simplest way to express this regularity is to introduce
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some estimates of the derivatives of V' at infinity. We are not going to use such estimates
explicity, so we shall not write down them here. In all the cases they lead to a semiclassical
asymptotic description of the solution of (2.1), when ¢ — oo, uniformly with respect to

€ *. These estimates are well known in cases i) - ii). As for iii) it is worth to note that, of
course, one has to demand

V() 2 -Wl¢]* ya<2.

Some details in case iii) can be found in [10,11].

The main condition demands that the potential V (£, ) admits the asymptotic be-
haviour

V(£ ) ~ p£(z) + Vi(§) , £ = £o0, (22)

with the remainders which are quickly decreasing functions at infinity.

In accordance with three cases i)-iii) one can introduce the following six situations :

A V_(f) = +0 as £ — —o0,

Vi(€) = too as € — +oo ;

B : V_(€) > 400 as & — —o0,

Vi(f) =0 as {— +oo ;

C : Vo) —-C- as £— —o0,
Vi) > C+ as £ — +o0,C_>Cy ;

D : V() = +0 as £ — —o0,

Vi(f) > —0 as £ — too ;

E : V_() -0 as £ — —o0,

Vi(€) - o0 as € +oo ;

F : V_(f) & —00 as £ — —o0,

Vi(€) > —c0 as £ — +oo.

Asymptotically the spectral properties of equation (1.5) depend on the spectral properties
of the set of the equations

-"/)zz + V(&, 3)'¢' = E¢ (23)

with the purely periodic potentials z — V(£,z). For each ¢ we can introduce the corre-
sponding Bloch solutions % and the dispersion function £ :

¥(z, &, f) = eixzso(m, K, 6)7 (2'4)
E =&(x,¢) -

The quasi-momentum & here is a free parameter which belongs to the complex plane C
or, more exactly, to some Riemann surface, see details in [2 , 7]. The dispersion function

* In fact, this description is given by the same formulas as in the case ¢ — 0.
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E(k, &) obeys the symmetry relations : &(&,§) = &(k,&),E(—F,€) = &(k,€). It maps
monotonically the intervals [({ —1)% 40, ££ - 0] ,£=1,2,---, on the spectral intervals
Ay(€) = [Em=-1(8) , Em(£)] , m = 2¢— 1, of equation (2.3).

Note that the functions E,,(€) can be described explicitely if
V(& z) = p(z) + Vo () -

In this case
8(6, K’) = gO(K) + VO({) )

where & is the dispersion function of the equation
—¢zz +p($)¢' = E"/’ . (25)

So
Em(g) = EOm + %(6) )

where [Eg 2¢—2, Fo,2¢—1] are the spectral intervals of (2.5).

In all cases A-F the continuous spectrum of (1.5) depends only on limit potentials
(2.2), so it depends on the limit behavior of the spectral intervals as ¢ — —oo ,+00. But
the discrete spectrum (and also the resonances on the continuous spectrum) depends on
total behavior of the functions £ — Ep,(¢) , m = 0,1,--- Assume for simplicity of the
narrative that all these functions are strictly monotonically decreasing functions. The
spectral role of isolated critical points of these functions will be demonstrated by cases
A F. Assume, again for simplicity, that in these two cases each function ¢ — E,,(§) is a
strictly monotonous function excepting a single non-degenerated critical point £2,.

3. Isoenergy curve

The initial object of all asymptotic constructions is the so called isoenergy curve :
E(k,€)=F, (3.1)

E is a fixed value of the parameter E from (1.5). The isoenergy curve is considered as a
curve in the “plane” (k,§), £ and ¢ belonging to the mentioned Riemann surface and R
respectively. Friequently instead of the Riemann surface one will consider the “complex
cylinder” on which the points x and & + (27 /a)€ , £ € Z, are treated as identical ones.

