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Asymptotic completeness for N-body short-range quantum systems
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Institut fir theoretische Physik, ETH-Honggerberg, 8093 Zurich, Switzerland

Abstract. We give a sketch of a geometrical proof of asymptotic completeness for an
arbitrary number of quantum particles interacting through short-range pair potentials.
It relies on an estimate showing that the center of mass motion of clusters of particles

concentrates asymptotically on classical trajectories. Full details can be found in [9].

1. Introduction

The first task of quantum scattering theory is to give a classification of the possible large
time behaviours of Schrédinger orbits e~ ®H4). In this contribution we study this problem
for an arbitrary number of particles interacting via short range interactions. In the intuitive
picture of the scattering process, this system is well described at large times by a number of
bound clusters which do not feel each other, i.e. by free composite particles. This statement
is called asymptotic completeness. For N = 2, 3 it was proved by several authors (see [1],
Section 5.7 for a review), and in particular using geometric ideas by Enss [4], [5], [6]. For
arbitrary N the proof is due to Sigal and Soffer [15].

The physical space is RY, v > 1. The configuration space of N mass points m; > 0 in
the center of mass (CM-) frame is the real vector space

N
X = {mz(ml,... ,zV) | «* € RY, Zmiwi=0}

1=1

equipped with the metric
N
Ty ::2Zmizi -yi R
=1

where z° - y* is the scalar product on R”. We will also use the notation z2 = z - z. The
Hilbert space of the quantum mechanical N-body system is H = L?(X), where the volume
element of X is defined by the metric.

The Hamiltonian of the N-particle system is

H=p2+V::p2+ZVij(a:i—:nj) (1.1)
(i3)

on L?(X), where p2 = —A, and A is the Laplacian on X. We will come back to this
and to other statements concerning the Hamiltonians at the end of this section. A cluster

decomposition is a partition of {1,..., N} into disjoint, nonempty subsets, called clusters.
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The intercluster interactions for a cluster decomposition a is defined as the sum of all

potentials linking different clusters in a, i.e. as

I, := Z V;;(2(9)
(ij)Za

where (i7) ¢ a means that i, j belong to different cluster in a. Non-interacting clusters of
a are the described by the Hamiltonian H, = H — I,. It decomposes naturally into a part
describing the center of mass motion of the clusters in a, and an internal part H%, whose
bound state projection is denoted P?. States in the range of P represent, physically
speaking, a set of composite particles, each of them consisting of the ‘elementary’ particles
of some cluster of a.

We say that the N-body short-range system above is asymptotically complete, if for
any state 9 € L?(X) and any ¢ > 0 there are states ¥* = P*%® € L?(X) such that

e—itH,‘/) _ Z e—itHa,‘l)a,
a

<e

for t > 0 large enough. See [15] for a similar but equivalent definition.
We assume that the pair potentials are real and satisfy

Decay assumption:
IF(lyl > R)V:i(y)(p* +1)7'|| < const R7#* (1.2)
IF(lyl > R)VVij(y)(p* +1)7*|| < const R™(+42) (1.3)

for R > Ry and some Ry, p := min(uq, pu2) > 0.
Short-range assumption:
p1>1 . (1.4)

Compactness assumption:
Vi@ + 17, (9 +1)7'y - VVi(9)(p° +1)77  are compact. (1.5)
Here p? = —A, and F(Jy| > R) is the characteristic function of the set {y € R” | |y| > R}.

Theorem. The quantum N-body system (1.1) satisfying (1.2)-(1.5) is asymptotically
complete.

Let us now introduce some further notion concerning N-body systems. For any cluster

decomposition a we introduce the external configuration space
Xa::{:cEXI:ci::cj if ¢, j € C for some CEa} ,
and its orthogonal complement, the internal configuration space

X"‘:——:{wGX]Zmimi:O for C’Ea}
i€C
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The splitting X = X, ® X*° induces a decomposition ¢ =: z, + z*, as well as the factor-
ization

L}(X) = L}(X,) ® L}(X®) . (1.6)
The dual of X is

N
X':{k:(kl,...,kN)lk,-eR”, Zk,-:o}
=1

The particle momenta are the components of the operator p acting as pyp = (1/7)dv,
where d is the derivative. Hence its expectation values are in X'. Since the velocities are
v; = p;/m; = 2p*, they are given by the contravariant components of the operator 2p. The
kinetic energy is then 3, p?/2m; = ¥, pip* = p®.