To understand a structure of the isoenergy curve introduce in the plane (€ , £) admitted
and forbidden strips corresponding to the spectral intervals Ay(¢) and the gaps Ag(¢) =
(Bm+1(8), Em+2(€)) ,m = 2€ — 1, between them. The boundaries of these strips are given
by the formulas

€ =Em(§) - (32)
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Now consider a fixed level £ = E. It intersects curves (3.2) in some set of points z;,: € I.
Their projections &; in the {-axis are called the turning points.

Each finite interval [€;, £i+1] between two turning points is covered by a closed finite
branch « of the isoenergy curve (on the cylinder) which consists of two regular branches
T+:7- ¢

Y+ 1 6=71(8), - k= —1(§). (3.3)

If the segment [z, z;11] belongs to an admitted strip, the branch « is real. If [2;, zi4+1]
belongs to an forbidden strip, v is complex and Re « = (w/a)l , £ € Z, on . The branch
of the isoenergy curve covering the infinite interval (—oo , &;] or [¢;, 00) can be disjoint at
infinity.

Each regular branch, 74 or v_, generates the formal asymptotic solution of equation
(1.5)
f =expi¢. Z e" fn(ez,z) , (3.4)

n>0

where = — f,({,z) are periodic functions and

3
é =/ %nd§+w , k==x71(8), (3.5)

o= [ dple,,) @70 do, (3.6)
0

d is the differential with respect to k and £, ¢ is supposed to be normalized. The formal
solution f can be used to describe the asymptotic behavior of an exact solution of equation
(1.5) as € = 0 (or as £ — +00).

Above small vicinities of the turning points the solutions f have to be changed by
more complicated ones, the details can be found in [1,2].

Since the set of the turning points can be infinite, sometimes the distance between
two closest turning points in not bounded below. This situation can be treated as a case
of the double turning point (2,12].

At last, note that the formal solutions f are quickly oscillating functions of £ = ez,
if € belongs to the interval [;, £i+1] covered by a real branch of the isoenergy curve. In
opposite case, when [§;, £i+1] is covered by a complex branch, these solutions are quickly
decreasing or quickly increasing functions of £.
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4. Quantization conditions

Consider an interval [¢;, £i+1] covered by a real closed branch v of the isoenergy curve.
On this interval one can consider two quickly oscillating formal solutions f; and f_.
Using the formal solutions in vicinities of the turning points ;, {i+1, one can continue the
solutions f4, f— on the intervals [§;_1, ] and [€i+1, £i+2] covered by the complex branches.
It is possible to find conditions which lead to a linear combination b f4 +b_ f_ decreasing
when ¢ goes away from [€;, i4+1]. These so called quantization conditions have the following

form

1 n )
/End£+w+26 wp=2mn+m [2ind v, (4.1)
v n>1

where (w,,) is some sequence of 1-form, ind v is the Maslov index of v, and n € Z.

The quantization conditions can be considered as conditions on the spectral parameter
E, which determine asymptotically some discrete set of values of the parameter. This set
is a set of eigenvalues or a set of resonances of equation (1.5).

One can treat the resonances by two different ways. If the potential V(¢,z) is an
analytical function with respect to both variables in some strips |Im z| < a , |[Imé| < 8,
one can consider the resonances as poles of the analytical continuation of the kernel of the

resolvent .

d’
[——a—;‘i +V(ez,z) - FE

If the analytical continuation of the resolvent kernel is impossible, the resonance can be
consider as a point of very charp increasing of the so called function of the spectral shift
defined on the E-axis. In the eigenvalue this function has a jump.

If a real branch of the isoenergy curve is infinite, the corresponding quantization
conditions lose their sense. The corresponding solution b4 f4 + b_ f_decreasing after its
continuation through a vicinity of the only turning point describes the scattering process
and corresponds to the given value E of the continuous spectrum.

The following important principle of superposition is true. Consider a fixed spectral
interval Ay(¢) and the corresponding admitted strip. It generates some set of the turning
points and some set of the real branches of the isoenergy curve. They give their contribution
to the description of the spectrum. The total asymptotical picture of the spectrum can be
obtained as the simple unification of the contributions of the single strips.

What is the influence of the interaction between different real branches of the isoenergy
curve through complex branches ? The value of the tunnelling through a complex branch
7 is given by the factor

exp:;fndf . (4.2)
2|
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If this factor has the order of 1 (in fact, it is the situation of a double turning point),
it is impossible to split two corresponding real branches separated by v ; the interaction
between them is too strong. One can meet this situation if the set of turning points is
infinite or if the parameter E is sufficiently large and the potentials V} or V_ tend to
infinity sufficiently quickly. We are not going to consider these cases. Moreover, it will
be assumed (for simplicity of the narrative) that the potential V(§,z) generates for each
€ only a finite number N of the finite spectral intervals such that the (N + 1)-th spectral
interval is infinite.

So in any cases all factors (4.2) will be very small, in fact, exponentially small. The
interaction between different real branches will displace all spectral points generated by
single strips on exponentially small distances. The interaction between two bounded real
branches (through some chain of the tunnelling) leads to the displacement of the corre-
sponding spectral points only along the real E-axis. But the interaction between a bounded
and an unbounded real branches leads to the exponentially small displacement of the spec-
tral points into the complex E-plane and gives a possibility to obtain the imaginary parts
of the resonances, see [7].

5. Asymptotic behavior of the spectrum in case A

In case A : Vi(§) — +o0 as £+ — oo. The spectrum of equation (1.5) is simple and
purely discrete.

Consider a fixed spectral interval Ay(€) = [Em—1(£), Em(£)],m = 2¢ — 1, of equation
(2.3) and the corresponding admitted strip in the plane (¢, £).

If E < min E,,_;, this strip does not generate any turning points and the correspond-
ing isoenergy curve does not contain any real branches. Therefore it is clear that the
contribution of the strip to the spectrum of equation (1.5) is empty asymptotically.

If E € (min E,,—1,min Ey,), the strip generates two turning points £, _; < ¢} _, and
there exists a closed finite real branch of the isoenergy curve which covers the interval
(€1, &F _1]. Outside of this interval the isoenergy curve is complex. The quantization
conditions lead to the asymptotic description of the discrete spectrum which lies in the
considered interval of E-axis.

At last, if E > min E,,, the strip generates four turning points {,,_, < { < &F <
¢+ _,. They bound two closed finite real branches of the isoenergy curve which cover the
intervals [£._,,&m), [€F, €L _,] respectively. Each of them gives its contribution to the
discrete spectrum independently.

The picture is quite different for the last spectral interval Ay y;. If E < min E,y, the
corresponding spectrum is absent asymptotically. If E > min E,y, there exist two turning
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points &5y, £5 and an only closed finite real branch of the isoenergy curve covering the
interval between them. So the last strip always generates a single branch of the discrete
spectrum.

The cases E = min E,,_; and E = min E,,, are transitional, they generate the double
turning point : {m—1 =§,,_; = ¢+ _, and two simple turning points €n_1, & and the
double turning point ¢,, = £, = £ respectively. In some vicinities of the double turning
points the standard quantization condition should be replaced by a little more complicated
condition.

All spectrum of equation (1.5) can be described essentially as the simple unification of
the contributions of the separate strips. However, one should remember that this descrip-
tion of the spectrum is not uniform with respect to the spectral parameter E as E — +o0.

6. Asymptotic behavior of the spectrum in case B

In case B : V_(§{) — +o00 as £ = —oo and V4(€) — 0 as £ — +o0o. The spectrum
of equation (1.5) is again simple. The continuous spectrum coincides with the continuous
spectrum of the equation

_d’zz +p+'¢’ =Ey, (61)

i.e. it consists of the set of the spectral intervals A} = [E}_,, E}] of equation (6.1).
The spectral gaps of equation (6.1) can contain points of the discrete spectrum of (1.5).
Consider a fixed spectral interval Ay(€) = [Em—1(€), Em(§)] of equation (2.3) and the
corresponding admitted strip.