With respect to the factorization (1.6) we have

H,=(p.)’®1+1® H* ,
with

H =)+ ) Vi(=™)
(ij)Ca

2. Some ideas of the proof

We think that some of the intermediate results of the proof are almost as important
as the result itself, because they allow to test our physical intuition about the quantum
dynamics of N-body systems. In view of this we exempt ourselves from proving asymptotic
completeness.

To each configuration of the particles one can associate a partition of these particles
into clusters in such a way that particles in the same cluster are close together, and that
the clusters are very distant from each other. The main intermediate result of the proof
is the following statement: If at some large time ¢ one groups the particles as explained,
then the velocities of the centres of mass of these clusters are approximately given by their
positions, divided by ¢. It is an indication that the motion of the centres of mass of these
clusters is free over long times. In fact for a free particle both quantities are approximately
equal. In other words, the quantum dynamics is concentrating on configurations, where
these quantities coincide. A way to describe such a concentration is by use of propagation
estimates.

Let P(t) be a family of bounded, positive operators

P: [1,+00) — L(H), t — P(t) |,
P(t)>0
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A propagation estimates is an estimate of the form

/ at (¢, P(t)e) < comst ||]|>
1

where 1, = e #Hqp. It tells us that the trajectory e "¢ concentrates on the region of
phase-space where P(t) is small.
Propagation estimates can be generated by a propagation observable

®: [1,+00) = L(H), t — &(2),

where ®(t) is uniformly bounded in t. We assume the existence (as a bounded operator)
of the Heisenberg derivative D®(t), i.e.

(e, B(2)h) = (4, DB()P)

which is formally given by D&(t) = :[H,®(t)] + 0®/0t. Assume it is positive in the sense
that
D&(t) > P(t) + R(t)

in L('H), where
' P(t)>0

and R(t) satisfies the remainder estimate

/1 dt |(:, R(t)ps)| < const |||

Then T r
T
(bo2@p0l} 2 [ dt@aPep+ [ dt(boROP)
1 1
where both the Lh.s. and the last term on the r.h.s. are bounded by const ||||2. We
conclude that P(t) satisfies a propagation estimate, since the integrand is nonnegative.

We now mention two ways to prove a remainder estimate. We assume one of the
following

1) /1°° dt |R(t)| < oo
2) R(t) = Ri(t)"B(t)Ra(t) + R2(t)*B()" Ra(t)

where R;(t)*R;(t), ¢ = 1, 2 satisfy a propagation estimate and B(t) is uniformly bounded.
In fact
|(e, R(t)%:)| < const (e, Ry(2)* Ry (£)e)'/* (e, Ra(2)* Ra(t)ehe) '/

from which the remainder estimate follows by Cauchy’s inequality.
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We will now give a number of examples of propagation estimates, propagation observ-
ables, and remainder estimates. Actually they constitute the core of the proof.

Example 1. (Maximal velocity bound) Let 2 C R be a bounded interval, and A > 0 large
enough. Then

./10o % (%1, Ea(H)F(X < |2/t] < 2)Eq(H)%:) < const [|¢]]*

for all p € L?(X), where Eq(H) is the spectral projection for H associated with Q and
the constant depends on 2, A.

The idea is that a particle with finite energy and hence speed cannot propagate into
regions moving away still faster. This propagation estimate is generated by the propagation

observable
®(t) = —Ea(H)h(|z/Xt|)Ea(H),

where h' > 0 and A'(y) > 1 for 1 < y < 2. One checks in fact that

D > %EQ(H)F(A < |e/t| < 2))Eq(H) + O(t™2)

Example 2. This example deals with free particles, H = p?, and is therefore not directly
applicable to N-body systems. The basic observation is that the system consisting of free

particles has the classical trajectory

P=Dpo , Tz =2pet+ o ,

where po, zo are the initial data. It follows that (p—(z/ 2t))2 = z2/41? is decreasing. This
suggests that one can get a positive Heisenberg derivative by considering the propagation