If E < E}_,, this strip does not generate any turning points and the isoenergy curve

does not contain any real branch. So the contribution of the strip to the spectrum is empty.

If E € (E}_,,E}), the strip generates one turning point {m,—;. It appears at infinity
when E = E}_, and moves monotonically along the ¢-axis while E increases. The interval
[€m—1,00) is covered by a disclosed infinite real branch of the isoenergy curve, so the interval
[E}_,, Et] belongs to the continuous spectrum of equation (1.5).

The corresponding formal asymptotic solutions of (1.5) can be used to obtain the
asymptotic representation as ¢ — 0, and also as £ — 400, of the exact solution 3 of
equation (1.5), which describes the scattering process. This unique solution ¢ can be
characterized by the condition » — 0 as £ — —oo. Its support coincides asymptotically
with the half-axis [€;,—1,00). It defines naturally the reflection coefficient r(k), |r(x)| =1,
and the semiclassical formulas for 3 lead to the asymptotic description of r(x) as ¢ — 0.

If E} < E, there are two turning points {m—1 < &€m. The character of the dependence
of £, on E is the same as the character of the dependence of £,,_;. The interval [€mm—1,&m]

is covered by a closed finite real branch of the isoenergy curve. The quantization conditions
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give asymptotic formulas for the points of discrete spectrum (or for the resonances). The
last strip generates only the continuous spectrum on the half-axis [E;' N> OO)

It is worth to say some words about the transitional values E;}, of the spectral parame-
ter. If E — E} +0, then the turning point £, tends to +00. However, for sufficiently large
€m the point €, can lose the property of a turning point. Indeed, it loses this property if
V4+(€) vanishes quicker than |£|~%, @ > 2. In the opposite case, when V; vanishes slower
than |€|~%, a < 2, the turning point &, can be treated as a standard turning point for the
arbitrary large values of £,,. In the first, non standard case, the interval of E around E;},
which is impossible to treat semiclassically, is quite small.

All spectrum is given by the unification of the contributions of the separate strips.
One has to introduce an essential correction if E belongs to an interval of the continuous
spectrum. The tunnelling interaction between a bounded real branch and the unbounded
real branch of the isoenergy curve leads to the displacement of the discrete points, generated
by the bounded branch and the quantization conditions, into the complex E-plane, such
that they become resonances. So the quantization conditions characterize only their real
parts. To find their exponentially small imaginary parts one has to consider the chain of
tunnelling between the corresponding finite branch of the isoenergy curve and the infinite
branch related with the scattering.

7 Asymptotic behavior of the spectrum in case C

In this case V_({) — C_ as § - —oo and V4(§) —» C4 as £ = +o0, C4 < C_.
Introduce the spectral intervals A; and A?’ of the equations

—'d’zz + (P:F(w) + C:F)l/i = E’lﬁ .

The continuous spectrum of equation (1.5) coincides with the unification UA; U A, of all
these intervals. In particular its multiplicity is equal to 2 on all non-empty intersections
AN A:’,. Besides, equation (1.5) can have discrete spectrum in the gaps of the continuous
spectrum.

Fix a spectral interval A(£), it tends to A, as € = —oo and to A} as £ — +00. One
can meet two different possibilities : A, N A;" =¢and A, N A:’ # ¢.

Consider the first possibility, moreover let E,,_;, > E;.
If E < E}_,, the corresponding strip does not generate any turning points and the
isoenergy curve does not contain any real branches. Therefore the spectrum of equation

(1.5), related with the ¢-th strip, is empty asymptotically.

IfFE € A}", there exists one turning point {,;,—, and the interval [€,,_1,00) is covered
by an unbounded real branch of the isoenergy curve. This situation is completely similar
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to the analogous situation in case B, so one can conclude that the interval A} generates
a part of the continuous spectrum of equation (1.5).

If E € (E},E,_,), there exist two turning points {m—1 < &m and the interval
[€m—1,&m] is covered by a bounded real branch of the isoenergy curve. This situation
is again similar to the analogous situation in case B, so the interval [E}, E-_,] is covered
by a discrete set of the spectral points and the quantization conditions give their asymp-
totic description. These points are eigenvalues or the real parts of resonances depending
on the interaction between the different strips.

If E € Ay, there exists one turning point {,, and the interval (—o0, ] is covered by
an unbounded real branch of the isoenergy curve. As in the case E € A} it leads to the
simple continuous spectrum on the interval A, and to the asymptotic description of the
corresponding scattering picture.

If E > E_, turning points are absent, the isoenergy curve does not contain any real
branch, therefore this set of the E-axis is free from the spectrum (and resonances).

Consider now the second possibility, A; N A} # ¢, moreover let E,,_, < E}.

Now one can distinguish the following situations: E < E}_,,E € (E}_,,E;_,),E €

(E,_,E}),E € (E},E;),E > E,,. The 1-st, 2-nd, 4-th and 5-th situations are similar
to the corresponding situations of the preceding first possibility excluding the character of
the transitional points £ = E,,_, and E = E}. But the 3-rd situation is different.

IfE € (E,_,,E}), turning points are absent and all {-axis is covered by two disjoint
infinite real regular branches of the isoenergy curve.

The formal solutions generated by these two branches gives the possibility to introduce
the exact solutions of equation (1.5) with the prescribed asymptotic behavior as £ — +o00
or £ — —oo. Therefore one can consider two pairs of the solutions with the standard
asymptotic behavior either as £+ — +00 or £ — —o00. These two pairs can be connected
by means of the natural 2 x 2 unitary scattering matrix. The semiclassical constructions
generate asymptotic description of all these solutions and the scattering matrix. Under
the natural choice of the solutions the scattering matrix turns out to be diagonal up to
small terms of the order 0(e*).

The last spectral interval An4; generates only continuous spectrum : the simple
continuous spectrum on the interval [Efy, E;5] and the double continuous spectrum on
the half-axis [E;}, 00).

The general properties of the transitional points are the same as in case B.
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All spectrum of equation (1.5) asymptotically is given, in accordance with the principle
of superposition, by the unification of the contributions of the separate strip. It is necessary
to add the same remark as in the case B about the transformation of the discrete spectral
points to the resonances. The continuous spectrums generated by different strips can
coincide partially. Nevertheless they can be treated independently up to terms of the
order 0(e*).

8. Asymptotic behavior of the spectrum in case D

In case : D V() — 400 as £ = —oo and V4(€) — —oo as £ — +oo. The spectrum
of equation (1.5) is simple purely continuous on all axis.

Fix again some spectral interval A¢(£) and consider the corresponding admitted strip.

For all values of E this strip generates two turning points £,,_1 < {, and the interval
[€m—1,&m] is covered by a closed finite real branch of the isoenergy curve, which leads
together with the quantization conditions to the infinite set of the asymptotic spectral
points distributed on all E-axis.

The last admitted strip generates only one turning point ;5. The infinite interval
[€2n,00) is covered by a disclosed infinite real branch of the isoenergy curve. It means
that all E-axis belongs to the continuous spectrum of equation (1.5). One can introduce
naturally the corresponding solution 3 of the scattering problem and the reflection coef-
ficient r(x). The considered real branch of the isoenergy curve gives a possibility to find
the asymptotic representation of ¢ as ¢ — 0 and also as £ — 0o. As a result one has the
asymptotic representation of r.

The interaction between a bounded real branch of the isoenergy curve and the un-
bounded branch shifts all spectral points, generated by the bounded branch, from the real
spectral axis into the complex plane, so they become resonances. Therefore one has ex-
actly N branchs of the resonances in the complex plane. They again have the exponentially
small imaginary parts.