-5

(we ignore that @ is not uniformly bounded for a while). In fact

observable

which ‘proves’
> dt z\2
[ S (p-2) s0 < const Il . (wrong)
1

This means that the time evolved quantum state is concentrating on the region in phase-
space where (p —(=/ 2:‘.))2 is small, i.e. around the classical trajectories. But the equation
above is wrong as it stands, since ®(t) is not even a bounded operator. The next example
will deal with this problem.
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Example 2 (revisited). We replace & by a bounded operator by introducing some
cutoffs, namely an energy cutoff Eq(H), where @ C R is some bounded interval, and a
volume cutoff f(z/At), where f € C°(X), f(z) =1 for |z| < 1, f(z) = 0 for |z| > 2, and
A > 0is large. Eqf®fEq is now a suitable propagation observable, since it is uniformly
bounded in t.

D(Eqf®fEq) = Eq (f(D®)f + f®(Df) + (Df)2f) Eq

Since Df is supported in A < |z/t| < 2], it is easily checked that the terms above arising
from D f satisfy a remainder estimate by Example 1. Hence

/ "L e Baf (p- 2)" fBae) < const [

Example 3. What does Example 2 mean in the interacting case? We will give some
intuition that by replacing (p — (:l:/Zt))2 with

K(t):( —%)2+V

we almost get the right propagation observable. Consider a configuration z. Group the
particles into clusters in such a way that the particles in the same cluster are close together,
and that the clusters are far from each other. Call a the resulting cluster decomposition.
We express this by saying that the particles are a-clustered at # (we will be more precise
about the scale which sets the meaning of far and close when introducing the partition of
unity below). We split V = V* + I,,, where I, is negligible at z, i.e.

K= - 5+ (- 5) 4 v

Since the particles in the clusters of a are close together, we may try the approximation

2% =2 0. Then

2t
The second term is conserved at z, and the first term is decreasing because the centers of

K(t) = ( —i"—)i+Ha

mass of the clusters of a are free at . Therefore K(t) should have a negative Heisenberg
derivative. This is however not the case, since

DK(t):—%( —3)2+3t’--vv :

where the term arising from the potentials is not integrable in time. If the particles are

a-clustered at z, then
wa

ZowveZl .yye |
¢ 1

since V* depends on z* alone. So we see that the approximation z* 2 0 is not allowed.
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Example 3 (revisited). We replace the vector field z/2t by a mild modification v(z, t) of
it, such that v(z,t)® = 0 if the particles are a-clustered at z. More precisely we introduce

dii=1
a

which consists of smooth characteristic functions of the sets shown in the figure below. On
the support of j, the particles are a-clustered . The vector field v(z,t) is then given by (a
smooth version of) the one shown in the figure.

a partition of unity on X

\ X(1)(23)/

\ \ / /
N ) \ /
ﬁ \
\ /
Nem =z

The configuration space X for N = 3 and the vector field v. As an ezample, we
consider a = (12)(3),

We compute

DR = =2p =) +3)(p—) = 2(p- (00 + 320) 4 (00 + 122) )

10v
+4v-<v*v+§a—t>+A(V-v)+2v-VV ,

where v, is the z-derivative of v, and v} its transpose. We evaluate these terms on each

supp ja(-/2¢1 %) separately, disregarding the ‘boundary contributions’ arising from the fact

IX-7



that v has been defined piecewise.

(=)o +98)p—2) = ;-0 =3 (= 2)

2t
VI, = o(t-(l-ﬁ)(lﬂzz))

v-VV = v* .VV%+0.VI, = o(t—(1-5)(1+pz))
=0
10v 1, z, 1z,

v — =z =

T o9t T 2t 2ot

The results of these computations are slightly changed when making a rigorous compu-
tation with a smooth v. We mention that in this case v,v + 182 = O(t~(1*9), and
A(V - v) = O(t~(3~29), As we know from the free case we have to put cutoffs around

K(t). Taking § such that min(1 + 6§, 3 — 2§, (1 — §)(1 + p2)) > 1, we get

1 . z\2 . .
D(~EafKfEq) 2y ;Eafis (P~ 5;) jafFa +remainder

and hence

S [ G GuBatia (p-5;). iuf Bab) < const 4]

For large times, this estimate asserts that whenever the particles are a-clustered, the
velocities of the centres of mass of the clusters of a are approximately given by their
positions, divided by ¢. This is the result mentioned at the beginning of this section.
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