In the special case
V(¢ z)=p(z) - ¢, (8.1)
equation (1.5) can be treated as the Schroedinger equation which characterizes the motion
of the quantum electron in a crystal placed in the homogenious electric field. In this case
the mentioned series of resonances are periodic :

En(¢) ~ nea + z E"Em,n€Z. (8.2)
m2>0

They are called the Stark ladders. The Stark ladders were considered with the details in
[6,7). Under special assumptions case (8.1) was investigated also in [13,14] and in other
works ; the list of references can be found in the indicated publications.
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9. Asymptotic behavior of the spectrum in case E

In case E : V_(§) = 0 as £ = —oo and V4 (§) —» —oo as £ — +00. The spectrum of
equation (1.5) is purely continuous on all E-axis and double on the spectral intervals A
of the equation

~Yzz +p-($)¢ =Ey .
Fix a spectral interval A,(£) and the corresponding strip.

If E < E,,_,, there are two turning points {;n—1 < €n with the interval [€m—_1,&m]
between them covered by a closed finite real branch of the isoenergy curve. The quan-
tization conditions generate the asymptotic description of the discrete set of the spectral
points. In fact, they are the real parts of resonances.

If E € A, there is only one turning point {,, and the interval (—o0, ] is covered
by a disclosed infinite real branch of the isoenergy curve. It leads to a simple branch of
the continuous spectrum, and the semiclassical constructions can be used to obtain the
asymptotic description of the corresponding scattering process.

If E > E,, turning points and real branches of the isoenergy curve are absent, so the
contribution to the spectrum is empty asymptotically.

For the last spectral interval the situation is different again. If £ < E;,; one has an
only turning point and the scattering picture generating the simple continuous spectrum.

If E > E;, one has no turning points, the all {-axis is covered by two disjoint infinite
regular branches of the isoenergy curve and the corresponding scattering picture with 2 x 2
scattering matrix generates the double continuous spectrum.

After the unification of the contributions of all strips the discrete spectral points
transform to resonances, such that there exist exactly N branches of resonances with the
real parts distributed on the half-axis E < E;, ,, £ =1,---, N, in accordance with the
quantization conditions.
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10. Asymptotic behavior of the spectrum in case F

In case F Vi(€) — —oo as £ — too. The spectrum of equation (1.5) is purely
continuous of the multiplicity 2.

Consider a fixed spectral interval Ay(¢) of equation (2.3).

One has to distinguish three following cases : £ < max E,,_;, F € (max Ep,_;1,max E,), E
max F,,.

If E < max E,,_;, there are four turning points ¢, < £.._; < £, < &, the intervals
[€m,6_1] and [£} _,, &L are covered by closed finite branches of the isoenergy curve and
these branches generate the asymptotic description of the discrete sets of spectral points in

the considered interval of E-axis. It is clear that these points are real parts of resonances.

On principle, the picture is the same as E € (max E,,—;,max E,;), but in this case
there are only two turning points £, < £}, only one real branch of the isoenergy curve
and only one set of spectral points generated by the quantization conditions.

If E > max E,,, the contribution of the strip to the spectrum is empty asymptotically.
The last spectral interval generates the double continuous spectrum on all E-axis.

If E < max E;p, there are two turning points {;; < {;' n and the intervals
—00, €], [€Fy, 00) are covered by a disclosed infinite real branches of the isoenergy curve.
2Nb (S2N g

If E > max E;p, there are no turning points at all and all é-axis is covered by two
disjoint regular infinite real branches of the isoenergy curve.

In both the cases it is possible to consider two pairs of the solutions with the standard
asymptotic behavior either as + — 400 or as ¢ — —o0, and the 2 x 2 unitary scattering
matrix. Asymptotically, as € — 0, it becomes unti-diagonal if £ < max F,y and diagonal,
if E > max Fyp.

In case F' all transitional points are double turning points.

The interaction between different strips leads to the displacement of the discrete spec-
tral points into the complex E-plane, such that there appear exactly N branches of the
resonances which real parts are distributed along the half-axises (—oo,max Egy_1),£ =
1,---, N, in accordance with the quantization conditions. Along the finite intervals
(max E2¢_3, max Ez¢_1) these branches of resonances are simple, along the infinite intervals
(—o0, max Fg;_2) they are double in the clear sense.
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